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Abstract: The generation of different types of defective viral genomes (DVG) is an unavoidable
consequence of the error-prone replication of RNA viruses. In recent years, a particular class of
DVGs, those containing long deletions or genome rearrangements, has gain interest due to their
potential therapeutic and biotechnological applications. Identifying such DVGs in high-throughput
sequencing (HTS) data has become an interesting computational problem. Several algorithms have
been proposed to accomplish this goal, though all incur false positives, a problem of practical interest
if such DVGs have to be synthetized and tested in the laboratory. We present a metasearch tool,
DVGfinder, that wraps the two most commonly used DVG search algorithms in a single workflow
for the identification of the DVGs in HTS data. DVGfinder processes the results of ViReMa-a and
DI-tector and uses a gradient boosting classifier machine learning algorithm to reduce the number
of false-positive events. The program also generates output files in user-friendly HTML format,
which can help users to explore the DVGs identified in the sample. We evaluated the performance
of DVGfinder compared to the two search algorithms used separately and found that it slightly
improves sensitivities for low-coverage synthetic HTS data and DI-tector precision for high-coverage
samples. The metasearch program also showed higher sensitivity on a real sample for which a set of
copy-backs were previously validated.

Keywords: benchmarking; bioinformatics; defective viral genomes; gradient boosting; machine
learning; RNA-seq; SARS-CoV-2; virus replication

1. Introduction

One of the hallmarks of RNA virus replication is their low fidelity, traditionally
attributed to the lack of proofreading activities in their RNA-dependent RNA polymerases
(RdRp), although a suite of RNA-modifying activities associated to increased fidelity has
been identified in coronaviruses [1]. During viral replication, a plethora of defective copies
of the viral genome, or DVGs, can be generated: point mutations and hypermutations,
frame-shiftings, short and large deletions, and largely rearranged genomes (e.g., copy- and
snap-backs), all forming part of the mutant swarm that constitute the viral population.
These RNA molecules are called defective genomes because they need the presence of
the wild-type viral genome to complete their replication cycle [2]. Since defective viral
particles were first described in influenza A virus by Von Magnus and Gard [3], examples
of DVGs have been pervasively reported in positive and negative single-stranded RNA
viruses [4] and double-stranded RNA viruses and retroviruses [5]. A particular interesting
type of DVG is known as defective interfering particles (DIPs), which show the capacity to
encapsulate and interfere with the replication and population dynamics of the wild-type
virus [6]. In a recent review, DVGs have been considered as long noncoding RNAs, though
they might preserve some coding capacity [7].
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Recent studies suggest that DVG generation is not a completely stochastic process and
may be mediated by viral and host factors [4]. This new observation opens the possibility of
manipulating the generation of DVGs (and DIPs) with therapeutic purposes, resulting in the
so-called therapeutic interfering particles (TIPs) [5]. Indeed, the first TIP rationally designed
and synthetically produced to interfere with SARS-CoV-2 has already been published [8].

The first virus–host interaction model with production of DIPs was proposed by
Huang and Baltimore [9]. More recent models take into account the immune stimulation
effect that DIPs could exhibit [4,6]. As mentioned above, DIPs could be used therapeutically
as antivirals [10] and vaccine adjuvants [11], and although the specific mechanisms of
generation are not well understood yet, their impact in viral evolutionary dynamics has
been well stablished, both experimentally and theoretically [5]. Additional information is
clearly needed to better appreciate the implications of DVGs in pathogenesis. For instance,
to understand the mechanisms behind their apparently antagonistic functions: on the one
hand, in most infections DVGs are triggering the host immune system but, on the other
hand, evidence exists that involucrate them into viral persistence [12].

The types of DVG frequently considered have been deletions and copy- and snap-
backs (Figure 1) but insertions and rearrangements with the host’s mRNAs should not
be discarded. Although the terminology is not yet completely unified, the DVGs can be
characterized by three parameters: the genome position at which the RdRp is released
from the template or break-point (BP); the genome position at which the RdRp reattaches
to the template and continues polymerizing; or the reinitation site (RI) and the sense of the
fragments pre- and post-BP/RI junction (Figure 1).
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Figure 1. Schematic representation of the different types of DVGs that can be produced during a
positive-sense RNA virus replication. In the case of negative-sense RNA virus, the terminology has
to be reverted accordingly: coding (+) by non-coding (−), 5′cb/sb by 3′cb/sb, and “forward” by
“reverse” and vice versa.

The strategy most often used to identify DVGs in high-throughput sequencing (HTS)
data consists of, as a first step, aligning all reads against the reference viral genome and
subsequent identification of the BP and RI coordinates. In recent years, some programs
have been published pursuing this objective. As far as we know, the earlier program that
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took into account the DVGs was Paparazzi [13] although it was not specifically designed to
identify DVGs and excluded them to reconstruct the consensus viral genome in a sample.
The first specific program for DVG identification and characterization in HTS data was
ViReMa-a [14], which together with DI-tector [15] are the most widely used algorithms to
date. Table 1 lists the different published bioinformatic tools for DVG detection.

Table 1. Published tools for the identification of DVGs. Abbreviatures: D, deletion; I, insertion; cb/sb,
copy- and/or snap-back. The last column enumerates the studies that have used each program
(search on PubMed database, last accessed on 23 February 2022).

Program Language DVG Type Identified Reference Number of Citations Used by

ViReMa-a Python D, I, cb/sb [14] 31 [16–25]
DI-tector Python D, I, cb/sb [15] 9 [26–30]
VODKA Perl cb/sb [31] 13 [32]

DVG-profiler C++ D, I, cb/sb [28] 4 -
DG-seq R D, I, cb/sb [33] 5 -

Although a rigorous assessment of the comparative performance of these programs
has not been done, it is well known that most of these algorithms introduce in silico artifacts
(e.g., false positives and false negatives) during its identification and assembly process. For
instance, the introduction of in silico artifacts by DI-tector has been previously reported
and discussed by Bosman et al. [28]. Likewise, the low sensitivity of ViReMa-a identifying
copy-backs has been already mentioned by Beauclair et al. [15].

Here, we present a new machine learning (ML)-based tool, DVGfinder, that facilitates
the identification and extraction of a set of candidate DVGs for further experimental valida-
tion. For that, our tool integrates the two most commonly used DVG searching algorithms
(Table 1), ViReMa-a and DI-tector, in a single workflow unifying the terminology and
adding a set of descriptive variables. Additionally, DVGfinder applies an ML algorithm to
reduce the number of false positives and generates a user-friendly and rich HTML report
with graphical outputs that help a first exploration of the DVG candidates. Although
the search results are processed by DVGfinder, the individual output of both search al-
gorithms is also stored, so that users can trace the events predicted by each program’s
own terminology.

2. Materials and Methods
2.1. Implementation, Requirements, and Availability

DVGfinder is written in Python3 and bash and, for now, it runs in the Linux-type
command line. It calls the programs ViReMa-a (v.0.23) and DI-tector (v.0.6), the aligners
bowtie and bwa, and some specific Python libraries. It is highly recommended to create
an environment; for that reason, a configuration environment file, Conda-like formatted
(dvgfinder_env.yaml), with all the external programs and Python library requirements is
provide in the DVGfinder repository [34].

The parameters needed for execution are -fq, sample in fastq format; -r, virus reference
genome in fasta format, and the indexed genome for bwa and bowtie in the same directory;
-m, number of bases to take into account in the measurement of the mean depth over the
junction BP-RI (default 5); -t, probability threshold to filter out the true DVGs from false
positives (default 0.5); -n, number of processes to be used; and -s, polarity of the reference
virus (default is “+”).

DVGfinder process single-end short reads (Illumina-like); also, it is recommended
to put the reference and their indexed files by bowtie and bwa in the “/ExternalNeeds/
reference” directory.

2.2. Algorithm

The program is structured in three modules acting sequentially (Figure 2): (1) Metasearch
module—launches the search of DVGs in the HTS data with the ViReMa-a and DI-tector
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algorithms. The program then extracts the structural DVGs identified by the search algo-
rithms and characterizes them by generating informative variables with a unified terminol-
ogy (see below). (2) Prediction module—applies the trained classification model to the set
of identified DVGs and assigns each DVG a probability of being a true positive. (3) Report
module—writes final tables, prepares the graphic visualizations, and wraps up everything
into an HTML final report.
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Figure 2. DVGfinder flow chart. (A) General workflow of the program with the four cases of
usage accounted. (B) A more of detailed description. (C) Simplification of the two first steps of the
Metasearch module, with emphasis on the processing of the different alignments obtained.

There are four cases of usage (Figure 2A), and depending on whether the Metasearch
module finds the candidate DVGs with both search algorithms, the Prediction module is
launched (Figure 2A, Case 1).
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2.3. Descriptive Features

The last part of the Metasearch module consists of the addition of descriptive variables
to each DVG. These features add information about the depth in both BP and RI coordinates,
and about the mean depth in its neighborhoods, both in absolute and normalized values, as
explained below. The estimated length of the DVGs is also provided. All this information
is saved in a csv-formatted text file ({sample_name}_resume_table.csv). The predictor
variables, i.e., the specific features used by the predictive model, are metrics related to the
proportion of the DVGs in the coordinates BP and RI and in its neighborhood as follows:

1. RPHT, or reads per hundred thousand, relativizes the number of reads where the
BP/RI junction has been found to the total number of reads that are correctly aligned
with the reference sequence (mapped reads, first selection (Figure 2C, 1.2)). The use
of RPHT was previously documented by Parker et al. [35] and, instead of hundred
thousand, relative to million reads mapped (RPM) By Razelj et al. [2]:

RPHT = 105 × DVG read counts/total mapped reads (1)

2. pBP and pRI, or the proportion of reads in the BP and RI genome coordinates, nor-
malizes the number of reads presenting the DVG with respect to the total number
of mapped reads at these positions. The values can be greater than one because the
search algorithms can find DVGs in reads that do not align with the reference in the
first moment.

pX = DVG read counts/total depth in coordinate X (2)

where X ∈ [BP, RI].
3. SDRM stands for the semi-difference relative to the mean for positions a = depth in

BP and b = depth in RI. SDRM can also be computed as the depth mean in the neigh-
borhood of the coordinates of interests X and, in this case, a = mean pre-coordinate X
depth and b = mean post-coordinate X depth:

SDRM = |a− b|/(a + b) (3)

These metrics were calculated using the information of the two alignments produced
by bowtie and bwa mem, respectively. An additional level of resolution also was consid-
ered, separating the hard-clipped reads from the rest of the mapped reads. Henceforth,
the Metasearch module incorporates information about pX and SDRM from the four align-
ments; i.e., the mapped and hard-clipped from the two alignment algorithms (Figure 2C).

The predictors depend on the output of both search algorithms; thus, the predictive
module is only applied in Case 1 in Figure 2A. In Case 1, a consensus level is generated
with the DVGs detected by the two search programs.

The final outputs also report descriptive variables such as the sense, BP, and RI coor-
dinates, the type of DVG in which it has been classified, and the theoretical length of the
deletion. In addition, we add a unique identifier of the DVG generated with the format
“sense_BP_RI”. For example, identifier “++_100_300” represents a deletion in the coding
sense involving the fragment from genomic positions 101 to 299 (Figure 1). Likewise, iden-
tifier “+−_100_80” would represent a copy-back in which nucleotides between positions 81
to 99 form the loop (Figure 1).

2.4. Estimation of the Theoretical Length of DVG

The program calculates the theoretical length of the DVGs’ reconstruction. To do this,
two reasonable assumptions have been made. Firstly, it has been considered that a DVG
only results from an abnormal junction event. Secondly, once the RdRp reattaches in the
RI point, it continues the polymerization of the DVG until running off at the end of its
template (Table 2).
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Table 2. Coordinates used for the reconstruction of the theoretical length of the DVGs in a (+)ssRNA
viral genome. The length is calculated as the sum of the nucleotides that conform the pre-BP and
post-RI fragments.

DVG Type Fragment Sense Coordinates Extracted from Reference

Deletion forward and
insertion forward

pre-BP
post-RI

+
+

[start, BP]
[RI, end]

Deletion reverse and
insertion reverse

pre-BP
post-RI

−
−

[BP, end]
[start, RI]

5′ cb/sb pre-BP
post-RI

+
−

[start, BP]
[start, RI]

3′ cb/sb pre-BP
post-RI

−
+

[BP, end]
[RI, end]

2.5. Model Generation

A Gradient Boosting Classifier (GBC) was chosen to build the predictive model using
the methods implemented by the scikit-learn library [36] and following the DOME recom-
mendations for supervised ML validation in biology [37]. Before selecting this algorithm,
we tested several combinations of algorithms and number of predictors and choose the
current one based on its best scores in accuracy, precision, F1 score, receiver operating
characteristic curve (ROC), and the area under the ROC curve (AURC). Figure 3 summarizes
the process.

Labeled  
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Ex
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pl
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52
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on the results obtained with the CV
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*

Figure 3. Model generation process. The labeled dataset, composed for a total of 1527 DVGs, between
true positives (TP = 764) and false positives (FP = 762), was divided into two separate partitions
of data (train and test set), respecting the proportion of the two categories. A GBC was chosen for
training the model based on its best performance with respect to other algorithms such as Logistic
Regression, Extra Trees Classifier, Supporting Vector Machine, and Random Forest. The optimization
of the hyperparameters was achieved by the RandomizedSearchCV function of sklearn library using
the training dataset. The optimized model was finally validated on the unseen test dataset considering
that the model was generalizable. Finally, the model was trained with the totality of the data and
integrated in the Predictive module of DVGfinder.

2.5.1. Data

The training dataset consists of 1526 events with the categories real and artifact
balanced (764 and 762, respectively). This dataset was generated as follows: we created
a synthetic fastq file simulating the sequencing of a known set of DVGs (630 different
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genomes) and its wild-type reference genome, using as reference the (+)ssRNA of SARS-
CoV-2 (NC_045512.2). The Metasearch module of DVGfinder was applied on this sample
resulting in a dataset with 1526 candidates that were then labeled as real or artifacts;
defining as reals the DVGs directly introduced in the set of known DVG and its reverse
complement events. The predictors used had been explained in Section 2.3 above. The
labeled dataset is accessible in the DVGfinder’s GitHub repository [38].

2.5.2. Training, Optimization, and Evaluation of the Model

The whole synthetic dataset was split into train (75%) and test (25%) sets using the
parameter “stratify = y” from “train_test_split”.

Eighteen predictors were selected to train the model and through the optimization
of the hyperparameters with the RandomizedSearchCV function, these were adjusted to
max_depth = 2, max_features = sqrt, min_samples_leaf = 2, min_samples_split = 4, and
n_estimators = 50.

The accuracy, recall, precision, F1 score, and AURC of the model were 100-repeated
and 4-fold cross-validated in the training set (Figure 4A) and the optimized model was
finally evaluated in the test set (Figure 4B). The values obtained in the learning and the
evaluation process were very close, therefore considering that the model was generalizable.
The final model was built with the totality of the data (Figure 3).

A B

Figure 4. ROC curves of the optimized classifier (GBC algorithm). (A) Four-fold cross validation (100
repeats each fold) in the training set partition; the mean ROC is shown with a continuous line and the
distribution of the data from 45–55 to 0–100 percentiles in ranges of 5% in the colored areas (from
darker to lighter respectively). A mean AURC = 0.8010, with a 99.99% CI from 0.7964 and 0.8055,
was achieved in the training set. (B) Final validation of the model in the test partition. Despite these
data being completely new for the model, the AURC = 0.7929 was really close to the values of the
training set, thus considering the model to be generalizable. The final model was trained with the
whole dataset.

2.6. Performance Metrics

The number of true positives (TP), false positives (FP), false negatives (FN), and true
negatives (TN) were used to compute the following evaluation metrics: false positive rate,

FPR = FP/(FP + TN) (4)
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precision or positive prediction value,

PPV = TP/(FP + TP) = 1− FDR (5)

sensitivity, recall, hit rate, or true positive rate,

TPR = TP/(FN + TP) (6)

and the harmonic mean of PPV and TPR, or

F1 = 2× PPV × TPR/(PPV + TPR) (7)

where FDR in Equation (5) is the false discovery rate.

2.7. Output of DVGfinder

The identification of the DVGs is strand sensitive, so it can be used with this type of
sequencing without losing information. In case the sequencing was without preserving
the polarity, the reverse complement DVGs would be grouped together, considering for
example the deletion forward “++_30_200” the same as the deletion reverse “−−_200_30”.

The results of DVGfinder are written in different files and an interactive HTML report
is generated.

2.7.1. HTML Interactive Report

In Case 1 in Figure 2A, the HTML report shows the detected DVGs in up to three levels:
(1) All run mode, with all the DVGs detected by the two search algorithms; (2) Consensus
run mode, reporting only the DVGs found by both algorithms (sense sensitive); and (3) Fil-
tered run mode, with the DVGs predicted as reals by the ML classifier, with a probability
greater than the threshold parameter defined by the user (default is 0.5). Furthermore, the
three types of graphics generated—scatter plot of the BP-RI coordinates, distribution of
the DVG length, and arc diagram of the deletions—were labeled by the program that had
identified them.

In Cases 2 and 3 in Figure 2A, the report consists of a one-page HTML with the same
data structures as in Case 1 but only with the results of the algorithm that found the DVGs.
Datapane [39] and plotly [40] Python libraries where used to generate the HTML report and
interactive plots, respectively. Examples of reports are available in the GitHub repositories
associated with DVGfinder.

2.7.2. Other Results

The information processed by DVGfinder is written as tables in csv files separated by
the levels discussed in Section 2.7.1. (all, consensus, and filtered levels). Furthermore, the
raw output of each search algorithm is kept in the directory “OldOutputs/virema” and
“OldOutputs/ditector” in case users want to trace the events and retrieve other valuable
information that these programs provide.

The alignment files and some stats about the alignments are also stored in “OldOut-
puts/alignments”.

2.8. Recommended Pipeline

The program can deal with complex RNA-seq data (host and virus reads), but a prior
removal of host reads will significantly reduce the search time. In addition, the result
of the program must be contextualized depending on the type of virus. In some RNA
viruses, such as for SARS-CoV-2, translation of their structural proteins is performed from
subgenomic fragments (sgRNA) [35,40–43]. These fragments will be identified as deletions
by the program so if they are not of interest to the user, they should be filtered out of the
output. In other cases, the exact identification of BP-RI coordinates will not be possible
due to identical nucleotides in the proximity of the abnormal junction, and the programs
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identify multiple BP-RI coordinates. This situation has been reported by Mura et al. [44]
and also in the synthetics and real datasets we have evaluated here. A strategy to be used
in such case is presented in Section 2.9 below. An example of workflow can be found at
Supplementary Figure S1.

2.9. Evaluation Synthetic Datasets

To assess the performance of the tool we simulated two sets of 12 samples. Both sets
were generated with the same DVG density (number of DVGs/genome length) from SARS-
CoV-2 and turnip mosaic virus (TuMV) genomes, two (+)ssRNA viruses. The DVGs in the
samples were defined randomly, each type of DVG (deletions, insertions and copy/snap-
backs) being in equal proportions and supposing 60% of the total viral population in the
samples. The rest of each sample was made up of the reference genome. More precisely,
216 and 72 random DVGs were introduced, respectively, and depth samples (n) of 105,
5 × 105, 106, 2 × 106, 3 × 106, 4 × 106, 5 × 106, 6 × 106, 7 × 106, 8 × 106, 9 × 106, and 107

of 100 nucleotide-long single-end reads were used. In total, we used 24 fastq simulated
samples. A further description of the generation of these synthetic datasets is provided in
Supplementary Text S1 and S2 and the exact list of DVGs incorporated in each sample is
given in Supplementary Table S1 and in [45] and the fastq files in [46].

2.10. Assessment of the Program Performance with Synthetic Datasets

The independent results of ViReMa-a and DI-tector and the three output modes of
DVGfinder (Metasearch, Consensus and Filtered) were compared on the above synthetic
samples. The number of TP, FP, and FN could be quantified in each case.

In a first evaluation, we considered as TP only the DVGs for which cID_DI matched
exactly with one of the DVGs introduced in the synthetic dataset or with its reverse com-
plement (i.e, if “++_100_300” was in the list of reals, only the same DVG or “−−_300_100”
was labeled as TP). The rest of the DVGs detected were counted as FP. Real events (DVGs
introduced in the synthetic sample) not detected by the program were considered FN. A
considerable amount of cID_DI qualified as FP but a junction position close to that of a
real DVG was found with this strict evaluation [47]. Therefore, a second, less stringent
evaluation was performed. For this evaluation, we proceeded as follows: (i) For each event
identified by the program, we generated the sequence around the junction (30 nucleotides
pre- and 30 nucleotides post-junction) considering its BP, RI, and DVG type. This size was
chosen to avoid ambiguous matches with parts of the native genome. For shorter genomes
it is recommended that the user adjust the length. (ii) Then, we searched whether this
reconstructed sequence or its reverse complementary were present in any of the DVGs in
the synthetic datasets. If so, then this DVG was requalified as TP; indeed, the BP and RI
coordinates did not exactly match the original DVG. The results from this second evaluation
are the ones presented and discussed in the Results section. The resulting tables, with the
results separated by mode and the assigned category, are available at [46].

2.11. Statistical Evaluation

To assess the differences between the performance of the three DVGfinder run modes
and the two searching programs separately, the Friedman rank sum test [48] was used.
Whenever the null hypothesis was rejected, a pairwise comparison between the DVGfinder
run modes and each one of the two published search programs was performed using
a Wilcoxon signed rank test with a directional alternative, to check if the improvement
was significant across all the library sizes simulated. All the p values were corrected
by the Benjamini-Hochberg FDR method, imposing an overall significance level of 0.05.
All the statistical tests were performed with R software version 4.0.2 in RStudio version
22 June 2020.
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2.12. Assesment of the Program Performance with Real HTS Samples

To evaluate the performance of DVGfinder with a real HTS dataset, we used the data
generated by Bosma et al. [28], consisting of four samples obtained from three mump virus
preparations (one sample analyzed twice). The sequencing data are available at NCBI SRA
under bioproject PRJNA525871 (files named as Virus_1_18C, Virus_2_19C, Virus_3_20C and
Virus_2_HiSeq_rpt_11S, corresponding to runs SRR8719995 to SRR8719998, respectively).
Twenty-eight copy-backs and one deletion were experimentally validated by RT-PCR by
Bosma et al. [28].

We ran DVGfinder directly over the samples and compared the results with the
validated DVGs. The only preprocess consisted of interleaving in a unique fastq each pair
of paired-end reads, adding to the name of the reads a “/1” or “/2”, respectively. Since the
sequencing method used did not discriminate among the RNA strands, we considered a
validated DVG as detected if any of its direct or reverse complementary events was found.

3. Results
3.1. Evaluating DVGfinder Performance

We have evaluated the performance of the three DVGfinder run modes (Metasearch,
Consensus, and Filtered), and the two searching programs (ViReMa-a and DI-tector),
separately with the synthetic samples generated from SARS-CoV-2 and TuMV. As the
synthetic samples had a known population of DVGs, TP, FP, and FN were calculated as
detailed in Section 2.9, and sensitivity (TPR), precision (PPV), and F1 were calculated for
each run mode. A visualization of the performance of ViReMa-a and DI-tector identifying
DVGs can be found in Supplementary Figure S2. The results are shown in Figure 5. Whether
library size had an effect on the difference between the scores and run modes was also
tested, first with a Friedman test and next with ad hoc analysis (Table 3).

Table 3. Comparation of the five modes in the matched samples (twelve for each dataset) using the
Friedmann test. In all the scores and datasets there were significant changes detected.

SARS-CoV-2 Dataset

Performance Index Friedman Statistic p

Sensitivity (TPR) 40.6030 3.248 × 10−8

Precision (PPV) 46.7879 1.688 × 10−9

F1 score 30.6725 3.570 × 10−6

TuMV Dataset

Performance Index Friedman Statistic p

Sensitivity (TPR) 30.7887 3.381 × 10−6

Precision (PPV) 39.6123 5.206 × 10−8

F1 score 32.9735 1.210 × 10−6

The results have shown that there are significant differences between the run modes in
all the scores and for both datasets (Table 3). In other words, in every multiple comparison
exist, at least one run mode performs better than the others.

Pairwise comparisons between the DVGfinder run modes and the two search programs
are presented and discussed in the following sections (Table 4).

3.1.1. Sensitivity

Both search algorithms are very sensitive and only at smaller library sizes showed
significant differences. In this scenario, DI-tector turns out to be more sensitive, yet
DVGfinder Metasearch improves slightly the sensitivity (Figure 5A,B). The Metasearch
DVGfinder’s mode achieved a significant improvement over ViReMa-a in the number of
DVGs detected across all tested sizes of the SARS-CoV-2 dataset.
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Figure 5. Performance of the three DVGfinder run modes (Metasearch, Consensus, and Filtered) and
the two search algorithms (ViReMa-a and DI-tector) working separately on the synthetic samples
generated from the SARS-CoV2 genome (left column) and TuMV genome (right column). Sensitivity
(A,B), Precision (C,D), and F1 score (E,F) were calculated in the twelve synthetic samples generated
from each genome. An identified DVG was considered as TP if the sequence around its junction
matched with the sequence of any DVG introduced in the synthetic dataset, directly or as reverse
complementary. The scores for each run mode are represented in three different types of plots: line
graphs show them in relation to the library size while box and rug plots show the distribution of
each mode. Within each genome set, each sample contains the same composition in number and type
of DVGs, the size of the library being the unique parameter of variation. The library sizes assessed
(number of reads) were 105, 5 × 105, 106, 2 × 106, 3 × 106, 4 × 106, 5 × 106, 6 × 106, 7 × 106, 8 × 106,
9 × 106, and 107.
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Table 4. Pairwise comparisons (Wilcoxon signed rank test for paired samples) for sensitivity in both
sets of synthetic samples. The 1-tailed contrast performed is shown in the respective column. The
p-value was corrected with Benjamini-Hochberg FDR.

SARS-CoV-2 Dataset

Performance Index Contrast p FDR

Sensitivity (TPR) Metasearch-ViReMa-a 0.0089 0.0153
Sensitivity (TPR) Metasearch-DI-tector 0.1855 0.2783

TuMV Dataset

Performance Index Contrast p FDR

Sensitivity (TPR) Metasearch-ViReMa-a 0.5000 0.8571
Sensitivity (TPR) Metasearch-DI-tector 1.0000 1.0000

3.1.2. Precision

The results obtained in terms of precision in both datasets are equivalent. The ViReMa-
a, DVGfinder Filtered, and DVGfinder Consensus run modes achieved maximum precision
on all samples, regardless of library size (Figure 5C,D). DI-tector shows a decay in precision
with increasing sample size; consequently, DVGfinder Metasearch follows shows the same
behavior although to a lesser extent due to the contribution of ViReMa-a.

As is summarized in Table 5, in both sets of samples, the three DVGfinder run modes
reaches a significant better precision than DI-tector used alone.

Table 5. Pairwise comparisons (Wilcoxon signed rank test for paired samples) for precision in both
sets of synthetic samples. The one-tailed contrast is defined in the contrast column. The p-value was
corrected with Benjamini-Hochberg FDR.

SARS-CoV-2 Dataset

Performance Index Contrast p FDR

Precision (PPV) Consensus-ViReMa-a 1.0000 1.0000
Precision (PPV) Consensus-DI-tector 0.0013 0.0038
Precision (PPV) Filtered-ViReMa-a 0.9632 1.0000
Precision (PPV) Filtered-DI-tector 0.0013 0.0038
Precision (PPV) Metasearch–DI-tector 0.0013 0.0038

TuMV Dataset

Performance Index Contrast p FDR

Precision (PPV) Consensus-ViReMa-a 1.0000 1.0000
Precision (PPV) Consensus-DI-tector 0.0013 0.0038
Precision (PPV) Filtered-ViReMa-a 1.0000 1.0000
Precision (PPV) Filtered-DI-tector 0.0013 0.0038
Precision (PPV) Metasearch–DI-tector 0.0013 0.0038

3.1.3. F1 Score

The F1 score, as a harmonic mean of sensitivity and precision, allows to evaluate the
trade-off between these two values. In the smallest samples of each data set, DVGfinder
Metasearch and DI-tector obtained the best scores, but with increasing sample size, the
ViReMa-a and DVGfinder Filtered and Consensus modes reached the maximum value
while the score of the first two declined. This behavior was observed in both data sets
(Figure 5E,F).

The results in Table 6 show that the three modes of DVGfinder obtained a significant
improvement compared to DI-tector.
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Table 6. Pairwise comparisons (Wilcoxon signed rank test for paired samples) for F1 score in both
sets of synthetic samples. The one-tailed contrast is shown in the contrast column. The p-value was
corrected with Benjamini-Hochberg FDR.

SARS-CoV-2 Dataset

Performance Index Contrast p FDR

F1 score Consensus-ViReMa-a 0.9981 1.0000
F1 score Consensus-DI-tector 0.0067 0.0135
F1 score Filtered-ViReMa-a 0.9980 1.0000
F1 score Filtered-DI-tector 0.0027 0.0064
F1 score Metasearch-DI-tector 0.0013 0.0038

TuMV dataset

Performance Index Contrast p FDR

F1 score Consensus-ViReMa-a 0.9966 1.0000
F1 score Consensus-DI-tector 0.0034 0.0068
F1 score Filtered-ViReMa-a 0.9973 1.0000
F1 score Filtered-DI-tector 0.0016 0.0039
F1 score Metasearch-DI-tector 0.0013 0.0038

3.2. DVGfinder Performance in Real Samples Containing Experimentally Validated DVGs

We selected a group of publicly available samples (SRR8719995–SRR8719998) gener-
ated from Vero cells infected with mump virus (−)ssRNA where a set of 28 5′ copy-backs
were experimentally validated using DVG-specific RT-PCR primers [28]. DVGfinder was
run on the three samples indicating to the program the antisense polarity of the reference
virus. In total, DVGfinder founded 9453 DVGs in Sample 1, 11,758 in Sample 2, and 12,641
in Sample 3 (the raw output of the program can be found in [49].

The results obtained by the program were filtered to keep only the copy-backs
(Supplementary Figure S3) and then compared with the experimentally validated DVGs
previously described (Table 7). With the Metasearch strategy, DVGfinder detected 24 of the
28 5′ copy-backs. This represents three more assignments than using ViReMa-a.

Table 7. 5′ copy-back DVG genomes in mumps virus samples validated using RT-PCR [28] and its
in silico detection. In green are highlighted the DVGs that were detected only by DI-tector. The (*)
indicate the DVG was found with the deep assessment strategy explained in Section 2.9, although the
coordinates may not match exactly.

Sample BP RI Predicted Size ViReMa-a DI-Tector DVGfinder Metasearch

1 13,811–13,812 14,697–14,696 2262 Found Found Found
13,580 14,964 2262 Found Found * Found
13,865 14,964 1941 Found * Found * Found *
14,575 14,934 1261 Not found Not found Not found
14,770 15,004 997 Found Found Found
14,874 15,104 792 Found Found Found

2 13,308 14,864 2598 Found Found Found
13,566–13,568 14,678–14,676 2526 Found * Found Found
13,617 14,633 2490 Not found Not found Not found
13,316 15,144 2310 Not found Found Found
13,339 15,131 2300 Found * Found * Found *
13,347 15,239 2184 Not found Found * Found *
13,480 15,064 1905 Found Found Found
13,907–13,909 15,279–15,277 1584 Found Found Found
14,456 14,885 1429 Not found Found Found
14,223–14,224 15,166–15,165 1381 Found Found Found
14,342 15,108 1320 Found Found Found
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Table 7. Cont.

Sample BP RI Predicted Size ViReMa-a DI-Tector DVGfinder Metasearch

14,596 14,896 1278 Not found Not found Not found
14,761 14,917 1092 Found Found Found
14,730–14,733 15,026–15,023 1014 Found Found Found
14,868 15,032 870 Found Found Found
14,856–14,863 15,043–15,036 870 Found * Found Found
14,861–14,862 15,178–15,177 731 Found * Found * Found *
14,947–14,950 15,145–15,142 678 Found Found Found
14,864 15,198 708 Found Found Found
14,934 15,272 564 Found Found Found

3 14,706 14,930 1134 Found Found Found
12,661 15,231 2878 Not found Not found Not found

21/28 24/28 24/28

3.3. Final Report

DVGfinder generates an interactive report with the DVGs identified. An example of
the resulting HTML report can be found in [50]. This example shows the results of the
TuMV synthetic dataset generated as evaluation data, with a library size 100,000 reads. The
reports generated from the real samples analyzed are available for exploration [51].

4. Discussion

There are two published DVG search algorithms that show a high sensitivity but also
can incur a number of false positives. The strategy we have used in this work consisted of
unifying, in a single application, the search strategies implemented in these two programs,
also standardizing the terminology and trying to reduce the number of false positives by
applying an ML classification algorithm. This is the first time that ML is implemented in a
tool for the identification of DVGs in HTS data.

To evaluate the performance of the DVGfinder, we have generated two sets of synthetic
samples based on the genomes of two (+)ssRNA viruses, SARS-CoV-2 and TuMV, which
widely differ in their genome length, gene content, and expression mechanism. Each
synthetic dataset was composed of a known and equal number of DVGs that included
deletions, insertions, and copy- and snap-backs. The introduced DVGs were randomly
selected, constituting 60% of the total sample reads; the rest of the synthetic sample was
composed of the native viral genome. All reads were 100 nucleotides long and libraries of
between 105 and 107 reads were generated. In total, 24 simulated fastq samples were used
to assess the sensitivity, precision, and F1 score of the three DVGfinder run modes, as well
as the two search programs separately.

These evaluations have shown that the DVGfinder Metasearch run mode significantly
improved the sensitivity of ViReMa-a. This behavior was expected since the Metasearch
run mode consists of the union of the DVGs identified by each algorithm. We observed
that the sensitivity scores obtained for the 5 × 105 reads TuMV samples are more similar
to those obtained for the 1 × 106 reads SARS-CoV-2 samples. This can be explained by
the three-times shorter TuMV genome, which means that for the same library size, the
average depth at each position is greater. Although further studies of the behavior of the
search algorithms on different types of viral genomes would be needed, we believe that
DVGfinder, as a metasearch engine, facilitates the benchmarking of the tools that integrate
them. In addition, the DVGfinder architecture would easily allow to incorporate other
search algorithms that might be published in the future.

Of the two previously published algorithms, ViReMa-a shows the best precision on
the synthetic data presented. The Filtered and Consensus Modes of DVGfinder equal the
scores of this tool and all three modes show a significant improvement in precision over
DI-tector in the synthetic data.
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Although the prediction model was trained with a dataset generated from SARS-CoV-2
genome, it works with other (+)ssRNA viral genomes, as TuMV. This could be because the
features selected as predictors are not genome-dependent but instead depth-dependent; i.e.,
the metrics computed with the software and used as input for the ML classifier are related
to the depth of the samples at the BP and RI coordinates and surrounding sequences.

Regarding the F1 score, that weights both sensitivity and precision values, we ob-
served a significance improvement of all the DVGfinder modes over DI-tector in both
synthetic datasets.

We have shown that DVGfinder deals well with real HTS data. We selected a set
of publicly available samples of mumps virus for which a group of copy-backs were
experimentally validated [28]. DVGfinder Metasearch strategy did a better job identifying
the real copy-backs that ViReMa-a and also generates (without additional work by the user)
interactive and easy-to-browse reports of the detected DVGs.

An important aspect to bear in mind is that the search programs integrated in DVGfinder
identify candidate recombinant DVGs present in a sample, but do not provide any informa-
tion about the potential role of these DVGs as defective interfering particles. To facilitate
this study, a theoretical DVG length is calculated but we strongly recommend carefully
considering the assumptions from which these reconstructions were done. On the one
hand, DVGfinder takes the recombination event as the unique abnormal junction in the
DVGs. On the other hand, it assumes that once the RdRp reattaches to the template, it
continues polymerizing until running off at its extreme. These two simplifications could
generate structures larger than the wild-type genome length (in some cases, even twice its
size), the type of structures that should be considered as artifacts.

Lastly, the ViReMa-a output groups identified recombination events in the sense of
the sequences before and after the recombination point. By contrast, the DI-tector output
groups the possible recombinants by DVG type. We have homogenized the output and
proposed a unique identifier with the form “sense_BP_RI”. This identifier provides into a
single tag all the relevant structural information about any DVG and it is easy to reformat
to a “start_end” identification in case we do not need to use the sense strand information.

5. Conclusions

Here, we present DVGfinder, a friendly and easy-to-use metasearch tool to identify
DVGs in RNA-seq data. The program integrates the two most popular DVG search algo-
rithms published in the last years, ViReMa-a and DI-tector, in a simple workflow. An ML
model also was trained to sieve true positives from the total number of events identified
by the program. The results of the program are written in various csv files with a unified
terminology. In addition, an interactive HTML report, with summary tables and different
plots, is generated to facilitate each possible DVG.

As long as the two search algorithms detect DVGs in the sample, the results are
grouped in three run modes: the Metasearch mode shows the events detected; Consensus
mode selects the intersected events; and the Filtered mode only shows the DVGs with
a probability equal or higher than a user-defined threshold probability of true positives.
In any case, the user can confirm in the output HTML which algorithm has identified
the DVG.

We tested the performance of each run mode separately in two sets of synthetic samples
based on the SARS-CoV-2 and TuMV genomes. The results show that the Metasearch run
mode of DVGfinder has a significant improvement in sensitivity over ViReMa-a, while all
the modes reached a better precision and F1 score than DI-tector. We could also verify that
although the ML classifier was trained on a SARS-CoV-2 genome-based dataset, it also
performs well with samples from other (+)ssRNA viruses as structurally different as TuMV.
The results on the real HTS samples generated from the mump virus, a (−)ssRNA virus,
shown that DVGfinder is a good option to use to identify DVG candidates.
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Table S1: List of random DVGs generated for each synthetic dataset.
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