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Abstract: The adenovirus C5 E1B-55K protein is crucial for viral replication and is expressed early
during infection. It can interact with E4orf6 to form a complex that functions as a ubiquitin E3 ligase.
This complex targets specific cellular proteins and marks them for ubiquitination and, predominantly,
subsequent proteasomal degradation. E1B-55K interacts with various proteins, with p53 being the
most extensively studied, although identifying binding sites has been challenging. To explain the
diverse range of proteins associated with E1B-55K, we hypothesized that other binding partners might
recognize the simple p53 binding motif (xWxxxPx). In silico analyses showed that many known
E1B-55K binding proteins possess this amino acid sequence; therefore, we investigated whether
other xWxxxPx-containing proteins also bind to E1B-55K. Our findings revealed that many cellular
proteins, including ATR, CHK1, USP9, and USP34, co-immunoprecipitate with E1B-55K. During
adenovirus infection, several well-characterized E1B-55K binding proteins and newly identified
interactors, including CSB, CHK1, and USP9, are degraded in a cullin-dependent manner. Notably,
certain binding proteins, such as ATR and USP34, remain undegraded during infection. Structural
predictions indicate no conservation of structure around the proposed binding motif, suggesting that
the interaction relies on the correct arrangement of tryptophan and proline residues.

Keywords: adenovirus; cullin; early region 1B; MRE11; p53; p53 binding motif; PR619; USP

1. Introduction

Human adenoviruses (HAdVs) constitute a large family of more than 100 different
types, divided into seven species (A to G) [1]. Generally, they are responsible for relatively
mild infections of the respiratory tract, the gastro-intestine, and the eye. However, in
immunocompromised patients, such as those undergoing transplantation, adenoviruses
pose a serious health risk, often resulting in high mortality rates [2,3].

Adenoviruses have a double-stranded linear DNA genome of about 35 kb, which is
transcribed in both directions and encodes early, intermediate, and late proteins. Aden-
ovirus early region 1 (E1) comprises two transcription units—E1A and E1B—and both
are translated to give two major proteins [4,5]. The two E1A proteins, translated from
12S and 13S mRNAs, are identical over most of their sequence. Simplistically, through
a multitude of interactions with cellular targets, they cause cell cycle progression into a
‘pseudo-S phase’, which facilitates the expression of other adenovirus genes, making use
of the host cell transcription/translation machinery [4,6]. Adenovirus E1B proteins are
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transcribed from a 22S mRNA. The two major proteins, E1B-19K and -55K, are translated
in different reading frames, so they have no sequence homology. E1B-19K has limited
homology to Bcl2 and similarly adopts an anti-apoptotic role both during viral infection
and in E1-transformed cells [5,7].

E1B-55K also appears to protect infected cells against apoptosis, for example, by
causing the rapid degradation of p53 in the case of the species A and group C viruses or
by direct interaction, resulting in the inhibition of transcriptional activity [8–13]. Aden-
ovirus E1B-55K-mediated protein degradation is accomplished by association with E4orf6,
recruitment of a cellular E3 ubiquitin ligase comprising a cullin (cullin 5 in the case of
HAdV-C5 and Cul2 in the case of HAdV-A12), elongins B and C and RING Box 1 (Rbx1),
ubiquitination of the substrate, and degradation by the proteasome [9,14,15]. E1B-55K
serves as the substrate recognition component whereas E4orf6 binds to elongin C.

Group A (HAdV-A12, for example) and C (HAdV-C2 and HAdV-C5, for example)
adenoviruses also target an appreciable number of other cellular proteins for degrada-
tion [14,16,17]. Reports over the last two decades have shown that many of these are
associated directly, or indirectly, with the DNA damage response (DDR); for example, BLM,
MRE11, DNA ligase IV, TNK1BP1, TOPBP1 and p53 have all been shown to associate
with HAdV-C5 E1B-55K and, in most cases HAdV-A12 E1B-55K, and are subsequently
degraded [14,18–22]. A number of cellular proteins involved in chromatin remodeling, such
as Daxx, ATRX, and SPOC1, are also degraded in an E1B-55K-dependent manner [23–25].
It is interesting to note that there is no requirement for E4orf6 for the degradation of
Daxx. The degradation of many other proteins not associated with the DDR or chromatin
remodeling—for example, integrin α3, Fas, and EPHA7—has also been reported [26,27].

As well as determining the level of cellular proteins, HAdV-C5 E1B-55K also plays an
important role in the preferential export of viral RNA from the nucleus and accumulation
in the cytoplasm late in infection at the expense of host cell RNA [28,29]. In addition, this
phenomenon is attributed to increased viral RNA levels during the later stages of infection,
where they evidently outcompete the export of cellular RNA [30].

Notably, certain proteins undergo ubiquitination without being subjected to degrada-
tion. It has been shown that the RNA binding proteins, RALY and hnRNP-C, are targets
for HAdV-C5 E1B-55K/E4orf6-mediated ubiquitination but not degradation, and this
contributes to increased levels of viral RNA splicing and progeny production [27]. It is
considered that E1B-55K has a role in the release of mRNA from viral replication centers,
when the mRNAs can interact with the Nxf1/Tap export pathway [31,32]. Whether the
interaction with RALY, hnRNP-C, or other RNA binding proteins associated with HAdV-
C5 E1B-55K is involved in this process is not clear at present. The binding of E1B-55K
to hnRNPUL1 (E1B-AP5) and hnRNPUL2 is likely also required for the localization of
mRNAs [33].

It is generally accepted that knowledge of a protein’s secondary structure plays a
crucial role in unraveling its mechanism of action. HAdV-C5 E1B-55K likely has a com-
plex secondary and tertiary structure. Structural predictions have suggested that the
N-terminal and C-terminal regions are largely random coils whereas the central region,
from about amino acids 200 to 350, forms a hydrophobic core. This region has been mod-
eled as a β-solenoid fold, based on the known structure of the snake adenovirus LH3
protein [34–37]. Although the sequence similarity between LH3 and E1B-55K is only slight,
it does seem likely that much of the E1B-55K protein is highly structured since relatively
minor substitutions, insertions, and/or deletions have major effects on its biological proper-
ties [38–43]. Considering these observations, it is not surprising that it has been particularly
difficult to pinpoint binding sites on E1B-55K for the known cellular interactors. It has
been suggested that the binding site for p53 is towards the central region of HAdV-C2/5
E1B-55K (amino acids 224–354) although most studies fail to map this precisely; for ex-
ample, deletion or insertion mutants at H180, R240, H260, A262, R309, and H326 disrupt the
interaction [33,39,41,42,44,45]. However, a binding site for an additional E1B-55K binding
protein, USP7, was localized to the N-terminal 71 residues of HAdV-C5 E1B-55K [20].
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While binding domains/interaction regions on cellular proteins have been identi-
fied [46,47], exact binding sites for E1B-55K on its target proteins have generally not been
mapped, apart from USP7 and p53 [20,48]. A detailed investigation of the binding site on
p53 for HAdV-C5 E1B-55K was performed using a series of proteins with point mutations.
A short hydrophobic region close to the N-terminus of p53 has been shown to comprise
the HAdV-C5 E1B-55K binding site. with W23 and P27 considered to be of particular im-
portance [48]. There is evidence suggesting the participation of a comparable region in the
interaction between p53 and MDM2 [48]. In view of the multiplicity and diversity of the
reported HAdV-C5 E1B-55K binding proteins (summarized in [34], but also see [27]) and
the observation that some of the proposed interactions have only limited effect on viral
replication [19,21,26], we considered the possibility that an identical motif could be present
in some of the binding proteins and the interactions might be fortuitous. In this manuscript,
we have identified novel HAdV-C5 E1B-55K binding partners based on the presence of the
p53 xWxxxPx binding motif [48]. A number of these have also been shown to be degraded
during adenovirus infection in a cullin-dependent manner. Recognition by HAdV-C5
E1B-55K appears to be largely if not entirely through the correctly spaced tryptophan and
proline residues in the xWxxxPx sequence. It is important to note, however, that other
sequences in the E1B-55K binding proteins could be involved in the interactions. In this
study, our focus is specifically on substrates published for HAdV-C5 and -A12, unless
stated otherwise. However, it is important to acknowledge that substrates for additional
HAdVs have also been identified.

2. Materials and Methods
2.1. Cell Lines, Virus Infection and DNA Transfection

HeLa and U2OS cells were obtained from ATCC. HAdV-C5 E1-expressing HEK293
cells [49] were a generous gift from Frank Graham. NBS1-negative U2OS cells [50] were a
generous gift from Manuel Stucki (University of Zurich). HAdV-A12 E1HER2 (HER2) cells
have been described previously [51]. All cells were grown in Dulbecco’s modified Eagle’s
medium (DMEM) (Sigma-Aldrich, St. Louis, MO, USA) supplemented with 8% fetal calf
serum. Cells were infected with wt HAdV-C5 at an infectivity of 5 plaque-forming units
(pfu) per cell, HAdV-C5 dl1520 [52] and H5pm4155 [19] with 10 pfu per cell, or HAdV-
A12 dl703 [53] at an infectivity of 20 pfu per cell. In some experiments, 5 µM MLN4924
(MedChemExpress, Monmouth Junction, NJ, USA) was added to cells during viral infection
to inhibit cullin activity, as described [19], or 6 µM or 20 µM PR619 (Tocris, Bristol, UK) was
added during viral infection to inhibit USP activity. In all cases, cells were pre-incubated
with the appropriate drug for 1 h before viral infection. HeLa cells were transfected
using Lipofectamine 2000 (Invitrogen, Waltham, MA, USA), with constructs expressing
N-terminally HA-tagged E1B-55K from HAdV-E4, D9, B34, and F40, and incubated for 48 h
before harvesting.

2.2. SDS-PAGE, Immunoblotting and Antibodies

Infected cells were harvested in ice-cold PBS, and proteins were solubilized in 9 M urea,
40 mM Tris HCl pH 7.4, and 0.15 M β-mercaptoethanol. Prior to immunoblotting, lysates
were fractionated on 10% or 8% SDS polyacrylamide gels. Proteins were electrophoretically
transferred to nitrocellulose membranes before incubation with antibodies at 4 ◦C overnight.
The following antibodies were used in this study: HAdV-C5 E1A, M73 [54]; HAdV-C5
E1B-55K, 2A6 [55] or a rabbit antibody raised against GST-HAdV-C5 E1B-55K (produced
in house); and p53 (DO-1; generous gift from David Lane). Commercial antibodies were
obtained as follows: SQSTM1 (p62) (Abcam, Cambridge, UK); ATR, CSB, LETM1, MRE11,
NBS1, TNKS 1 and 2, USP6, USP7, USP9, USP15, USP33, and USP34 (all from Santa Cruz
Biotechnology, Dallas, TX, USA); and BLM, DNA ligase IV, and DNMT1 (all from Bethyl
Laboratories, Montgomery, TX, USA).
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2.3. Immunoprecipitation and Peptide Pull-Down Assays

Cells were solubilized in NETN buffer (0.15 M NaCl, 40 mM Tris HCl pH 7.4, 5 mM
EDTA, and 1% NP40) and clarified by centrifugation at 40,000× g for 30 min. Lysates were
then incubated at 4 ◦C overnight with appropriate antibodies (co-immunoprecipitation).
We used the 2A6 E1B-55K antibody or the rabbit antibody produced in-house for co-
immunoprecipitation experiments, as appropriate. Antigen–antibody conjugates were
captured with protein G-agarose beads (2 h incubation). After washing with NETN buffer,
protein complexes were released in the SDS sample buffer. A synthetic peptide identical to
an N-terminal region of human p53 (17ETFSDLWKLLPENNVLS33-Ahx-K-(Biotin)-amide)
or a ‘mutated’ form (17ETFSDLAKLLAENNVLS33-Ahx-K-(Biotin)-amide) linked to biotin
was used for pull-down assays. In this case, HEK293 and HER2 cell lysates and lysates
prepared from HeLa cells transfected with HA-E1B-55K constructs from other adenovirus
species, prepared as described, were incubated with peptide for 3 h. Peptides were captured
using streptavidin-agarose beads (1 h incubation) and then released, together with bound
proteins, for electrophoresis with an SDS sample buffer.

2.4. Immunofluorescence Microscopy

Microscopy was performed essentially as described previously [19]. Briefly, HeLa cells
were grown on glass coverslips and then infected with HAdV-C5 (5 pfu per cell). After
24 h, cells were fixed in 3.6% paraformaldehyde for 10 min and then extracted in 0.5%
Triton X-100 in PBS for 5 min. Fixed cells were stained with primary antibodies overnight
at 4 ◦C, washed three times in PBS, and stained with secondary antibodies for 1 h. DNA
was stained with 4′,6-diamidino-2-phenylindole (DAPI). Fluorescence images were taken
by using a Nikon E600 Eclipse 333 microscope equipped with a 60× oil lens, and images
were acquired and analyzed by using Volocity software 334 v4.1 (Improvision, Mountain
View, CA, USA). Antibodies used were the same as those listed for Western blotting.

2.5. Structural Predictions

Sequences for all xWxxxPx-containing candidate proteins were obtained from NCBI
(http://ncbi.nlm.nih.gov accessed between 5 February 2021 and 3 June 2022) and UniPro-
tKB (https://www.uniprot.org accessed between 5 February 2021 and 3 June 2022). Amino
acid sequence alignments were derived from comparisons between the MUSCLE and
Clustal Omega (https://www.ebi.ac.uk accessed between 5 February 2021 and 3 June
2022 [56]) algorithms with MAFFT (https://mafft.cbrc.jp accessed between 5 February
2021 and 3 June 2022 [57]), set to default parameters and constrained to the input reference
sequence for human TP53 protein (UniProtKB accession number P04637). Protein logos
were computed for xWxxxPx motifs using Weblogo3 (http://weblogo.threeplusone.com
accessed between 5 February 2021 and 3 June 2022 [58]) referenced to a full scale of 4.3 bits
of information within the full-length p53 protein. Structure predictions for proteins contain-
ing xWxxxPx-motifs were derived for short sequences (23 amino acids) from within each
protein, commencing between 1 and 19 amino acids for the N-terminal (NBS1 and ERCC61,
respectively) and terminating between 3 and 21 residues for the C-terminal (ERCC6 and
NBS1), for the motif in each instance using PSI-PRED (bioinf.cs.ucl.ac.uk/psipred; accessed
between 5 February 2021 and 3 June 2022 [59]), Jpred4 (www.compbio.dundee.ac.uk/jpred
accessed between 5 February 2021 and 3 June 2022 [60]), and PREDATOR (https://npsa-
prabi.ibcp.fr accessed between 5 February 2021 and 3 June 2022 [61]) fold recognition
algorithms. From these, weighted averages of structural preference for each amino acid
within every sequence were generated.

3. Results

As mentioned, the binding site on p53 for the HAdV-C5 E1B-55K protein was closely
mapped to a short N-terminal hydrophobic region between amino acids 23 and 27, with
the tryptophan (W; amino acid 23) and proline (P; amino acid 27) residues considered to be
of particular importance [48]. Because of the multiplicity and diversity of the identified

http://ncbi.nlm.nih.gov
https://www.uniprot.org
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https://mafft.cbrc.jp
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E1B-55K binding proteins, we reasoned that this might be explained by the recognition,
by the viral protein, of a comparable sequence (xWxxxPx) present in cellular target pro-
teins. Some support for this idea comes from the most extensive study of E1B-55K co-
immunoprecipitating proteins in which an appreciable proportion (37%) of those identified
contained the amino acid sequence (Table 1, groups I and II) [62]. Similarly, in a study to
identify cellular proteins ubiquitinated in the presence of HAdV-C5 E1B-55K and HAdV-C5
E4orf6 that were subsequently degraded, 44% contained an xWxxxPx motif [27] (Table 1,
group IV).

Table 1. Ad5 E1B-55K binding proteins.

Group 1 Protein Amino Acid Sequence Residues
(WxxxP) Reference

I CEP170 NSRWRRFPTDYA 1230–1234 [62]
I CNOT3 EAAWHHMPHPSD 622–626 [19]
I Cullin 5 LFAWNQRPREKI 506–510 [62]
I hnRNPR QQNWGSQPIAQQ 597–601 [62]

I Integrin α3 (ITGA3)
NGKWLLYPTEIT

NGSWPCRPPGDL
HCVWLECPIPDA

829–833
843–847
913–917

[26]

I mSin3a NDTWVSFPSWSE 585–589 [63]

I MYCB2
AGKWVELPITKS

VPYWNAKPAPMP
DVIWRFRPNTRE

571–575
1034–1038
1138–1142

[62]

I SQSTM1 (p62) WPGWEMGPPGNW
PGNWSPRPPRAG

198–202
206–210 [62]

I SRSF3 PPSWGRRPRDDY 96–100 [62]

I UBR5
LYWWGVVPFSQR
DPDWLDLPPISS

PPSWVPDPPAMD

494–498
835–839

1027–1031
[62]

I USP8 IEIWKLPPVLLV 1001–1005 [62]
I USP15 LDLWSLPPVLVV 825–829 [62]

I USP34 IRIWLHIPAVMQ
PYKWDYWPHEDV

255–259
1879–1883 [62]

I ZNF638 GSRWDDEPHISA 104–108 [62]
II BLM GSLWRYRPDSLD 428–432 [21]
II DNA ligase IV RYSWDCSPLSMF 805–809 [18]
II NBS1 (NBN) MWKLLPAAGP 2–6 [22]
II p53 SDLWKLLPENNV 23–27 [55]
II Tab182 (TNKS1BP1) PPSWRPQPDGEA 1507–1511 [19]
II TIP60 LKPWYFSPYPQE 245–249 [64]
II TOPBP1 NLQWPSCPTQYS 163–1167 [14]
III AAV Rep52 NTIWLFGPATTG 108–112 [65]

III AAV Rep68 EKEWELPPDSDM
NTIWLFGPATTG

35–39
331–335 [66]

III AAV Capsid YKNWFPGPMGRT
GPIWAKIPETGA

464–468
608–612 [65]

IV TNFRSF10A TQQWEHSPLGEL 123–127 [27]
IV RP2 ELNWSLLPEDAV 186–190 [27]
IV CLPTM1 YLSWILFPLLGC 481–485 [27]
IV PDGKRB IMLWQKKPRYEI 556–560 [27]
IV FAS LGIWTLLPLVLT 4–8 [27]
IV CXADR DIEWLISPADNQ 57–61 [27]

IV EPHA7 DIEWLISPADNQ
ELEWISSPPNGW

57–61
397–401 [27]

IV STK11IP HGSWSLSPPPER 774–778 [27]
IV TRPC4AP WGGWGGRPRPGN 25–29 [27]
IV CLCC1 NPIWLVPPTKAL 242–246 [27]
IV BABAM1 PKSWQVPPPAPE 73–77 [27]
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Table 1. Cont.

Group 1 Protein Amino Acid Sequence Residues
(WxxxP) Reference

V HAX1 DDVWPMDPHPRT 173–177 [27]
V SCAMP3 QNNWPPLPSFCP 135–139 [27]
V SPTLC1 IEEWQPEPLVPP 64–68 [27]
V EGFR EGCWGPEPRDCV 471–475 [27]
V RPN2 ASTWALTPTHYL 21–25 [27]
V ITGB4 GSFWWLIPLLLL 712–716 [27]

V TARS AESWKTTPYQIA
PRSWRELPLRLA

98–102
423–427 [27]

V CANX PEDWDERPKIPD 341–345 [27]

V EPHA2 ELGWLTHPYGKG
SVSWSIPPPQQS

42–46
456–460 [27]

V EPHB4 DLKWVTFPQVDG 32–36 [27]
V RPL15 DTQWITKPVHKH 147–151 [27]
V GTF2I SPSWYGIPRLEK 518–522 [27]

SPTWFGIPRLER 623–627
V CDK6 VTLWYRAPEVLL 184–188 [27]
V hnRNPU GQFWGQKPWSQH 811–815 [27]
V SLC7A5 GVWWKNKPKWLL 478–482 [27]
V TAP1 LLHWGSHPTAFV 193–197 [27]

V DYNC1H1 KMVWRINPAHRK
TPSWLGLPNNAE

450–454
4320–4324 [27]

VI ATR HQLWRRFPEHVR 1443–1447 This work

VI CHK1 KDRWYNKPLKKG
LSLWDTSPSYID

264–268
328–332 This work

VI CSB (ERCC6) EGIWKLKPEYC 1486–1490 This work
VI DNMT1 GSDWRDLPNIEV 1436–1440 This work
VI LETM1 LGCWALRPECLR 73–77 This work

VI SQSTM1 (p62) WPGWEMGPPGNW
PGNWSPRPPRAG

198–202
206–210 [62]

VI TNKS1

RDNWNYTPLHEA
MDLWQFTPLHEA
ADLWKFTPLHEA
TDKWAFTPLHEA

281–285
434–438
748–752
902–906

This work

VI TNKS2

RDNWNYTPLHEA
MDLWQFTPLHEA
ADLWKFTPLHEA
TDKWAFTPLHEA

123–127
276–280
591–595
744–748

This work

VI USP9
KLAWDFSPEQLD

GQLWLCAPQAKQ
LTEWEYLPPVGP

458–462
671–675

1542–1546
This work

VI USP15 LDLWSLPPVLVV 825–829 [62]
VI USP33 VPSWFWGPVVTL 561–565 This work

VI USP34 IRIWLHIPAVMQ
PYKWDYWPHEDV

255–259
1879–1883 [62]

VI XPF RILWCPSPHATA 802–806 This work
1 Table listing HAdV-C5 E1B-55K binding proteins containing the xWxxxPx motif. (I) and (II), previously
identified mammalian HAdV-C5 E1B-55K binding proteins with those proteins directly linked to the DDR listed
in (II); (III), adenovirus-associated virus proteins previously shown to bind to HAdV-C5 E1B-55K; (IV), proteins
previously shown to be ubiquitinated by HAdV-C5 E1B-55K/E4orf6 and to be degraded; (V), proteins shown to
be ubiquitinated by HAdV-C5 E1B-55K/E4orf6 and not to be degraded; (VI), novel HAdV-C5 E1B-55K binding
proteins identified in the present study or previously identified and examined in more detail in this study.

3.1. Identification of Novel HAdV-C5 E1B-55K Binding Proteins

We first looked to see if other proteins, containing the xWxxxPx sequence, would also
bind to HAdV-C5 E1B-55K. The nine candidates examined in this study (ATR, CHK1, CSB
(ERCC6), DNMT1, LETM1 tankyrase (TNKS), USP9, USP33, and XPF) tended to be proteins
primarily, although not exclusively, related to the DDR, but they were otherwise chosen
at random.
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Proteins were immunoprecipitated from HEK293 cells using either mouse or rabbit
antibodies against HAdV-C5 E1B-55K and immunoblotted for the potential binding partner
(Figure 1). It can be seen that ATR, CHK1, CSB (ERCC6), DNMT1, LETM1, TNKS 1
and/or 2 (the antibody used recognized both TNKS 1 and 2), USP9, USP33, and XPF
all co-immunoprecipitated with the viral protein. Co-immunoprecipitations of the well-
characterized binding partners hnRNPUL1, MRE11, and NBS1 are included for comparison,
as well as SQSTM1 (p62), USP15, and USP34, which had previously been identified in a
mass spectrometry screen [62]. Confirmatory co-immunoprecipitations, carried out with
specific antibodies and immunoblotted for HAdV-C5 E1B-55K, are shown in Figure S1. The
amino acid sequences around the potential binding sites of all the interacting proteins are
shown in Table 1, and those identified in this study are in Table 1, group VI.
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Figure 1. The interaction of HAdV-C5 E1B-55K with novel cellular binding partners. Lysates from
HEK293 cells were immunoprecipitated with antibodies (either mouse or rabbit as appropriate)
against the HAdV-C5 E1B-55K protein. After immunoblotting, interacting proteins were detected
with the antibodies shown. Known binding proteins such as NBS1, MRE11, and hnRNPUL1 are
included for comparison (left column). “Control” is an irrelevant antibody included as a negative
control, raised against either collagen type IV (rabbit) or vimentin (mouse). Images represent the
results of three repeated experiments. WCL, whole cell lysate.
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3.2. Interaction of Adenovirus E1B-55K Proteins with the xWxxxPx Sequence

To confirm that the HAdV-C5 E1B-55K interaction only requires a short sequence en-
compassing the xWxxxPx sequence, a lysate from HEK293 cells was incubated with a biotin-
linked peptide identical to the N-terminal sequence of p53 (17ETFSDLWKLLPENNVLS33).
After a pull-down with streptavidin beads, interacting proteins were fractionated by SDS-
PAGE and HAdV-C5 E1B-55K identified by immunoblotting (Figure 2A). Pull-down with
a similar peptide in which the tryptophan and proline residues were substituted with
alanines (17ETFSDLAKLLAENNVLS33) showed no interaction (Figure 2A). Increasing
amounts of peptide resulted in increased ‘pulled down’ HAdV-C5 E1B-55K (Figure 2A). In
a similar experiment, the two peptides were incubated with lysates from HER2 cells. HAdV-
A12 E1B-55K bound to the ETFSDLWKLLPENNVLS peptide but not to that containing
alanines (Figure 2B).
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Figure 2. The interaction of adenovirus E1B-55K proteins with the xWxxxPx motif. (A) HEK293
cell lysates were mock incubated or incubated with either biotin-linked ETFSDLWKLLPENNVLS
peptide (WP peptide) or ETFSDLAKLLAENNVLS peptide (AA peptide), (i) 1 µg/mL, (ii) 5 µg/mL
and (iii) 20 µg/mL for 2 h. Streptavidin (SA) beads were added for a further 90 min. After washing
bound proteins were released with SDS sample buffer and fractionated by PAGE. Bound HAdV-C5
E1B-55K was detected by immunoblotting. (B) HER2 cell lysate was incubated with WP peptide
or AA peptide (10 µg/mL) as in (A). Bound HAdV-A12 E1B-55K was detected by immunoblotting.
(C) HeLa cells were transfected with pcDNA3 constructs expressing HA-tagged E1B-55K proteins
from Ads 4, 34, 40, and 9. After 48 h, cell lysates were incubated or mock incubated with WP peptide
(10 µg/mL) for 2 h. After incubation with streptavidin beads samples were processed as in (A) and
then immunoblotted for the HA tag. Images represent the results of three repeated experiments.
WCL, whole cell lysate.
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To determine whether the same p53 amino acid sequence was recognized by E1B-55K
proteins from other HAdV species, plasmids encoding HA-tagged versions of HAdV-E4
(species E), HAdV-D9 (species D), HAdV-B34 (species B) and HAdV-F40 (species F) E1B-55K
proteins were transfected into HeLa cells. After 48 h, cell lysates were incubated with the
biotin-tagged ETFSDLWKLLPENNVLS peptide. Interacting proteins were isolated using
streptavidin beads and subjected to immunoblotting with an anti-HA antibody (Figure 2C).
No interaction could be seen with the HAdV-E4, HAdV-D9, HAdV-B34, or HAdV-F40 E1B
proteins, suggesting that the binding through xWxxxPx might differ between different
HAdV species. This was somewhat unexpected as it has been previously reported by us
and others that p53 binds to E1B-55K proteins from other HAdVs and in some cases is
stabilized [8,12,67]. It should be noted, however, that these experiments are not directly
comparable to those presented in Figure 1 as conditions are significantly different.

3.3. Adenovirus-Mediated Degradation of Novel Cellular Targets

To date, the major consequence of HAdV-C5 E1B-55K binding during viral infection
has been shown to be rapid proteasome-mediated protein degradation [9,16]. With this
in mind, the expression of the proteins (shown in Figures 1 and S1 to bind HAdV-C5
E1B-55K) was assessed over an extended time course of HAdV-C5 infection. A similar
set of infections was carried out in the presence of the NEDD8 (NAE)/cullin inhibitor,
MLN4924. It can be seen from Figure 3 that CHK1, CSB, DNMT1, LETM1, SQSTM1 (p62),
TNKS, USP15, USP33, and XPF are all degraded during HAdV-C5 infection (Figure 3). Well-
characterized HAdV-C5 targets such as DNA ligase IV, p53, MRE11, or NBS1 are included
for comparison (Figure 3). The rates of protein degradation vary, with some proteins
being very rapidly degraded (for example, p53, DNA ligase IV, USP33, and CSB), whereas
others are more stable, such as SQSTM1 (p62) and TNKS. We have previously noted that
TAB182 (TNKS1BP1) is also degraded relatively slowly during HAdV infection [19]. It
is interesting to mention that some HAdV-C5 E1B-55K binding proteins containing the
xWxxxPx sequence are not degraded at all during HAdV-C5 infection (Figure 3). Thus,
there appears to be little or no reduction in the level of USP9, USP34, or ATR. This is
consistent with observations of Herrmann and colleagues [27], who found that many
proteins ubiquitinated by HAdV-C5 E1B-55K/E4orf6 were also stable. To confirm that the
reduction in protein expression was due to cullin-based E3 ligase activity, viral infections
were carried out in the presence and absence of MLN4924. MLN4924 is an inhibitor of
cullin NEDDylation and has been shown to inhibit protein degradation during adenovirus
infection [9].

It can be seen from Figure 3 that HAdV-induced protein degradation is generally
reduced in the presence of the inhibitor, although it is not completely negated (for example,
TNKS, LETM1, USP15, and USP33). In the case of CSB, NBS1, and SQSTM1 (p62), however,
it appears that the inhibition of the cullins does not result in protein stabilization; whether
this indicates degradation by a different pathway is unclear at present. The immunoblot
of cullin 5 shows that the higher-molecular-weight NEDDylated (active) band is absent
in the cells treated with MLN4924 (Figure 3). At the latest times in the experiment, there
is a marked reduction in the proportion of the NEDDylated cullin 5. The reasons for this
are not clear, but there appears to be sufficient active protein present to continue with the
degradation. Alternatively, it is possible that substrates could have been ubiquitinated
by about 80 hpi and subsequently degraded, when there was no further need for an
active cullin.

In the experiments shown in Figure 3, no account has been taken of the possibility that
host cell shut-off could have contributed to the reduction in the level of particular proteins
examined. However, the fact that proteins were generally stabilized by MLN4924 suggests
that this was not a significant factor but cannot be discounted.
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Figure 3. Degradation of novel binding partners during HAdV-C5 infection is dependent on cullin
function. The left-hand blots display novel E1B-55K binding partners, while the right-hand blots
serve as controls. HeLa cells were infected with HAdV-C5 at an infectivity of 4 pfu/cell, either in
the presence or absence of 5 mM MLN4924. Cells were harvested at the times shown, post-infection,
fractionated by PAGE, and immunoblotted with the antibodies as indicated. For the cullin 5 blots,
* indicates the NEDDylated form. Images represent the results of three repeated experiments.

3.4. Interaction of MRE11 with HAdV-C5 E1B-55K

It is clear from several studies that proteins that do not contain the xWxxxPx motif interact
with HAdV-C5 E1B-55K and are degraded during adenovirus infection (for example, [25,27,62]).
Notably, MRE11 does not have the sequence but NBS1 does (MW2KLLP6AAGP). We
considered the possibility that NBS1 is the principal target for HAdV-C5, and MRE11
associates with E1B-55K as an integral component of the MRN complex. The reduction
in the level of MRE11 could then be attributed to the instability of the complex resulting
from the degradation of NBS1. To address this possibility, U2OS cells that do not express
NBS1 [50] were infected with H5pm4155 (HAdV-C5 E4orf3−E4orf6−), which expresses
E1B-55K but does not lead to the degradation of cellular targets [19]. MRE11 is expressed
to similar levels in the NBS1− and U2OS lines and is co-immunoprecipitated with E1B-55K
(Figure 4A). In the complementary experiment, E1B-55K was immunoprecipitated with an
MRE11 antibody (Figure 4B). The blot in Figure 4C illustrates the absence of NBS1 in the
U2OS NBS1− cell line. MRE11 is degraded as expected following the infection of NBS1−

cells with wild-type (wt) HAdV-C5 (Figure 4D). It is clear from these observations that
MRE11 is a target for HAdV-C5 E1B-55K and interacts with it directly, with no requirement
for the xWxxxPx motif.
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Figure 4. HAdV-C5 E1B-55K binds to MRE11 in the absence of NBS1. (A,B) U2OS or NBS1-negative
cells were infected with H5pm4155 (E4orf3−, E4orf6−) at 10 pfu/cell for 48 h. Cells were harvested
and immunoprecipitated with antibodies against either HAdV-C5 E1B-55K (A) or MRE11 (B). After
PAGE and immunoblotting, co-immunoprecipitated MRE11 (A) or HAdV-C5 E1B-55K (B) was
detected. Control, immunoprecipitated with an irrelevant antibody as in Figure 1. (C) Immunoblot
showing no expression of NBS1 in NBS1− cells. (D) NBS1− cells were infected with HAdV-C5
(5 pfu/cell) and harvested at the times shown. Lysates were immunoblotted for MRE11, HAdV-C5
E1B-55K, and GAPDH as a loading control. Images represent the results of three repeated experiments.
WCL, whole cell lysate.

3.5. Sub-Cellular Localization of Novel Adenovirus E1B-55K Binding Proteins during Infection

E1B-55K localizes to viral replication centers (VRCs) during infection. An appreciable
number of DNA repair proteins have been also shown to localize to VRCs in adenovirus-
infected cells, possibly relocalized by E1B-55K (for example, [68,69]; reviewed in [70]). We
considered the possibility that proteins identified as novel interactors in Figures 1 and S1
could also be present in VRCs. Therefore, we infected HeLa cells for 24 h with HAdV-C5.
We fixed, permeabilized, and incubated the cells with antibodies for 18 h. The VRCs
were visualized by staining with antibodies against the HAdV-C5 DNA binding pro-
tein (DBP) or RPA32, which has previously been shown to localize to VRCs [68]. The
location of most of the cellular E1B-55K binding proteins examined was unaffected by
HAdV infection (Figures S2–S4). Thus, CSB, DNMT1, LETM1, TNKS, USP9, and USP15
staining was very similar in the mock and infected cells, being pan-nuclear and/or cyto-
plasmic (Figures S2–S4). However, USP34 is clearly localized to VRCs. CHK1 staining was
pan-cellular in uninfected cells, although it appeared to be predominantly cytoplasmic.
Following infection, however, it was mainly observed in the nucleus, although not in VRCs.
ATR was nuclear in uninfected cells but tended to be pan-cellular after HAdV-C5 infection;
it also formed foci, although these did not correspond to VRCs (Figures S2–S4).

3.6. Effect of Deubiquitinase (DUB) Inhibition on HAdV-C5 Infection

Several proteins containing the xWxxxPx motif and interacting with HAdV-C5 E1B-
55K are USPs and USP7 has been shown to bind to and interact with E1B-55K, although
it does not contain the xWxxxPx motif [20]. Indeed, about half of the USPs contain the
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xWxxxPx sequence. In an overall study such as this, it is not feasible to deplete each USP
in turn to determine which, if any, affects viral replication. Therefore, cells were treated
with the non-selective broad-range inhibitor of deubiquitinating enzymes (DUBs), PR619
(for example, [71,72]), and then infected with HAdV-C5 or the E1B-55K-negative virus,
dl1520. HeLa cells were pre-incubated with 20 µM PR619 for 1 h, infected with the virus
for 2 h, and then incubated with medium containing the drug. Immunoblotting of an
HAdV-C5-infected time course, in the presence and absence of 20 µM PR619, showed only
minor differences in early viral protein expression, although E1A was at a higher level at
early times in the absence of PR619 (Figure 5A).
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Figure 5. The effect of the DUB inhibitor PR619 on adenovirus infection. HeLa cells were treated
for 1 h with 20 µM PR619 and infected with (A) HAdV-C5 (5 pfu/cell) or (B) dl1520 (10 pfu/cell).
Cultures were then incubated in the presence of 20 µM PR619 and harvested at the times shown.
Lysates were subjected to immunoblotting as shown. Images represent the results of three repeated
experiments. L4, L4-100K.

Hexon levels were somewhat reduced in the presence of PR619, but the effect on
L4-100K was much more marked, with appreciably reduced levels. The reasons for this
are not clear at present. To determine whether the inhibition of DUBs is likely to affect
adenovirus replication per se, infection was carried out in the absence of E1B-55K using the
dl1520 mutant virus (Figure 5B). This removes any effects of interaction and/or USP degra-
dation attributable to E1B-55K and looks at the effects of the DUB in isolation. However,
again, differences in the presence of PR619 were not marked, although in this case there
was no significant effect on L4-100K expression (Figure 5B).

3.7. Structural Prediction for the xWxxxPx Motif

It is clear that the proteins identified as E1B-55K binding proteins do not have a
conserved amino acid sequence except for the tryptophan and proline residues spaced
three amino acids apart, except for a slight preponderance of hydrophobic amino acids
(Table 1 and Figure 6).

We considered the possibility that the binding site could have a conserved secondary
structure, however. Using the programs listed in the Materials and Methods section, struc-
tural predictions were carried out on a 27 amino acid region encompassing the xWxxxPx
motif in the binding proteins shown in Figure 1. It can be seen that there is no conservation
of predicted structure; some regions are unstructured (for example SQSTM1 (p62)) and
some have adjacent α-helices either N-terminal to the tryptophan (p53), C-terminal to
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the tryptophan (TNKS1) or both upstream and downstream of the binding site (USP34
and USP9). The site in other proteins contains β-strands, such as in USP15 and LETM1
(Figure 6). We conclude that the two amino acids, W and P, are the sole determining factors
for interaction with HAdV-C5 E1B-55K.
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Figure 6. Structural prediction of xWxxxPx-containing motifs. The accession numbers of candidate
proteins were obtained from the UniProtKB databank. Proteins containing xWxxxPx motifs (green
background highlighted typeset) are listed alphabetically. The N- and C-terminal positions of each
protein primary sequence are shown. Where a protein contains more than one xWxxxPx motif they
are designated by Greek letters (α, β, γ, etc.). A weblogo cartoon of amino acids in the sequence of
the proteins listed is shown at the top of the figure. Average predicted structural propensities for each
amino acid in each protein are illustrated as either α-helix (red cylinder), β-strand (yellow arrow), or
random coil (thin blue cylinder) below the primary sequence.



Viruses 2023, 15, 2356 14 of 20

4. Discussion

The adenovirus early region 1 proteins exert their effect on target cells, both during
infection and cellular transformation, through a complex series of protein–protein inter-
actions, as neither E1A nor E1B-55K have enzymatic activity nor bind to DNA. A large
number of interacting proteins have been identified for both early region proteins from
HAdV-C5 and, to a lesser extent, from HAdV-A12 [5,6,34,73,74]. Whilst all the sites of
interaction have been closely mapped on E1A, they remain largely elusive for E1B-55K.
This seems to be because E1A is highly modular and contains distinct regions that exist
in a dynamic, conformationally unstructured state, giving rise to interactions with short
discrete amino acid sequences [6,74]. In this way, it has been suggested that adenovirus
E1A forms a molecular hub with dozens of primary interactions and hundreds and possibly
thousands of secondary interactions [6,74]. HAdV-C5 E1B-55K, on the other hand, probably
has a complex secondary structure. This suggestion is based on the observations that
certain point mutations and small deletions destabilize the HAdV-C5 E1B-55K protein;
similarly, point mutations at disparate sites, particularly in the central region, interfere with
substrate binding and other phenotypes [33,38–42,45]. Several laboratories have attempted
the large-scale purification of E1B-55K, and, to our current understanding, none were suc-
cessful. It is the complex secondary structure of the protein that appears to pose significant
challenges in the purification process. Interestingly, the LH3 protein purified from a snake
adenovirus, which has been considered to have functional similarities to E1B-55K, has
been shown to be highly structured [35]. The modeling of HAdV-C5 E1B-55K suggests
unstructured N- and C-terminal regions with a hydrophobic core [34–37]. Probably because
of this structural integrity, binding sites for partner proteins have been difficult to pinpoint.
In complementary studies, relatively little progress has been made in the determination of
binding sites for E1B-55K on target proteins except for p53 and USP7 [20,48].

By virtue of the wide disparity in the identified E1B-55K interacting proteins and
the observations that some, such as integrin α3, BLM, and TAB182 [19,21,26], appear to
have relatively little effect on viral replication, we considered the possibility that these
diverse interactions were due to the chance presence of a conserved motif rather than
direct, ‘intentional,’ targeting by the virus. As far as we are aware, the only binding site for
which detailed information is available is that on p53, where a short hydrophobic sequence
has been identified [48], and within that sequence, the tryptophan and proline residues,
separated by three amino acids, are of particular importance. The sequence is common in
previously identified HAdV-C5 E1B-55K binding proteins (for example, DNA ligase IV,
BLM, TAB182, and NBS1); nevertheless, it is certainly not essential for interaction (Table 1).
Notably, it is absent from MRE11 and Daxx and many of the binding proteins identified
in a mass spectroscopy screen by Hung and Flint [62]; it is also absent from many of the
ubiquitinated proteins identified by Herrmann and colleagues [27] in their HAdV-C5 E1B-
55K/E4orf6 screen. However, it occurred frequently enough to encourage us to investigate
whether other xWxxxPx motif-containing proteins would also bind to HAdV-C5 E1B-55K.
In fact, this sequence is relatively common in the mammalian proteome, such that it is
unlikely to be the only determining factor for the interaction between HAdV-E1B-55K and
its cellular targets. We chose to examine nine novel proteins picked largely at random
but predominantly on the basis that they are involved in the DDR. HAdV-C5 E1B-55K
co-immunoprecipitates from HEK293 cells with the proteins listed in Table 1 (group VI)
and with three other proteins (USP15, USP34, and SQSTM1 (p62)), previously identified
by Hung and Flint [62], which had not been characterized in the context of adenovirus
biology. Obviously, our study represents only a very small proportion of proteins containing
xWxxxPx but we did not encounter any that could not be immunoprecipitated with HAdV-
C5 E1B-55K. Notably, both RALY and hnRNP-C lack the xWxxxPx motif. It is tempting to
speculate that the interaction between these proteins and E1B-55K occurs through RNA
rather than the “xWxxxPx” motif, considering that RALY, hnRNP-C, and E1B-55K are all
recognized as RNA-binding proteins [37].
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It has been observed that interaction with HAdV-C5 E1B-55K/E4orf6 during viral
infection would mostly result in proteasome-mediated degradation, as has been observed
for p53, DNA ligase IV, and BLM. We, therefore, investigated whether the novel HAdV-C5
E1B-55K interactors were also targeted to the proteasome. Most were degraded, although
at varying rates (Figure 3)—for example, CSB and USP33 were degraded at a similar rate to
p53 and MRE11, whereas TNKS and LETM1 were much more stable (Figure 3). Interestingly,
however, ATR, USP9, and USP34 were largely unaffected over a prolonged time course
of infection. The E1B-55K/E4orf6 complex may regulate its targets in a highly diverse
manner. This regulation does not seem to be exclusively dependent on uniform degradation
pathways for all targets; instead, it suggests the presence of a nuanced fine-tuning process.
It would be interesting to examine whether these proteins were ubiquitinated (without
degradation), as has been reported for an appreciable number of other proteins that are
not degraded in the presence of HAdV-C5 E1B-55K/E4orf6 [27]. Considering the known
interaction between cullin-5 and E1B-55K, however, it is probable that the viral protein
may disrupt host cullin-RING ubiquitin ligases, a phenomenon observed in many other
viral infections as well [62,75]. Remarkably, USP9 and USP34 deviate from the norm with
three and two xWxxxPx motifs, respectively, distinguishing them from the majority of other
E1B-55K targets. It is noteworthy that both proteins harbor D (aspartic acid) or L (leucine)
in close proximity to W (tryptophan). This is particularly significant since the presence of a
double/triple xWL/DxxPx motif may induce a conformation in E1B-55K that hinders its
interaction with E4orf6. Moreover, the identification of a unique xWRRFPx motif in ATR
(and in CEP170) raises intriguing questions. The striking presence of this distinct “arginine-
rich” motif suggests that it may induce a conformational state in E1B-55K, potentially
impeding its binding to E4orf6. This could be a plausible explanation for the observed
resistance of ATR to degradation despite its interaction with E1B-55K. Future research will
elucidate the functional implications of these interactions. Numerous studies have now
shown the presence of large numbers of DNA repair proteins, as well as proteins involved
in the synthesis of viral DNA and RNA, at adenovirus replication centers [12,68,76–78].
Only USP34 out of the E1B-55K binding proteins identified here localized to VRCs. USP34
is a deubiquitinating enzyme (DUB), which appears to have multiple roles in development.
It has also been suggested to stabilize RNF168, facilitating the cellular response to ionizing
radiation [79]. Whether USP34 plays a role in the synthesis of viral DNA and/or DNA
repair at VRCs requires further investigation.

As many USPs contain the xWxxxPx motif and we have confirmed the binding of
at least four such proteins to HAdV-C5 E1B-55K, we have contemplated the potential
influence, whether beneficial or detrimental, of these proteins on viral infection. To address
this, we examined the effect of the DUB inhibitor PR619 on viral infection. Overall, there was
little difference between the time courses in the presence or absence of the drug. Although
this was a relatively superficial investigation, it points to a further set of HAdV-C5 E1B-55K
interactions that have a minor role in adenovirus replication. It is interesting to note that
several USPs have been implicated in viral infections. For example, USP15 participates in
hepatitis C virus propagation through the regulation of viral RNA translation [80], whereas
USP14 inhibition prevents alphaherpesvirus infection [81]. It is possible that the use of
more specific USP inhibitors would demonstrate an effect on adenovirus replication.

Large numbers of cellular proteins have been shown to interact with HAdV-C5
E1B-55K, and many more are ubiquitinated by an HAdV-C5 E1B-55K/E4orf6-dependent
mechanism [27,62]. However, a role for most of these associations has not been established.
We suggest that many of these interactions with proteins containing the xWxxxPx motif
are fortuitous and may not be of biological significance. This does not, of course, mean
that none are required for viral replication. The observation that E1B-55K proteins from
species other than HAdV-C5 and HAdV-A12 do not bind to the motif supports the idea
that this interaction is not essential, although it must be borne in mind that the relationship
of different adenovirus species with DDR proteins, such as p53 and MRE11, varies appre-
ciably [8,12]. Notably, the degradation of p53 and MRE11 does not occur during infection



Viruses 2023, 15, 2356 16 of 20

with species B, D, E, and F viruses, although a marked reduction in the level of DNA ligase
IV has been observed with all species examined [8,12]. The E1B-55K protein from most
adenovirus species has previously been reported to interact with p53, MRE11, and DNA
ligase IV as well as other proteins, suggesting that the xWxxxPx site is not important in
these cases [67].

The binding sites on HAdV-C5 E1B-55K have not been closely mapped although
several point mutations in the central structured region of the protein reduce or negate
binding to p53. These include point mutations or insertions at residues 180, 240, 260,
262, 309, 326, 361, and 380 (summarized in [73]). Using a different approach, it has been
suggested that a binding site for p53 was located between amino acids 216 and 235 [44]. If
this latter region is, indeed, the primary site of interaction, it is feasible that mutations at
an appreciable distance from it must have an impact on the E1B-55K structure sufficiently
to disrupt binding. Furthermore, evidence is not available to establish whether other
xWxxxPx motif-containing proteins have similar binding sites. However, studies with E1B-
55K mutant proteins R240A, H354in, and H373A have established a separation of function
in that R240A does not bind or degrade p53 but does bind to the MRN complex or cause its
degradation or the degradation of DNA ligase IV. H354in and H373A fail to interact with
the MRN complex or cause its degradation but do bind to p53, causing its degradation
and that of DNA ligase IV [41,82–84]. Such observations are consistent with the p53 and
DNA ligase IV sites of interaction being in the same region of E1B-55K and the MRE11
binding site being elsewhere. Several C-terminal HAdV-C5 E1B-55K mutants have been
also characterized, and the differential binding and degradation of p53, MRN, and DNA
ligase IV have been demonstrated [83]. These amino acids are not part of the ‘structured
core’ of the proteins yet affect protein binding. Furthermore, the separation of activity
against all three substrates was observed [83]. Simplistically, however, we suggest that
there is a common binding site for xWxxxPx-containing proteins and alternative binding
sites for others; however, further investigation would be required to establish this.

Supplementary Materials: The following supporting information can be downloaded at: https:
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HAdV-C5 E1B-55K Binding Proteins during Infection.
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