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Abstract: Wild aquatic birds are generally identified as a natural reservoir of avian influenza viruses
(AIVs), where a high diversity of subtypes has been detected. Some AIV subtypes are considered
to have relatively low prevalence in wild bird populations. Six-year AIV surveillance in Siberia
revealed sporadic cases of the rarely identified H14-subtype AIV circulation. Complete genome
sequencing of three H14 isolates were performed, and the analysis indicated interconnections between
low pathogenic avian influenza (LPAI) viruses. We conducted hemagglutination inhibition and
virus neutralization assays, estimated the susceptibility of isolates to neuraminidase inhibitors, and
characterized receptor specificity. Our study revealed circulation of a new H14N9 subtype described
for the first time. However, the low prevalence of the H14-subtype AIV population may be the
reason for the underestimation of the diversity of H14-subtype AIVs. According to the available
data, a region in which H14-subtype viruses were detected several times in 2007-2022 in the Eastern
Hemisphere is Western Siberia, while the virus was also detected once in South Asia (Pakistan).
Phylogenetic analysis of HA segment sequences revealed the circulation of two clades of H14-subtype
viruses originated from initial 1980s Eurasian clade; the first was detected in Northern America and
the second in Eurasia.

Keywords: Influenza A virus; Avian influenza; H14 subtype; H14N9; Siberia; wild birds; waterfowl;
Northern Asia

1. Introduction

Avian influenza viruses belong to Alphainfluenzavirus influenzae species of the Or-
thomyxoviridae family based on the proposed ICTV taxonomy. Considerable diversity of
Alphainfluenzavirus influenzae virus subtypes with respect to hemagglutinin (HA) (H1-H16)
and neuraminidase (NA) (N1-N9) proteins has been detected in wild waterfowl, while
the subtypes H17, H18, N10 and N11 were exclusively detected in bats [1-3]. Highly
pathogenic avian influenza (HPAI) viruses have an impact on both the poultry industry
and the wild bird population, and can be dangerous for human health [4].

Wild waterfowl are considered to be a natural reservoir of avian influenza viruses, and
can carry viruses over long distances during seasonal migration [5]. Up until October 2022,
more than 52,000 genome sequences of avian influenza strains had been submitted to the
EpiFlu GISAID database (accessed 26 October 2022). Nevertheless, the H14 sequences
comprised only 0.089% (n = 46, duplicated submissions excluded, strains from research in-
cluded) of that amount, collected over 40 years of overall observation. Historically, three iso-
lates of the H14 subtype were first described in the Soviet Union in 1982, collected from mal-
lards and herring gull (A/Mallard/Gurjev /244 /82 (H14N6), A/mallard /Gurjev/263/1982,
and A/herring gull/ Astrakhan/267/1982) [6]. Since then, only three strains of the H14
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subtype have been detected in Eurasia: H14N6, isolated from garganey (Anas querquedula)
in Ukraine in 2006, H14N3, isolated from goose in Pakistan in 2014, and H14N7, isolated
from sandpiper in Tomsk by Marchenko et al. in 2019 [7]. There has only been one report
of the AIV H14 subtype being detected in Eurasia since 2015, whereas in North America,
36 isolates were obtained between 2010 and 2018 [7-10]. Hemagglutinin-neuraminidase
(HA-NA) constellations of known isolates are limited to six NA subtypes: H14N3, H14N4,
H14N5, H14N6, H14N7, and H14NS8.

Avian influenza virus (AIV) surveillance in Russia revealed three new H14-subtype
variants of avian influenza viruses circulating in Eurasia, whereas only one complete
genome sequences of H14 AlV strains from Russia from the last 39 years is stored in the
GISAID database. Here, we describe a new genetic subtype of AIV—H14N9. The aim of
the present study is to genetically characterize the rarely identified avian influenza H14Nx
viruses in Siberia, including the H14N9 strain, which has been isolated for the first time,
and to analyze the virological characteristics of these isolates.

2. Materials and Methods
2.1. Sampling

Samples from wild birds were collected according to international ethical standards
and the national legislation of the Russian Federation. Samples from duck species were
collected during hunting seasons with a license from the regional Ministries of Ecology and
Natural resources under the program for surveillance of infectious diseases in wild animal
populations (FRC FIM, Novosibirsk).

Cloacal swabs were collected from wild birds in the Asian part of Russia between 2014
and 2019. Sampling sites are presented on the map, constructed using the R packages rnat-
uralearth, sf, and ggplot2 (Figure 1). Samples were stored in liquid nitrogen in individual
tubes filled with sterile transport medium before delivery to the laboratory.
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Figure 1. Avian influenza virus surveillance sampling sites in Russia, 2014-2019. Red circles represent

sampling sites.
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2.2. Virus Detection, Isolation, and RNA Extraction

The cloacal swab medium supernatant of each sample was inoculated (200 pL) into
three 10-day specific-pathogen-free (SPF) embryonated chicken eggs using standard meth-
ods described elsewhere [11,12]. Virus titers in the harvested allantoic fluid were measured
using hemagglutination assay (HA) as described in the standard protocol [13].

Extraction of viral RNAs from allantoic fluid samples was conducted using the RI-
BOsorb RNA extraction kit (AmpliSens, Moscow, Russia) following reverse transcription
using the Reverta-L kit (AmpliSens, Moscow, Russia). PCR for the detection of influenza
virus nucleic acid in isolated samples was performed using AmpliSens Influenza virus
A/B-FL kit (AmpliSens, Moscow, Russia) according to the manufacturer’s instructions.

2.3. Virological Characteristics

To provide virological characterization of strains in the study, two representative
strains of phylogenetically different subclades were chosen: A/Common Teal/Chany_Lake
/29/2019 (H14N3) (A/29) and A/garganey/Chany Lake/210/2014 (H14N9) (A/210). An
additional strain, A /shoveler/Omsk/150/2019 (H4N6), was added to the experiment, as
the representative strain of the sister H4 subtype according to Kawaoka et al., 1990 [6]. We
also used A (HIN1)pdm09 as a reference group for oseltamivir sensitivity tests.

2.3.1. Cell Cultures

The 50% tissue culture infectious dose (TCIDs5j) for MDCK cells was determined
for A/29, A/210 and A/150. For this purpose, serial 10-fold dilutions of viruses were
performed, and 96-well plates with confluent MDCK cell monolayer were inoculated
with dilutions of virus. All virus titrations were performed in duplicate. After 30 min
of incubation, the supernatant was removed, and MEM with 0.2% BSA and 2 pg/mL of
trypsin was added to one plate and MEM with 2% FBS was added to another plate with
the same virus. Plates were incubated at 37 °C and 5% CO; for 5 days. Virus-induced
cytopathic effect was detected, and virus titers were determined as the 50% tissue culture
infectious dose (TCIDsp) per ml according to the Kerber method with Ashmarin-Vorobyov
modification [14] as follows: log1oTCIDs5y/mL =1gDn — §(XLi — 0.5); where:

Dn—maximum effect of dose;

Li—the ratio of the number of wells with cytopathyic effect to the total number of
wells infected with this dose;

i—number of dose;

d—the logarithm of virus dilutions.

2.3.2. Hemagglutination Inhibition and Neutralization Assay

To obtain polyclonal sera for antigenic analysis, 6-week-old specific-pathogen-free
quails were intravenously boosted with 0.5 mL with 100 EIDs of the virus. After 7 days,
the quails were re-inoculated. On day 14 post inoculation (p.i.), blood samples were
collected, and sera were harvested for antigenic analysis.

Antigenic analysis of A/H14 strains was performed in hemagglutination inhibition
(HI) and virus neutralization (VN) tests using quail polyclonal antisera obtained as de-
scribed above. Before testing, all sera samples were heated at 56 °C for 30 min. Tests were
performed according to standard protocols. The highest dilution of the serum that com-
pletely inhibited hemagglutination or neutralized virus growth was taken as the HI/VN
titer [15]. Viruses were considered antigenically similar if their HI/VN titer differences
represented no more than a two-fold dilution.

2.3.3. Determination of Susceptibility to Neuraminidase Inhibitors

The susceptibility of the H14N3, H14N9, and H4N6 strains to oseltamivir carboxy-
late (Hoffmann-La Roche, Basel, Switzerland) was evaluated by published NA inhibition
assays [16,17]. Briefly, viruses were standardized to an NA activity level 10-fold higher
than that of the background, as measured by the production of fluorescent product from
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methylumbelliferyl-N-acetylneuraminic acid (MUNANA) substrate (Sigma-Aldrich, Darm-
stadt, Germany). Drug susceptibility profiles were determined by the extent of NA in-
hibition (NAI) after incubation with 3-fold serial dilutions of NAIs. The 50% inhibitory
concentrations (IC50) were determined from the dose-response curve.

2.3.4. Receptor Specificity

The receptor specificity of the virus was characterized by determining the level of
binding to glycoconjugates immobilized on a microarray (Semiotic, Moscow). Briefly,
the microarrays were blocked with a standard blocking buffer (50 mM Ethanolamine
(pH 8.5): 400 mL dH;0, 1195 pL ethanolamine, 3.8 g boric acid, 800 uL Tween 20) for
2 h with constant stirring at room temperature. After that, the arrays were washed in
PBS-Tween 20 0.05% twice. The titer of the test virus was determined in HA assay in the
presence of a neuraminidase inhibitor (oseltamivir carboxylate); the virus was then diluted
to obtain 16 HA units (buffer for dilution: PBS supplemented with 0.01% Tween20 and
20 uM oseltamivir carboxylate). Next, 1 mL of 16 HAU of the virus was applied on the
microarray. The arrays were incubated for 16-18 h at 4 °C. After incubation, the arrays were
washed twice with buffer (PBS + 0.05% Tween 20). Then, the arrays were covered with
10 M biotinylated polyacrylamide conjugate with 3’'SLN (Neu5Aca2-3GalB1-4GlcNAcp)
in PBS with an inhibitor followed by incubation for 1 h at 4 °C and washing of the arrays
with buffer (PBS + 0.05% Tween 20). Subsequently, the solution of fluorescently labeled
streptavidin—Alexa 555 at a concentration of 2 pg/mL in PBS + 0.05% Tween 20 was applied.
The arrays were incubated for 45 min at room temperature, washed twice with buffer
(PBS + 0.05% Tween 20), then washed with distilled water, air dried, and scanned on a
reader (Innoscan 710, Innopsys, Carbonne, France). The scanning results were processed in
the ProScan Array Express program, with fluorescence intensity values expressed in relative
fluorescence units (RFU) in the resulting tables. Images were scanned at a resolution of
10 pm. The selection of scanning parameters was carried out empirically for glycoarrays,
taking into account the main requirement-more than 95% of the signals should fall within
the measurement scale of the device, i.e., not to exceed an RFU value of 65,535. Then, the
obtained images were imported into an Excel spreadsheet using the reader software and
the .GAL file.

2.4. Sequencing and Genetic Characterization

Complete genome NGS sequencing of A/210 and A /211 strains was performed using
the Illumina MiSeq platform and the associated reagent kits, also from Illumina, according
to the methodology described by the manufacturer. RNA was extracted using QIlAamp
Viral RNA Mini Kit (QIAGEN, Hilden Germany). Whole-genome amplification was per-
formed according to the protocol described by Zhou et al. [18]. DNA libraries were prepared
using a Nextera DNA Flex Library Prep kit (Illumina, San Diego, CA, USA). Sequencing
of the DNA libraries was conducted with a reagent kit, version 3 (600-cycle), on a MiSeq
genome sequencer (Illumina). Read mapping was performed using minimap?2 v2.17 soft-
ware with default settings. Consensus sequences were obtained using SAMtools-mpileup
v1.10 software.

A /29 strain library preparation was performed in the Animal Influenza unit of Na-
tional Institute of Animal Health (Tsukuba, Japan), as described previously [19]. Briefly,
isolation of RNA from allantoic fluid was performed using the RNeasy Mini kit (QIAGEN,
Hilden, Germany). We used the NEBNext Ultra II RNA Library Prep Kit for Illumina (New
England Biolabs, Ipswich, MA, USA) to prepare the cDNA libraries. Before sequencing,
10 pM of libraries were mixed with 10 pM of PhiX Control V3 (Illumina). Sequencing
was performed using MiSeq genome sequencer (Illumina) using the MiSeq Reagent Kit
v.2 (Illumina). Consensus sequences were constructed using Workbench software v.9.5.3
(QIAGEN, Germany).

We utilized the MUSCLE algorithm to acquire multiple alignments of sequences
for H14 gene segments from available datasets, including EpiFlu (accession-June, 2022).
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Phylogenetic trees were evaluated using the IQTREE software and the maximum-likelihood
algorithm with the best-fitting substitution model (ModelFinder option) and a bootstrap of
1000 iterations [20]. Molecular dating was performed using the TempEst 1.5.3 and BEAST
v2.7.0 applications under an optimized relaxed molecular clock, coalescent Bayesian skyline
tree prior, and a GTR + G4 + I model [21]. Two independent MCMC chains were run for
100 million generations each, and the first 10% were discarded as burn-in. Tracer was
used to check convergence of the chains. Results were summarized using LogCombiner
v 2.7.0. Tree visualization was performed using FigTree v1.4.4 software and MEGA11
software [22]. Average pairwise distances of amino acid sequences were estimated using
MEGAT11 software.

3. Results
3.1. Virus Isolation

In total, 5777 samples were collected from wild birds in the Asian part of Russia during
the Avian Influenza surveillance program between 2014 and 2019 (Figure 1).

The overall isolation rate of all AIVs in this period amounted to 3.34% (n = 193), with
only 0.05% (n = 3) corresponding to the detection of H14 cases. At the same time, the
isolation rate of the most prevalent subtypes, H3Nx and H4Nx, remained constantly high
throughout the time course of observation, comprising 1.45% (n = 84) and 0.38% (n = 22),
respectively. Thus, the proportion of H14 viruses was significantly lower than viruses of
the commonly presented subtypes. Specifically, during surveillance in wild waterfowl in
2014, 303 samples were examined that demonstrated the presence of AlVs, corresponding
to 4.29%, whereas the H14 subtype was detected in 0.66% of cases (n = 2). The presence of
AlVs among the 2366 samples collected in 2019 was 3.08% (n = 73), while the H14 subtype
accounted for 0.04% (n = 1) (Table 1). The information provided here highlights the fact that
H14-subtype viruses are uncommon in the studied territories of Northern Asia. In addition,
the presence of this subtype in the “Siberian influenza virus pool” is low. The contribution
of Siberian H14-subtype virus strains to the Eurasian H14 pool was the most dramatic (4/9).
However, the distribution of overall detections of H14 in Eurasia in time is irregular (n = 3
in 1982, n =1 in 2006, n = 3 in 2014, and n = 2 in 2019), suggesting sporadic transmission
to migratory bird species involved in the surveillance program. One isolate of the H14
subtype from common teal (Anas crecca) and two isolates from garganey (Anas querquedula)
were obtained in the autumn season at Chany Lake in the Novosibirsk region (Western
Siberia, Russia): A/common teal/Chany_Lake/29/2019 (H14N3), A/garganey/Chany
Lake/210/2014 (H14N9), and A/garganey/Chany Lake/211/2014 (H14IN9), hereafter
referred to as A/29, A/210, and A /211, respectively (Table S1). Previously, the undescribed
novel subtype H14N9 was isolated twice in 2014 from garganey. Additionally, we found
and included in the study another novel H14 virus isolation case from sandpiper (Calidris
sp.) in the neighboring Tomsk region previously described by Marchenko et al. [7]. Its
sequence is currently available in the GISAID database (GISAID # 390458).

Table 1. H14-subtype AIV strain information.

Strain Lab ID Accession ID
A/common_teal/Chany_Lake/29/2019 (H14N3) A/29 400267
A/garganey/Chany_Lake/210/2014 (H14N9) A/210 14854178
A/garganey/Chany_Lake/211/2014 (H14N9) A/211 14853905

3.2. Virological Characteristics
3.2.1. Growth in Cell Culture, Antigenic Analysis and Neuraminidase Inhibition Tests
For all tested viruses, the 50% tissue culture infectious dose was determined with and

without the presence of trypsin. All analyzed viruses efficiently replicated in MDCK cells
in similar titers (Table 2). All viruses also replicated efficiently in the absence of trypsin,
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although they had titers that were lower by an order of magnitude than those replicated in
the presence of trypsin.

Table 2. Virus titers in MDCK cells and neuraminidase enzyme inhibition assay.

Viruses MEM with 2% FBS, MEM with %%?r;}lf;i\nand 2 ug/mL Oseltamivir (Tamiflu)
10g10TCIDso/mL log;y TCIDsg/mL Mean ICs * (nM) + SD Fold Change ®
A/29
(H14N3) 6.55 + 0.3 7.67+03 0.58 & 0.03 1.42
A/210
(H14N9) 7.17 £03 8.17 + 0.2 0.67 £0.15 1.63
A/150
(H4NG6) 6.30 £ 0.2 7.30 + 0.4 0.51 & 0.04 1.24
A(HIN1)pdm09 n/a 725403 0.41 £ 0.04 1.0

Note: # IC50, half-maximal inhibitory concentration. The IC50 denotes the concentration of a NA inhibitor that
reduces the NA activity by 50% relative to NA activity without the inhibitor. NA inhibition assay used MUNANA
as substrate at a final concentration of 100 uM. Values are the mean of two or three independent determinations.
b Fold change relative to the mean IC50 of the A (HIN1)pdm09 virus. Fold-change values of each NA were
interpreted using criteria established by the World Health Organization Influenza Antiviral Working Group.

b Fold change > 10 (including reduced /highly reduced inhibition).

We evaluated the neuraminidase activity in vitro. In our experiment, all viruses
(H14N3, H14N9, and H4N6) were highly sensitive to oseltamivir (Tamiflu) (Table 2).
Oseltamivir is an inhibitor of the neuraminidase enzyme activities of influenza A and
B viruses.

To determine the antigenic differences between A/H14 viruses, we performed anti-
genic analysis using polyclonal quail antisera raised against these viruses (Table 3). All
H14 isolates demonstrated cross-reactivity with all quail polyclonal antisera and did not
demonstrate cross-reaction with H4-antiserum.

Table 3. Antigenic analysis of influenza A/H14 viruses (HI (VN) titers).

Antigens
Quail Post Infectious Sera
A/29 (H14N3) A/210 (H14N9) A/150 (H4NG6)
A/29 (H14N3) 160 (80) 160 (80) 5 (5)
A /210 (H14N9) 160 (160) 160 (160) 5 (5)
A /150 (H4N6) 5 (5) 5 (5) 160 (320)

3.2.2. Receptor Specificity

In order to characterize the receptor binding profile of the isolated strains, commer-
cially available glycoarrays were used. For comparison, the strain A/little tern/Guriev /779
/83 (H16N3) was used, the receptor binding profile of which has been described previously.
The analysis of the receptor specificity of the virus showed that the most preferred receptors
for binding with the A/garganey/Chany Lake/210/2014 (H14N9) virus were sulfated
structures. In all cases of interaction of the virus with glycans, the presence of a sulfate
group was observed. The H14N9-subtype virus was not shown to interact with human-
type receptors containing Neu5Aca2-6Gal, in contrast to the A/little tern/Guriev/779/83
(H16N3) virus, which showed binding to various receptor variants containing a link at
positions 2-6, which is consistent with the data presented in the literature [23,24]. Accord-
ing to the results of this study, the A/little tern/Guriev/779/83 (H16N3) virus showed a
high level of binding to the 3-SiaTn receptor, while the H14-subtype viruses did not bind
these types of glycans at all (Table 4).
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Table 4. Receptor binding glycoprofile of avian influenza viruses isolated from ducks and gulls.

Virus Strain Oligosaccharides RFU
Neu5Aca2-3Galb1-4(2-O-Su-Fucal-3)(6-O-
Su)GIcNAcb-sp3 17,793
A/garganey/Chany (Neu5Aca3'(2-suFuca3)(6-su)LN-C3)
lake/210/2014 (H14N9) Neub5Aca2-3(6-O-Su)Galb1-4(6-O-
Su)GIcNAcb-sp3 17,396

(NeubAca3'(6,6'-su2)LN-C3)
Neu5Aca2-3Galp1-4(Fucf1-3)GlcNAcB-sp3

(SiaLeX) 64,732
Neu5Acx2-3Gal1-4(2-O-Su-Fucol-
3)GIcNAcB-sp3 61,445
(SiaLeX2""'Su)
A/common teal /Chany NeuSAcax2-3Gal (63 };J:—I(\?églju)GlcNAc -sp3 57,287
Lake/29/2019 (H14N3) Neu5Aca2-3Gal B1-3(Fucad -4)GIcNACp-
. 56,604
sp3(SiaLea)
Neu5Aca2-3Galp1-3GlcNAcp-sp3 51191
(3'SiaLeC) ¢
Neu5Aca2-3GalB1-4GleNAcB-sp3(3'SLN) 48,444
NeubSAcx2-3GalNAco-sp3 (3-SiaTn) 29,289
NeubSAcx2-6(Galp1-3)GalNAcx-sp3 (65iaTF) 43,606
NeubAca2-3Galp1-4(Fucf1-3)GlcNAcB-sp3
. . (SiaLeX) 29,451
Allittle ter%%;gw/ 779/83  NeuSAca2-6Galp1-4GINAcB-sp3 (6/SLN) 28,472
( ) Neu5Acx2-6Galp1-4-(6-O-Su)GlcNAc3-sp3 27 473
(6'SLN6Su) !
Neu5Aca2-3GalB1-4GlcNAcB-sp3 (3'SLN) 15,806

Interestingly, the H14N9 virus practically did not bind to the classical avian-type
receptors-3/SL and 3/SLN.

3.3. Genetic Characterization and Phylogenetic Analysis

INlumina sequencing resulted in 146,880 paired-end reads for A /210 and 117,551 for
A/211. A total of 138,552 and 108,379 paired-end reads passed the quality control pipeline
for A/210 and A /211, respectively. Assemblies of complete genome sequences of eight gene
segments for three isolates (A/210, A/211, A/29) were obtained: PB1 (2340, 2340, 2323 nt),
PB2 (2340, 2340, 2323 nt), PA (2232, 2232, 2219 nt), HA (1747, 1747, 1721 nt), NP(1564, 1564,
1538 nt), NA (1457, 1457, 1433 nt), MP (1026, 1026, 1005 nt), NS (889, 889, 855 nt).

Identity analysis (BLAST) of HA segment nucleotide sequences showed that the
nearest sequence for isolates A /210 and A/211 was that obtained from a virus isolate of
the H14N3 subtype collected in 2014 in Pakistan. Isolate A/29 had the highest identity
percentage with a strain isolated from sandpiper in 2014 in Siberia, which was the most
recent sequence collected in Eurasia (Table 5). The first sequence of HA belonging to the H14
subtype, described in 1982 in the former USSR, shared 88.06, 88.88, and 89.00% identity with
the studied A/29, A/210, A/211 sequences obtained in Russia, respectively. The identity
analysis of each segment of the characterized isolates is provided in the Supplementary
Materials (Table S2).

Table 5. Nucleotide identity of the HA segment of Siberian H14Nx viruses.

Strain Related Strain Country HA Identity, %
A/29 A/sandpiper/Tomsk/112/2019 (H14N7) Russia 98.65

A/210 A/goose/Karachi/NARC-13N-969/2014 (H14N3) Pakistan 98.24

A/211 A/goose/Karachi/NARC-13N-969/2014 (H14N3) Pakistan 98.24
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The results provided by Fries et al. (2013) for HA segment sequences of H14 subtype
for the periods before 1989 and after 2009 showed overall mean pairwise distance at the
level of 0.048 (SE = 0.009). The overall mean pairwise distance for the H14-subtype HA
sequences, including the sequences submitted after 2009, is 0.029 (SE = 0.004), which is
close to the estimation of phylogenetically related and frequently detected H4-subtype
sequences (<1982 and >2022) (0.030, SE = 0.004). These data support the assumptions of
Fries et al. (2013) that H14-subtype viruses can circulate in spatial or temporal areas that
are not involved in avian influenza surveillance [8].

All known H14-subtype AIVs can be phylogenetically divided into one of two clades
on the basis of their HA segment nucleotide sequences: H14.1 and H14.2 (Figure 2). Clade
H14.1 includes only those strains originally discovered in 1982 in the former USSR. The
H14.2 clade includes the rest of the known strains isolated between 2006 and 2019. The
latter consists of two subclades: H14.2.1 (Eurasian strains 2014-2019) and H14.2.2 (North
American strains and a related strain from Ukraine, 2006). With respect to time-scaled
phylogeny, the H14.2.1 subclade diverged from its most recent common ancestor with the
H14.2.2 subclade in 2003 (95% HPD 2002-2005) (Figure S1). In this study, isolates from
Russia were determined to belong to the H14.2.1 subclade of the H14 subtype, forming
two subclades: H14.2.1a (2014-2015) and H14.2.1b (2019). Strains A/210 and A /211 of the
H14N9 subtype belong to subclade H14.2.1a, along with the closely related H14N3 strain
from Pakistan 2014. Strain A /29 of the H14N3 subtype belongs to the H14.2.1b subclade,
and forms a monophyletic group with the previously described H14N7 strain from Tomsk,
Russia 2019.
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Figure 2. Maximum likelihood phylogenetic tree of HA subtype H14 genome segment of avian
influenza viruses (e—sequences from this study; «—sequence of H14 influenza virus strain isolated
in related region from public database).
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The nucleotide sequence of the NA segment of the N3 subtype was related to the
H7N3-, H11N3-, and H10N3-subtypes of LPAI viruses isolated in 2018-2020 in distant
territories of Eurasia (Figure 3).
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Figure 3. Maximum likelihood phylogenetic tree of the NA-subtype N3 genome segment of avian
influenza viruses (e—sequence from this study).

The phylogenetic tree for the N9 segment sequences shows association with H7N9-
H11N9-subtype strains from Europe, South and East Asia, and Northern Africa (Figure 4).

The phylogenetic tree for the NS segment points to the relatedness between the H14N3,
H14N9, and two LPAI virus subclades of allele A from China, Mongolia, Northern Africa,
and Bangladesh (Figure S2). The H14N3 strain is closely related to the H14N3 strain found
in Pakistan in 2014. Another Russian H14 strain from Tomsk is grouped with the European
strains, which include H5N1. Notably, among all of the H14 strains characterized, only
seven variants belong to allele B of the NS segment. Of these seven strains, only one
H14 strain can be attributed to the Eurasian clade, which was isolated in Ukraine in 2006,
whereas the remaining six strains belong to the North American viruses of allele B. The HA
segment of this variant is thought to possess the most recent common ancestor with the
strains introduced to North America.
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Figure 4. Maximum likelihood phylogenetic tree of the NA-subtype N9 genome segment of avian

influenza viruses (e—sequences from this study).

The PB2 of two H14N9 isolates (A /210, A/211) is clustered with two different clades,

whereas all other segments belong to the same clusters, and do not show diversity. The
PB2 of the A /211 strain is closely related to the H14N3 strain from Pakistan. Remarkably,
PB2 from the H14 Tomsk strain is grouped together with the H5N1 strains that have been

ci

rculating in Europe since 2020 (Figure 5A).
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North American lineage

Figure 5. Cont.



Viruses 2023, 15, 734

15 of 20

E(MP)

100

A mallard Gurjev 263 1982 A H14N5 1982-01-01 EPI ISL 14744
A duck Perak 2458 1989 A H3N8 1889-01-01 EPI ISL 68946

A mallard Potsdam 176 1983 A H2N2 1983-01-01 EPI ISL 118659
A mallard Rugen 26-4 1980 A H2N3 1980-01-01 EPI ISL 118930
A mallard MT Y61 A H2N2 1961-01-01 EPI ISL 118658
A mallard Sweden 95 2005 A H7N7 2005-01-01 EPI ISL 84571
A mallard Sweden 7996 2005 A H8N4 2005-09-08 EPI ISL 189331
A mallard Sweden 5944 2005 A H7N7 2005-11-26 EPI ISL 189464
A mallard Sweden 5927 2005 A 2005-11-23 EPI ISL 189318
5] A mallard Sweden 51645 2006 A H10N4 2006-10-20 EPI ISL 189361
A mallard Sweden 51582 2006 A H10N4 2006-10-19 EPI ISL 189359
A mallard Sweden 6038 2005 A H10N4 2005-10-05 EPI ISL 189471
A mallard Ukraine 05842-NAMRU3 2006 A H3N8 2006-09-30 EPI ISL 120213
A garganey Ukraine 05839-NAMRU3 2006 A H14N6 2006-08-13 EPI ISL 120215
A mallard Altai 539 2009 A 2009-09-01 EPI ISL 145810
A goose Karachi NARC-13N-969 2014 A H14N3 2014-01-03 EPI ISL 294560
A mallard Altai 538 2008 A H4N6 2009-08-01 EPI ISL 145809
A teal Chany 494 2009 A H4N6 2009-09-01 EPI ISL 145806
A duck China J12012 A H4N6 2012-10-02 EPI ISL 179039
A mallard Altai 839 2011 A H4N6 2011-09-03 EPI ISL 145853
A teal Chany 455 2009 A 2009-09-01 EPI ISL 145804
A teal Chany 312 2010 A H1N1 2010-08-28 EPI ISL 145890
A duck Mengolia 53 2011 A H3N8 2011-09-01 EPI ISL 298539
A duck Bangladesh 1784 2010 A H4N6 2010-11-10 EPI ISL 165807
7] A turkey Italy 21VIR6668-64 2021 A HEN8 2021-08-10 EPI ISL 7987331 MP
{L—_A mallard duck Georgia 10 2016 A H7N7 2016-09-30 EPI ISL 328976 MP
A Anas Platyrhynchos Belgium 10811 6 2019 A H5N6 2018-09-21 EPI ISL 502593 MP
@® A Common Teal Chany Lake 29 2019 A H14N3 MP 2019-09-07
A duck Mongolia 419 2019 A H5N3 2019-09-12 EPI ISL 503347
5 A duck Mongolia 926 2019 A HSN3 2019-09-20 EPI ISL 503343
A duck Mongolia 374 2018 A H4N6 2018-09-02 EPI ISL 697692
53! A duck Mongolia 447 2018 A H4N6 2018-09-02 EPI ISL 697695
A duck Bangladesh 36391 2018 A HANG 2018-12-09 EPI ISL 387988
%! A duck Bangladesh 36395 2018 A H4N6 2018-12-09 EPI ISL 387986
A duck Bangladesh 18D769 2017 A HBN7 2017-01-23 EPI ISL 333138
ol A duck Bangladesh 18D770 2017 A HBN7 2017-01-23 EPI ISL 333137
— A wild bird Wuhan CDHN173 2015 A H11N9 2015-01-01 EPI ISL 205149 MP
A duck Mongolia 82 2013 A H3N1 2013-09-01 EPI ISL 298543
A mallard Chany 185 2016 A H3N8 2016-09-10 EPI ISL 250233 MP

s00| A mallard Potsdam 179 1983 A H2N2 1983-01-01 EPI ISL 118683

A mallard duck AST 244 1982 A H14N6 1982-01-01 EPI ISL 8915 MP ]

Eurasian lineage

«| @ A garganey Chany Lake 210 2014 H14N9 MP

_I—_A northern shoveler Egypt MB-D-695C 2016 A H7N3 2016-03-17 EPI ISL 387973

_'_

%! A mallard Netherlands 19001282-001 2019 A H5N1 2019-01-23 EPI ISL 819124 MP

A mallard Netherlands 73 2017 A H4N6 2017-08-01 EPI ISL 376198 MP
® Agarganey Chany Lake 211 2014 H14N9 MP

A mallard Chany 355 2016 A H1N1 2016-10-10 EPI ISL 250237
| A gadwall Chany 315 2016 A HIN1 2016-10-10 EPI ISL 250236
A mallard Chany 313 2016 A H1N1 2016-10-10 EPI ISL 250235

A teal Egypt MB-D-1480P 2015 A H10N7 2015-01-27 EPI ISL 387963
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North American lineage

Figure 5. Maximum likelihood phylogenetic tree of internal genome segments: (A) PB2, (B) PB1,
(C) PA, (D) NP, (E) MP of avian influenza viruses (e—sequences from this study; —sequence of H14
influenza virus isolated in related region from public database).

The PB1 segment of strain A/29 has a common ancestor with H5N8-subtype variants
that caused outbreaks in Europe during spring 2020 (Figure 5B) [25,26]. The PA segment
sequences are attributed to LPAI viruses from China, Mongolia, Bangladesh, and Russia
(Figure 5C). The PA segment of the Pakistan strain is clustered with the China clade, which
is different from the Russian strain.

The NP segment of the H14N3 isolate is monophyletic with isolates from Bangladesh
and Mongolia, similar to MP, while the H14N9 NP sequences are clustered with HIN1,
H6NS, H10N5, and H5N5, which were acquired from wild waterfowl in Eastern Russia
and Europe (Figure 5D). The MP sequence of H14N3 is closely related to the Eurasian
lineage, particularly to strains of the H5N3, H11N9, H3N1, H6N7, and H4N6 subtypes
from Mongolia, China, and Bangladesh that form the Central-Southwest Asian subclade
(Figure 5E). Both H14N9 and H14N7 (Tomsk) MP segments cluster into the diverse sub-
population grouping with North African and European isolates from the period between
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2015 and 2021. Geography of the spread of related strains from the Eastern to the Western
part of the Eurasian continent (Figure 5D,E).

All of the information described above suggests that the evolution of H14-subtype
viruses, accompanied by antigenic drift and plural reassortment events, occurs primarily in
connection with reservoirs of LPAI viruses of different subtypes.

Analysis of the HA gene sequences reveals five and six amino acid substitutions for
A /210 and A /211, respectively (Table 6). The A /211 isolate carries D326G substitution in
the HA cleavage site, which is the only difference between it and the A/210 isolate HA
amino acid sequence, and may be as a result of cultivation. The most recent H14 strain
A /29 has nine substitutions compared to the A/goose/Karachi/NARC-13N-969/2014
(H14N3) strain, with A329T substitution in the HA cleavage site. Amino acid signature
residues Q226 and G228 in the receptor-binding domain (RBD) of HA for the A/29, A /210,
A /211 strains indicate avian receptor susceptibility [18].

Table 6. Amino acid substitutions of hemagglutinin protein of H14-subtype AIVs.

Cleavage Site Amino

Strain 58 62 77 127 143 145 189 211 226 228 281 301 326 329 441 515 523 .
Acid Sequence
A/goose/Karachi/NARC-13N-
969/2014 I N H G R G Q I Q G P I D A T I M NIPGKQAK/G
(H14N3)
A/common teal/Chany
Lake/29/2019 (H14N3) D . N . S T T Q G S B . T . v . NIPDKQTK/G
A/garganey/Chany
Lake/210/2014 (H14N9) v D ° s ° ° ° ° Q G : ° ° ° i v ° NIPDKQAK/G
A/garganey/Chany
Lake,/211/2014 (H14N9) v D . S . . . . Q G . . G . . v . NIPGKQAK/G
A/sandpiper/Tomsk/112/2019 D R N H S K T Q G B M B T A v T NIPDKQTK/G

A comprehensive analysis was performed of NAI resistance-associated substitutions of
neuraminidase protein among the studied AIVs with N3 and N9 neuraminidase subtypes.
We did not find any known NALI resistance-associated substitutions in A/29, A/210 and
A /211 viruses (E119, Q136, G147, 1222, 1.223, A246, H274, R292, R371, 1427 (N2 number-
ing)) [27]. These results were confirmed for A/29 and A /210 in vitro by the low resistance
of viruses to oseltamivir.

4. Discussion

Wild waterfowl are a natural reservoir of type A influenza viruses. Cases of transmis-
sion of avian influenza viruses to other hosts—pigs, humans, horses, etc.—have periodically
been recorded, with reports having intensified in recent years [28], raising awareness of the
origin of future influenza pandemic. The reasons for which some AIV subtypes are more
common in some bird species than others remain insufficiently clear. Here, we describe
the rarely identified H14Nx avian influenza viruses found in Siberia. The sequencing of
samples collected from wild birds demonstrated the presence of a novel combination of
the HA-NA constellation in the circulating LPAIs-H14N9 subtype. The low frequency of
detection of the H14 subtype is a limiting factor in the investigation of the interrelations
between virus subtype, bird species, and their geographical co-occurrence. However, the
internal segments of the H14 subtype are thought not to be associated with subtype, bird
species, or location. Phylogenetic reconstruction suggests that the evolution of internal
segments most likely includes reassortment and antigenic drift mechanisms that provide
a wide range of host adaptation. Remarkably, we and other authors have isolated H14-
subtype viruses only from Anseriformes and Charadriiformes species, presenting at low rates.
One previously published work hypothesizes that sampling biases in surveillance can form
a blind spot for particular subtypes, for example, as a result of the remoteness of some
territories [8]. Therefore, rare H14 detection may be the result of spillovers in cases where
the virus invades surveyed populations from non-surveyed host reservoirs. The abundant
isolation of H14 virus variants during certain periods in North America since 2010 could
be an argument in favor of this hypothesis. Broadening the inventory by adding the list of
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non-surveyed species could help in testing this hypothesis. The second hypothesis (Fries
et al., 2013) assumes cross-reactive immunity among subtypes H4-H14, resulting in possi-
ble antigenic evolutionary pressure of H4 LPAIs directed to H14-subtype avian influenza
viruses. Subtype H4 is known to be the sister subtype of H14, having diverged from the
most recent common ancestor [8]. To test this hypothesis, large-scale serological assays
should be applied in future. In our study, we used polyclonal sera obtained for antigenic
analysis and showed that all of the studied H14 isolates demonstrated antigenic similarity
with one another on the basis of hemagglutination inhibition and neutralization tests, but
did not exhibit significant cross-reaction with the H4 reference strain, thus confirming the
difference from the sister subtype. However, we cannot reject the hypothesis that there
are different and distinct antigenic variants of Eurasian H14 viruses that have yet to be
found in nature. Additionally, we found that all of the studied viruses—H14N3, H14N9,
and H4N6—were able to replicate efficiently in MDCK cells with or without the presence
of trypsin, and were highly sensitive to oseltamivir (Tamiflu) in experiments. These data
allow us to expect that, in the future, we will be able to search and cultivate more isolates
of this rare subtype.

Interspecies transmission usually occurs as a result of adaptation of influenza strains
to the receptor specificity of the tissues of the new host. In a series of experiments in
the 1980s, Paulson and colleagues found that avian and equine influenza viruses bind
predominantly to sialic acids, characterized by an «2-3-glycosidic bond with galactose,
while human influenza viruses bind to «2-6-SA receptors [29].

The study of the receptor-binding phenotypes of avian influenza viruses of various
subtypes makes it possible to trace evolutionary transitions between different hosts, while
also making it possible to establish the necessary minimum of receptor adaptations to over-
come interspecies barriers. Our study showed that viruses of the H14 subtype effectively
bind to receptors containing fucose. Gambaryan et al. established that influenza viruses of
different subtypes that circulate in poultry usually had high binding avidity to receptors
containing fucose or sulfate in the last part of the molecule—GIcNAc-3 [23]. However,
duck influenza viruses, with the H4 subtype being that which circulates most widely in
these species, do not bind to receptors that contain fucosyl moieties. Since, in our case,
sulfate-bound fucose was located in the middle part of the molecule, this may be a new
receptor pattern for H14-subtype influenza viruses circulating in ducks.

The isolated viruses were also tested with different variants of the structures of sialic
acids containing Neu5Gc. According to the published data, equine and duck influenza
viruses bind to the glycolyl form of neuraminic acid [30,31]. However, in our study, duck
viruses of the H14 and H16 subtypes did not bind to Neu5Gc-based receptors.

Data suggest that, although avian influenza viruses preferentially bind to receptors
that possess a 2-3 bond between acetylneuraminic acid and galactose, there are differences
in receptors depending on bird species.

The presence of the H14 subtype in Eurasia for the last 7 years has been exclusively
associated with the territories of Western Siberia. However, despite the dramatic relatedness
of internal segments of this subtype (PB1, PB2, MP, NP) with isolates from Bangladesh,
Mongolia, and China (Central Asian Flyway/CAF) and active AIV surveillance on these
territories, no H14-subtype virus isolations have been reported there thus far. Therefore,
we hypothesize that the reservoir host is not connected with CAF. An alternative option
might be the circulation of H14 viruses, presumably in bird hosts following the Black
Sea/Mediterranean flyway. Future analysis of these territories could provide a list of
species for surveillance. Interestingly, the vast majority of known H14 viruses were isolated
from dabbling ducks of a single genera—Anas sp.—in both hemispheres, mainly from
teals. Our three viruses (A/29, A/210, A/211) were acquired from common teal and
garganeys during the fall season. Of the currently described H14 viruses isolated in Siberia,
there is only one isolation in which the H14 virus was obtained from sandpiper [7]. At
the same time, most of the ring recoveries in the described region of common teals and
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garganeys have been associated with migrations in the westward direction and the Black
Sea/Mediterranean and Central Asian flyways [32].

Previous reports on H14-subtype viruses circulating in North America suggest the
introduction of AIVs from the Eurasian lineage into the New World followed by reassort-
ments with North American variants [10]. However, phylogenetic analysis showed that no
evidence has been found to date detecting the reintroduction of H14 avian influenza viruses
from America to the Eurasian continent, and the recent Eurasian clade of H14-subtype
viruses diverged from the most recent common ancestor with the clade introduced in North
America at the beginning of the 2000s.

We found that particular internal segments of this subtype are closely related to
internal segments of the recent HPAI variants, and that viruses can exchange bysegments,
and can potentially play a role in HPAI circulation. Moreover, the fundamental aspects of
underlying evolutionary events and hidden circulation of H14Nx viruses require further
investigation. As an example, the Tomsk strain PB2 segment (Figure 5C) (yellow circle)
shares a common ancestor with the PB2 segments of the H5N1 strains isolated later in
Europe. Of course, internal segments are mainly considered not to be associated with
pathogenicity. At the same time, a lot of HPAI (external)-LPAI (internal) reassortment
variants are likely generated during outbreaks of HPAI variants, assuming some benefits
for virus replication, dissemination, and/or immune evasion.

In the present work, we identified a subclade of the HA segment for Eurasian H14
viruses during the period 2014-2019 and classified them into two groups. The limitation
for such subclade assignment is obviously the extremely small number of currently known
sequences. However, in further studies of H14-subtype viruses with increasing numbers of
available sequences, the genetic topology will be refined and detailed.
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