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Abstract: Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) canonically utilizes
clathrin-mediated endocytosis (CME) and several other endocytic mechanisms to invade airway
epithelial cells. Endocytic inhibitors, particularly those targeting CME-related proteins, have been
identified as promising antiviral drugs. Currently, these inhibitors are ambiguously classified as
chemical, pharmaceutical, or natural inhibitors. However, their varying mechanisms may sug-
gest a more realistic classification system. Herein, we present a new mechanistic-based classifica-
tion of endocytosis inhibitors, in which they are segregated among four distinct classes including:
(i) inhibitors that disrupt endocytosis-related protein–protein interactions, and assembly or dissoci-
ation of complexes; (ii) inhibitors of large dynamin GTPase and/or kinase/phosphatase activities
associated with endocytosis; (iii) inhibitors that modulate the structure of subcellular components,
especially the plasma membrane, and actin; and (iv) inhibitors that cause physiological or metabolic
alterations in the endocytosis niche. Excluding antiviral drugs designed to halt SARS-CoV-2 replica-
tion, other drugs, either FDA-approved or suggested through basic research, could be systematically
assigned to one of these classes. We observed that many anti-SARS-CoV-2 drugs could be included
either in class III or IV as they interfere with the structural or physiological integrity of subcellular
components, respectively. This perspective may contribute to our understanding of the relative effi-
cacy of endocytosis-related inhibitors and support the optimization of their individual or combined
antiviral potential against SARS-CoV-2. However, their selectivity, combined effects, and possible
interactions with non-endocytic cellular targets need more clarification.

Keywords: SARS-CoV-2; endocytosis; endocytic inhibitors; antiviral drugs; dynamin; clathrin

1. Introduction

SARS-CoV-2 and other viruses utilize different cellular endocytic pathways to invade
their target cells [1]. Fine details of different endocytic mechanisms demonstrate how the
plasma membrane (PM) is used to engulf viral particles, nutrients, or surface proteins to
internalize them into the cell. These processes are well-orchestrated via many interacting
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cellular proteins that participate as receptors, scaffolding, adaptors, or modulatory proteins.
This explains how it is possible to selectively inhibit clathrin-mediated endocytosis (CME)
and other clathrin-independent mechanisms (Figure 1) at multiple stages to prevent viral
invasion. In addition to RNA interference strategies (RNAi), the literature presents a long
list of molecules that selectively inhibit different endocytic pathways that are predomi-
nantly used by SARS-CoV-2, such as CME and Caveolae-mediated endocytosis (CAE).
As we will discuss later, the inhibition of endocytosis relies on the employment of small
molecules (about 500 kDa or less) to interfere with the normal functions of key proteins
or subcellular components that are directly involved in endocytosis. Clathrin and large
dynamins, for example, are targeted by many inhibitors. Similarly, some clathrin and/or
dynamin-independent endocytosis (CIE) inhibitors are shared with CME. Cholesterol, for
example, is an integral constituent of the plasma membrane and lipid rafts; therefore, it
is commonly targeted to inhibit both CME and some CIE mechanisms, including CAE. In
addition, Filipin, a complex of at least four polyene macrolides [2], binds to cholesterol,
disrupts the organization of the surrounding membrane, and inhibits CIE, whereas at
higher concentrations, it also affects CME. In a similar manner, actin-depolymerizing com-
pounds, such as Cytochalasin D and latrunculin, may represent key inhibitors for endocytic
mechanisms [3]. Accordingly, most of the endocytic inhibitors are target-dependent, rather
than endocytic pathway-dependent. In endocytosis-mediated viral entry into the target
cells, these inhibitors may act in a viral type-independent manner.
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The previously suggested classification of endocytic inhibitors relies on their chemi-
cal natures, whether they are chemical, pharmaceutical, or genetic inhibitors. They are 
also classified according to the endocytic pathway they are targeting [4]. Surprisingly, 
some FDA-approved drugs, such as Chlorpromazine (CPZ), chloroquine, and bisphos-
phonates, that are used in the treatment of psychotic disorders, malaria infection, and os-
teoporosis, respectively, and have more recently been suggested as SARS-CoV-2 drugs, 

Figure 1. Classification of endocytic pathways based upon the involvement of clathrin and dynamin
proteins. According to clathrin inclusion, endocytic pathways are classified into clathrin-dependent,
such as CME, and clathrin-independent, whereas the clathrin-independent pathways are subdi-
vided into clathrin and dynamin-independent (such as the CLIC/GEEC and Fillotin pathways) or
clathrin-independent and dynamin-dependent, such as CAE. CME: Clathrin-mediated endocyto-
sis; CLIC/GEEC: Clathrin-independent carriers/GPI anchored protein enriched early endosomal
compartment; CAE: Caveolae-mediated endocytosis.

The previously suggested classification of endocytic inhibitors relies on their chemical
natures, whether they are chemical, pharmaceutical, or genetic inhibitors. They are also
classified according to the endocytic pathway they are targeting [4]. Surprisingly, some
FDA-approved drugs, such as Chlorpromazine (CPZ), chloroquine, and bisphosphonates,
that are used in the treatment of psychotic disorders, malaria infection, and osteoporosis,
respectively, and have more recently been suggested as SARS-CoV-2 drugs, are categorized
as chemical inhibitors, rather than pharmaceutical. Furthermore, it is not clear why some
inhibitors, such as the large dynamin inhibitors Dynasore and Dyngos, are categorized
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as pharmaceutical inhibitors. Moreover, there is no clear distinction between drugs that
interrupt complex formation and those that inhibit the activity of endocytosis-related
enzymes. This may raise the importance of suggesting a more justifiable classification
that considers their mode of action. In this regard, the recent SARS-CoV-2 pandemic
has spotlighted endocytosis and spurred tremendous efforts to present new, fast-acting,
and reliable drugs, since some of the previously FDA-approved drugs were primarily
considered endocytic inhibitors. Thus, this review suggests a new classification system of
endocytic inhibitors and assigns many of the suggested SARS-CoV-2 therapeutic drugs to
this classification. This perspective will enhance our understanding of their differential
therapeutic effectiveness against SARS-CoV2 and other viruses.

2. Mechanistic-Based Classification of Endocytic Inhibitors
2.1. Concept of Classification

Careful inspection of the mechanisms of the currently identified endocytic mechanisms
indicates that they utilize a group of cellular proteins and cellular components, such as
the plasma membrane and endosome–lysosomal system. As CME is deeply concerned
with receptor regulation, it has been extensively investigated. Accordingly, we utilized the
main steps of CME as a guide to assign these inhibitors into four classes: First: inhibitors
that interfere with protein–protein interactions, complex assembly or dissociation, which
are involved in clathrin-coated pits (CCP), and vesicle formation. Second: inhibitors that
prevent enzymatic activities associated with endocytosis. Third: inhibitors that function by
disrupting the structure of subcellular components that are directly involved in endocytosis,
such as the plasma membrane cholesterol and cytoskeletal actin. Fourth: inhibitors that
alter the cellular metabolic and physiological conditions, leading to disturbed endocytosis
(Figure 2).
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Figure 2. Mechanistic-based classification of endocytic inhibitors. Small molecule inhibitors targeting
endocytosis are categorized into four main classes. The first class includes small molecules that
interrupt the assembly or dissociation of the clathrin–adaptor complex. The second class includes
compounds that suppress the GTPase, kinase, or phosphatase activities associated with endocytosis.
The third and fourth classes include inhibitors that modulate the structural or physiological integrity,
respectively, of subcellular compartments directly involved in endocytosis.

2.2. Class I: Inhibitors of Complex Assembly and Dissociation

Protein–protein interaction (PPI) is a common phenomenon in molecular cell biology
that results from the high specificity between domains of two or more proteins. The formed
complex is stabilized by the conventional forces between amino acid residues. Due to
their role in drug discovery, small molecules are employed as a therapeutic strategy to
inhibit PPI (reviewed by Lu and others [5]). Following the same paradigm, many small
molecules were presented to inhibit the constitutional stability and functions of endocytic
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complexes. Dynamin, clathrin, and AP2 adaptin are the most targeted endocytic proteins,
and inhibitors targeting these complexes function in two ways: The first includes inhibitors
that disturb the assembly of endocytic complexes involved in clathrin-coated pits (CCPs)
formation to hinder cargo endocytosis. The second inhibits the uncoating process of the
clathrin lattice, which halts the proper functioning of the endosomal–lysosomal system and
leads to the inhibition of cargo degradation or recycling.

2.2.1. Inhibitors of Complex Assembly

High-molecular-weight dynamins GTPases are a small family that includes Dyn1
which is expressed in neurons [6], Dyn2 which is expressed in all tissues [7], and Dyn3
which is expressed in the testis, lung, and heart [8]. Structurally, Dynamin comprises
five conserved domains (Figure 3): a large N-terminal GTPase domain (G-domain); stalk;
a Pleckstin homology (PH) domain (also, called foot) which binds phosphoinositides
in the clathrin-coated vesicle (CCV) collar; a GTPase effector domain (GED); and a C-
terminal proline-rich domain (PRD) [9]. In most eukaryotic cells, Dyn2 is involved, both
structurally and enzymatically, in at least three endocytic pathways. Apart from its GTPase
activity, Dyn2 is targeted by several compounds that inhibit its role in CCV fission. The
earliest Dyn2 GTPase-independent inhibitors include ammonium salts, such as Myristyl
trimethyl ammonium bromides (MiTMAB) and Octadecyltrimethylammonium bromide
(OctMAB) [10]. Both compounds bind Dyn’s PH domain which is required for binding of
Dyn2 to the plasma membrane [11]. This prevents the recruitment and oligomerization
of Dyn2 around the vesicle neck. Notably, the PH domain is located in many proteins
involved in intracellular signaling, for example AKT, and the cell cytoskeleton [12]. This
may restrict the usability of PH domain-specific inhibitors as selective antiviral drugs.

Similarly, clathrin is targeted by several CME inhibitors. The term “Pitstop” was
commercially coined to refer to at least four different compounds. (N-[5-[(4-Bromophenyl)
methylene]-4,5-dihydro-4-oxo-2-thiazolyl]-1- naphthalene-sulfonamide) (Pitstop 2), for
example, interacts with the N-terminal domain of the clathrin heavy chain, where it
occupies the groove in which the clathrin-box motif (LfXfDE)-containing peptide of the
adaptor protein binds [13]. Accordingly, the hindrance of the interaction between clathrin
and adaptor proteins (e.g., amphiphysin) leads to the prevention of the formation of the
clathrin lattice. In a similar context, Barbadin, was introduced as a potent CME inhibitor [14]
as it inhibits β-arrestin/AP2 binding [15] through the inhibition of the interaction between
the β2-adaptin ear domain of AP2 and β-arrestin. In this complex, β-arrestin fits a groove
located in the β2-adaptin ear subdomain, where the FXXFXXXR motif from β-arrestin1
binds with the Q849, Y888, and Q902 residues of the β2-adaptin subunit [14]. Although
Barbadin inhibits endocytosis of the agonist-activated receptors, such as β2-adrenergic
(β2AR), V2-vasopressin (V2R), and angiotensin-II type-1 (AT1R) receptors, it does not
demonstrate this effect on β-arrestin or AP2 independent receptor internalization. In
addition, it does not inhibit the endocytosis of N-formyl peptide receptor 2 (FPR2) [16].
Moreover, in arginine vasopressin (AVP) stimulated breast cancer cells, we observed that
Barbadin induced apoptosis, autophagy, and cell cycle arrest in the G0/G1 phase, indicating
Barbadin’s side-talk with cell death-related targets [17].
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Figure 3. The basic organization of Dyn2 and its selective inhibitors. Dynamin 2 is a multimodular
protein composed of five conserved domains including: a large N-terminal GTPase domain (G-
domain), a middle domain, a PH domain (that is anchored with plasma membrane PIP 2), a GTPase
effector domain (GED), and a C-terminal proline-rich domain (PRD) (A). The numbers of amino
acid residues of each domain are shown. The sites of interactions of Dyn2 with the cell membrane
and SH3-containing adaptor are indicated by arrows. GTPase-dependent or GTPase-independent
inhibition is indicated by blunt arrows. Dyn2 GTPase activity is selectively inhibited by Dynasore
and some other compounds (B), whereas both Octadecyltrimethylammonium bromide (OctMAB)
and Myristyl trimethyl ammonium bromide (MitMAB) are GTPase-independent inhibitors, as they
interact with the dynamin PH domain and prevent dynamin attachment to the plasma membrane (C).

2.2.2. Inhibitors of Clathrin Lattice Uncoating

During the progression of CME, CCV fission leads to the formation of a cargo-loaded
early endosome that delivers its contents to the cell membrane (recycling) or to the lysosome
for degradation [18]. Before this sorting, it is essential to dissociate the clathrin lattice
that covers the CCV. This process is mediated by Hsc70, and Auxilin [19,20]. Although
chlorpromazine (CPZ) was previously FDA-approved as an antipsychotic drug, it can
disrupt CME at multiple levels including the interaction between clathrin and AP2 [21],
trapping the cargo inside the endosomes [22] and affecting Dyn2 GTPase activity [23].
Other studies showed that CPZ may induce AP2 depletion from the plasma membrane by
blocking AP2 binding to an unidentified membrane-associated protein, which leads to the
failure of clathrin import to the cell membrane [24].

2.3. Class II: Inhibitors of Enzyme Activities
2.3.1. Large GTPases Inhibitors

Additionally, other family members are involved in other cellular aspects, including
mitochondrial fission, the formation of new vesicles from the Golgi network, and the regula-
tion of cytoskeleton dynamics. Therefore, mutations in Dyn genes are largely implicated in
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several human disorders As mentioned earlier, Dyn2 monomers are recruited to the neck of
the nascent CCVs, forming a helical oligomer that catalyzes CCVs fission from the plasma
membrane. In addition, after Dyn2 accumulation, the membrane is attached and cargo
(or virus)-containing CCVs exhibit Dyn-mediated twisting, leading to vesicle fission [25].
As these scenarios are mediated by Dyn2’s GTPase activity, several compounds were in-
troduced to inhibit Dyn’s GTPase activity. In 2006, 3-hydroxynaphthalene-2-carboxylic
acid-(3,4-dihydroxybenzylidene)-hydrazide (Dynasore) (Figure 3) was presented as the
first large dynamins GTPase inhibitor [26]. The advantages of Dynasore include its inability
to affect small GTPases in addition to its revisable and [27] rapid effects as it inhibits CME
in 2 min. Moreover, Dynasore reduces labile cholesterol in the plasma membrane and
disrupts lipid raft organization in a Dyn-independent manner [28], which may enhance its
inhibitory function. Later, Dynasore hydroxylated derivative (Dyngo) was developed and
revealed more inhibitory potency and less cell cytotoxicity [29]. In addition, Dynole 34-2,
was introduced as a potent large dynamin GTPase and ATPases inhibitor [30,31]. Similarly,
Dynole 34-2 inhibits Dyn1 and Dyn2, where it targets their GTPase domain at the allosteric
site. In the same context, some, less-commonly used Dynamin GTPase inhibitors were
introduced, including Rhodadyns [32], 1,8-Naphthalimide derivatives (called Naphthala-
dyn) [23], Bisphosphonates drugs, used in the treatment of osteoporosis [33], Tyrphostins
(BisT), Pthaladyns and Iminochromene [34,35] (Figure 4).
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Figure 4. Chemical structures of Dynamin GTPase inhibitors. Dynamin GTPase activity is inhibited by
a variety of small molecules including: Dynasore, Dyngo, Dynole 34-2, Rhodadyns, Bisphosphonates-
alendronate, Tyrphostins, Iminochromene, 1,8-Naphthalimide and Pthaladyn.

2.3.2. Inhibitors of Kinases and Phosphatases

As mentioned earlier, some endocytic proteins are enzymatically modified to ensure
their proper functions. In this regard, several enzymes, rather than GTPases, are involved
in endocytosis. GPCR kinases, similar to GRK2, are expressed in many tissues and phos-
phorylate the intracellular domain of agonist-activated GPCR (Figure 5A), leading to the
recognition of the viral–receptor complex by the N-terminal domain of β-arrestin [36].
The charged phosphate groups of the receptor induce the release of the C-terminal of the
β-arrestin to facilitate its assembly with both clathrin and AP2 [37]. These events represent
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the initial steps of CCP formation. In the same context, Ark1/Prk1, a member of the
Ser/Thr kinases family, is involved in phosphoryltion/dephosphorylation and ATPase
activities [38]. Due to their role in controlling CME, they are targeted in anticancer/antiviral
studies [39]. In addition, members of this family include human adaptor-associated kinase
1 (AAK1) that binds clathrin. Accordingly, active AAK1 phosphorylates Thr residue in the
AP2-µ2-subunit, enhances the association with the cargo protein and plasma membrane
PIP2, and creates the foundation of CCV [40]. Some AKK1 inhibitors, such as Liver kinase
B1 (LKB1) and LP 935,509 (Figure 5B), are utilized as multi-kinase inhibitors [41] and have
the potential to act as endocytic inhibitors. Similarly, AP2 dephosphorylation is one of
the essential modifications required for CCVs uncoating. During this step, the previously
phosphorylated AP2 µ-subunit is dephosphorylated, leading to its detachments from the
cargo motif and clathrin [42].
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Figure 5. Kinase- and phosphatase-mediated modulation of endocytosis-related proteins. (A) G
protein-coupled receptor kinases (GRKs) phosphorylate the intracellular domain of the ligand-
activated receptor, leading to β-arrestin-mediated cargo recognition. (B) Human adaptor-associated
kinase 1 (AAK1) phosphorylates the AP2 µ2-subunit and triggers the formation of clathrin-coated pits
(CCP). First, clathrin binds to AAK1 leading to its activation and consequently phosphorylation of
AP2 µ2 at the Thr residue and its binding to cargo protein and PIP2 in the plasma membrane (PM).
(C) Chemical structure of LKB1 and LP-935509 that selectively inhibit adaptor-associated kinase
1 (AAK1).

In the same context, the heat-shock cognate (Hsc70) protein participates in many
cellular processes, including ATP metabolism, protein folding, autophagy, and endocytosis.
In CME, it acts as a key molecule in the dissociation of the clathrin lattice that coats CCV [43].
This dissociation involves Auxilin J-domain, which binds clathrin in the triskelions lattice,
where the domain is exposed outward to facilitate the interaction with Hsc70 [44]. In
addition, Hsc70 requires the QLMLT motif, located in the C-terminal of the clathrin heavy
chain [45]. The lattice disassembly starts with bending at the location of insertion of
“ankles”, followed by the interaction of Hsc70 with Auxilin near the C-terminus of the
clathrin, where its strong interaction is mediated by its ATPase activity that facilitates the
deformation of the clathrin lattice [46]. Thus, the functional association between Hsc70
and some of the CME-related proteins such as Clathrin and Auxillin [47] may predict
the involvement of Hsc70 in endocytosis. Accordingly, some reports have suggested the
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antiviral potential of Hsc70 inhibitors such as tylophorine analogs [48] and the adenosine
derivative compound VER-155008 [49]. In this regard, the direct participation of HSC70 in
the SARS-CoV-2 infection is still unknown.

2.4. Class III: Inhibitors Targeting the Structure of Subcellular Components

In addition to the endocytic proteins, different endocytosis mechanisms involve
various subcellular compartments, including the plasma membrane, cell cytoskeleton,
endosomal–lysosomal system, and the Golgi apparatus. Additionally, there is a cross-
talk between endocytosis and other cellular organelles, especially the mitochondria and
the nucleus. As indicated below, several compounds were introduced to inhibit endo-
cytosis by disrupting the structural integrity of the plasma membrane, lipid rafts, and
actin cytoskeleton.

2.4.1. Inhibitors Targeting the Plasma Membrane and Lipid Raft

Cholesterol is an integral component of the plasma membrane, where it modulates
the fluidity, water penetration, and curvature of the lipid bilayers. It is also involved in
membrane trafficking and protein sorting [50,51]. During endocytic pathways that are
mediated by lipid rafts, such as CAE, membrane invaginations are initiated at the regions
enriched with sphingolipids and cholesterol [52,53]. In addition, CLIC/GEEC endocytosis
occurs in PIP2 or PIP3-rich sites and it largely relies on plasma membrane cholesterol [54].
Accordingly, the withdrawal of cholesterol from the plasma membrane was suggested as
an effective strategy to inhibit viral-mediated endocytosis. Methyl-β-cyclodextrin (MBCD
or βCD) [55] and Nystatin (Figure 6), for example, inhibit CME and effectively affect CAE
and CLIC/GEEC via cholesterol extraction from the plasma membrane, where they form
cholesterol–MBCD dimers [56,57]. Similarly, Filipin and 7-keto-cholesterol (Figure 6) bind
to cholesterol and prevent the close packing of acyl chains, resulting in the inhibition of
CLIC/GEEC [58–60]. In addition, 7-Ketocholesterol diminishes cholesterol synthesis, by
inhibiting HMG-CoA reductase [61].
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Figure 6. Inhibitors that disrupt the integrity of subcellular structures. Plasma membrane choles-
terol withdrawal compounds (A) include Methyl-β-cyclodextrin2, Filipin, 7-keto-cholesterol, and
Nystatin. Other compounds such as 3-methylsulphonyl-4-piperidinobenzoyl Guanidine, 5-(N-ethyl-
N-isopropyl)-Amiloride (EIPA), Cytochalasin D, and Latrunculin-B (bottom panel) restrict actin
formation or polymerization (B).
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2.4.2. Inhibitors of Actin Formation and Polymerization

Similar to withdrawal of the plasma membrane cholesterol, the actin assembly plays
an essential role in endocytosis [62]. Many reports have investigated the notion of inhibiting
clathrin-independent endocytosis by disrupting cytoskeletal actin formation or polymer-
ization. Amiloride derivatives, such as 3-methylsulphonyl-4-piperidinobenzoyl guanidine
hydrochloride, 5-(N-ethyl-N-isopropyl)-Amiloride (EIPA), Cytochalasin-D, and Latrun-
culin A and B (Figure 6B), affect actin formation or polymerization [63,64]. Cytochalasin-D,
for example, binds to F-actin and prevents its polymerization, whereas Latrunculin-B is a
potent actin-disrupting agent, sequesters monomeric G-actin, leading to massive disassem-
bly of actin filament [65].

2.5. Class IV: Inhibitors That Alter Subcellular Physiological and Metabolic Homeostasis

Normal intracellular physiological conditions are necessary to ensure the proper
functions of different cellular activities, including endocytosis. Hence, some factors may
inhibit endocytosis through their ability to alter the normal metabolic and physiological
conditions associated with endocytosis, including the subcellular compartment’s pH, ion
concentration, osmolality across the plasma membrane, and several metabolic pathways
such as the glycolytic pathways.

2.5.1. Acidification Inhibitors

Normally, the cytosol acidity is maintained by the vacuolar H+-ATPases (V-ATPases),
which are powered by ATP hydrolysis to transport protons from the cytosol to the interior
of subcellular compartments such as lysosomes [66]. By default, lysosomes are acidic
organelles with a pH of 4.5–5, whereas early and late endosomes are relatively less acidic at
pH 6–6.5 and 5–6, respectively [67]. The relative acidity and pH gap of these organelles
are tightly regulated to maintain the low acidic pH required for many cellular processes
including the dissociation of the internalized liganded receptors, or endosomed viruses
in the infected cells. Accordingly, many studies have suggested the role of acidification
inhibitors in modulating different endocytic pathways. Endosidin9 (ES9), a mitochondrial
uncoupler, for example, inhibits CME due to its protonophore activity that leads to cyto-
plasm acidification [68]. In addition, the polyether ionophoric antibiotic Monensin inhibits
endocytosis and the SARS-CoV-2 infection by disrupting the proton gradient in the electron
transport chain (ETC) [69,70]. More importantly, the inhibitory effect of chloroquine, one of
the drugs suggested in the initial therapeutic protocols of the SARS-CoV-2 pandemic, relies
on lysosomal acidification (discussed later) [71]. Other endosomal acidification inhibitors,
including Bafilomycin-A1, ammonium chloride, and niclosamide (FDA-approved to treat
tapeworm infestations), can strongly block clathrin and dynamin-independent endocytic
mechanisms (e.g., the CLIC/GEEC (CG) pathway) and impede viral infection more than
chloroquine [72].

2.5.2. Inhibitors That Alter Ion Imbalance and Osmolality

The interrelation between hypokalemia and endocytosis was reported decades ago
when early studies revealed that potassium depletion blocks CME and leads to the aggrega-
tion of clathrin in the cytoplasm, thus removing it from functioning in vesicle-coating [73]
Some reports demonstrated that hypokalemia inhibited the endocytosis of the transferrin–
transferrin receptor (Tf/TfR) complex and protected cells against poliovirus, but not rhi-
novirus type 2. In contrast, potassium depletion without hypotonic shock reduced the
uptake of transferrin, and cells were susceptible to poliovirus infection [74]. These findings
linked the hypokalemia/hypotonic condition with the inhibition of CME. Recently, some
reports demonstrated the association of potassium concentration with SARS-CoV-2 infec-
tion [75], whereas other reports detected hypokalemia in only 41% of infected patients [76].
Similar to hypokalemia, hypertonic sucrose was reported as an inhibitor of endocytosis [77]
as it inhibits the interaction between clathrin and AP2, leading to the inhibition of CCP
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formation [78]. Moreover, 2-deoxy-d-glucose/sodium azide inhibited the dispersion of
clathrin lattices on the plasma membrane and trapped clathrin in microcages [79].

2.5.3. Inhibitors of Cellular Metabolism

There is a reciprocal association between nutrient endocytosis and metabolism. The
regular cellular uptake of nutrients (e.g., glucose, amino acids, etc.) and signaling molecules
(e.g., hormones and growth factors) is mediated by membrane transporters, channels, or
transmembrane receptors that show dynamic translocation between the plasma membrane
and the cytosol. Iron homeostasis and cholesterol uptake, for example, are regulated
through CME-mediated transferrin (TfR) and LDL (LDLR) receptors, respectively [80]. In
addition, cellular uptake of glucose is regulated through the rate of glucose transporters
endocytosis and exocytosis [81]. In this regard, hyperglycolysis, which is observed in SARS-
CoV-2 patients, is considered a metabolic reprogramming of the glycolytic pathway, and it
is associated with the severity of the disease. Additionally, in SARS-CoV-2 infected human
monocytes, the virus stimulated glycolysis and upregulated the expression of glycolysis-
related genes [82]. Accordingly, controlling hyperglycolysis was suggested as a therapeutic
strategy, and some studies have suggested that glycolytic inhibitors are useful in decreasing
ATP and NADH production [83]. Furthermore, glycolytic inhibitors, such as 2-deoxy-d
glucose (2DG), attenuated SARS-CoV-2 multiplication in Vero E6 cells [84] and in human
colorectal adenocarcinoma cells (human Caco-2 cells) [85]. The associated high production
of reactive oxygen species (ROS) was targeted by higher doses of antioxidants [86].

3. Boundaries of SARS-CoV-2 Endocytosis and Susceptible Cells
3.1. Modes of SARS-CoV-2 Cell Entry

Viral entry into the target cells occurs either through endocytosis or membrane-
mediated fusion. In the first (endocytosis-mediated entry), CME and CAE are the two most
common endocytic pathways utilized by many viruses, including SARS-CoV-2. In this
scenario, the entire SARS-CoV-2 viral particle invades the cell. After being engulfed in the
endosome, the viral membrane fuses with the luminal face of the endosomal membrane,
allowing for viral RNA transfer to the cytosol [87]. In addition to membrane receptors,
some other cellular proteases may facilitate the SARS-CoV-2 entry process, including
CD147, Neuropilin-1, Dipeptidyl peptidase-4 (DPP4), alanyl amino peptidase [88], the
transmembrane protease, serine 2 (TMPRSS2) [89], and cathepsin L [90]. The initial steps of
these events start with the elective binding of the viral spike (S)-protein to the Angiotensin-
Converting (ACE2) receptor [91] and/or transferrin receptor [92]. This binding then
triggers CME, similar to G-protein coupled receptors (GPCRs) internalization. In addition,
some poorly characterized endocytic routes, such as clathrin and caveolae independent
endocytic pathways, are involved in viral uptake [93,94]. Although macropinocytosis is
not its key entry pathway, SARS-CoV-2 may activate the signaling pathways that trigger
micropinocytosis-mediated infection [95]. Although, many investigators do not support
viral entry by flotillin-dependent endocytosis, Glebov and his coworkers showed that
SARS-CoV-2 may infect host cells using a flotillin-dependent mechanism [96]. Further-
more, viral entry may be established via the CLIC/GEEC pathway, which is pH sensitive
but clathrin, dynamin and raft-independent [97], or via transcytosis, which internalizes
microorganisms into the cell using membrane-bound carriers [98], to invade intestinal
epithelial cells after viral binding to the ACE-2. Alternatively, SARS-CoV-2 entry takes
place through viral fusion with the cell plasma membranes, and the viral RNA is delivered
to the cytosol [99,100].

3.2. Cell Tropism of SARS-CoV-2

The respiratory system is a main target of SARS-CoV-2 infection, and some investiga-
tions have demonstrated that the ciliated and AT2 cells of the lung are the main targeted
cells. In addition, basal, club, epithelial goblet, and ciliated cells of the trachea are infected
with SARS-CoV-2 [101]. The susceptibility of these cells to viral infection is associated with
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the co-expression of the ACE2 receptor and the co-receptor transmembrane protease serine
2 (TMPRSS2) [102]. In the same context, accumulating evidence indicates the infectivity
of the enterocytes of the small intestine [103], the distal tubular cells, and the collecting
duct [104]. These observations imply that the cell tropism of SARS-CoV-2 for endocytosis
greatly depends on receptor-mediated endocytosis.

4. Sorting Endocytic Proteins and Lipids as Anti-SARS-CoV-2 Targets

Although vaccination represents the gold standard strategy in viral infection manage-
ment, a drug-based approach may offer an effective and fast alternative therapeutic tool.
Antiviral drugs usually target the virus replication cycle or the host cell biology. Although
it has some concerns, the latter approach may be advantageous due to the structural and
physiological stability of the host cells compared with the constantly mutating viruses,
variant emergence, and/or the development of drug resistance [105,106]. Over the past
three years, many small molecules have been suggested to prevent SARS-CoV-2 infec-
tion or relieve the associated complications. Some of these drugs, such as chloroquine,
were previously FDA-approved to treat several viral or nonviral-related human illnesses,
and they were recalled in the clinical protocols of SARS-CoV-2 management. Consider-
ing the new classification of endocytic inhibitors, it is important to assign these drugs to
different classes.

4.1. Potential SARS-CoV-2 Drugs Assigned to Class I

Although clathrin, dynamin 2, β-arrestin, and epstins are among the most important
proteins in CME, the literature lists more than 50 endocytic accessory proteins involved in
the initiation, progression, and release of cargo-containing endosomes [107]. Surprisingly,
few inhibitors were observed to selectively inhibit the interaction between members of
such complex machinery. These include Pistop 1, Pitstop 2, Barbadin, and Chlorpromazine
(Table 1). Some reports, however, demonstrated that knocking out the clathrin heavy chain
blocked CME and reduced SARS-CoV-2 infectivity [87,108]. In addition, Promethazine
was suggested based on its ability to inhibit clathrin, and to reduce the symptoms and
inflammation associated with SARS-CoV-2 infection [109]. Chlorpromazine, bolinaquinone
(clathrin inhibitor), and Pitstop 2 are known to prevent the scission of the CCVs from the
plasma membrane [110]. As expected, such compounds can block the entry of SARS-CoV-2
via the CME pathway as they demonstrated a partial decrease in the number of endosomed
vesicles and minimized the severity of disease progression [111,112]. Unfortunately, some
reports have shown that they were associated with harmful complications, including
damage to the retina, photosensitivity, liver damage, seizures, headaches, stomach pain, and
damage to the muscles or nerves [113]. Other compounds, such as Barbidin, demonstrated
a potent and selective inhibition against β-arrestin and AP2 interaction during the initial
steps of CCP formation; however, until now no reports have investigated Barbadin as an
antiviral drug [114].

4.2. Potential SARS-CoV-2 Drugs Assigned to Class II

As Dynamin’s GTPase activity is involved in dynamin-dependent endocytic pathways,
such as CME and CAE, several drugs were designed to inhibit Dynamin’s GTPase function.
These include Dynasore, Dyngo™ (Hydroxylated Dynasore), Dynole 34-2, Rhodadyns,
Naphthalimide derivatives (Naphthaladyn), Bisphosphonates and many other compounds
(Table 1). Computational-based studies nominated Dynasore as a potent SARS-CoV-2
inhibitor [115]. Clinical trials have investigated the ability of fluvoxamine and Sertraline, to
inhibit Dynamin GTPase activity in the treatment of SARS-CoV-2 [116,117]. Although GRK-
mediated phosphorylation is considered a key event, none of the GRK selective inhibitors,
such as mabuterol and 4-Amino-5-(bromomethyl)-2-methylpyrimi dine-dihydrobromide,
were identified as potential CME-mediated SARS-CoV-2 inhibitors.
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Table 1. Endocytic inhibitors including anti-SARS-CoV-2 drugs are assigned to different classes based
upon their mechanism of action.

Class Inhibitors

Class I Pistop 1, Pitstop 2, Barbadin, Chlorpromazine*, Promethazine *, Ikarugamycin

Class II

Dynasore, Dyngo™ (Hydroxylated Dynasore), Dynole 34-2, Rhodadyns,
Naphthalimide derivatives (Naphthaladyn), Bisphosphonates, Tyrphostins (BisT), Pthaladyns,
Myristyl trimethyl ammonium bromides (MiTMAB), Octadecyltrimethyl-ammonium
bromide (OctMAB), Iminochromene,
4-Amino-5-(bromomethyl)-2-methylpyrimidine-dihydrobromide, β2-adrenoreceptor
agonists (Clenbuterol *, Fluvoxamine *, Brombuterol, Mabuterol, and Mapenterol), Liver
kinase B1 (LKB1), LP-935509, Apoptozole, Rhodadyns, Paxlovid*

Class III

Methyl-β-cyclodextrin2 (MBCD, or βCD), Filipin, Nystatin *, 7-keto-cholesterol,
cholesterol-25-hydroxylase, 3-methylsulphonyl-4-piperidinobenzoyl guanidine
hydrochloride, 5-(N-ethyl-N-isopropyl)-Amiloride, Cytochalasin D and Latrunculin A and B,
flubendazole *, terfenadine *, itraconazole *, vinblastine *, imipramine *

Class IV
Chloroquine *, Hydroxychloroquine *, Endosidin9, Bafilomycin-A1, ammonium chloride,
Niclosamide *, hypertonic sucrose, 2-deoxy-D-glucose/sodium azide and Monensin *,
Ouabain*, bufalin, Amiloride * (and Amiloride derivatives * EIPA and HOE-694).

(*): FDA-approved drugs.

4.3. Potential SARS-CoV-2 Drugs Assigned to Class III

Class III includes antiviral drugs that interfere with the structures of subcellular
organelles deeply involved in endocytosis. In the plasma membrane, for example, the
membrane rafts are enriched with both cholesterol and sphingolipid which act as portals
for viral entry. Accordingly, several cholesterol-chelating agents were suggested as po-
tential drugs for SARS-CoV-2 treatment, including methyl-β-cyclodextrin, phytosterols,
and flavonoids, as they can block the entry of SARS-CoV-2 through CAE/lipid rafts [118].
Similarly, as the CLIC/GEEC (CG) pathway involves plasma membrane cholesterol, 7-
keto-cholesterol inhibits CLIC/GEEC-mediated viral entry as it prevents the close packing
of acyl chains and affects the structure of the cell membrane. In a similar manner, the
antifungal drug Nystatin and vinblastine were utilized based on their role in cholesterol
withdrawal [119]. Furthermore, inhibitors of plasma membrane ruffle formation, an early
step in micropinocytosis, such as flubendazole, terfenadine, itraconazole, vinblastine and
imipramine, block the entry of viruses into the host cells [71,120].

4.4. Potential SARS-CoV-2 Drugs Assigned to Class IV

As mentioned earlier, class IV inhibitors include drugs that inhibit endocytosis through
the changes they induce in the physiological integrity of subcellular components associated
with endocytosis. Disruption of the Na+/K+-ATPase (sodium pump) by cationic steroid
inhibitors, such as ouabain and bufalin, led to the inhibition of CME and prevented
SARS-CoV-2 entry [121]. In addition, pH-dependent ligand dissociation, which plays
an integral role in the release of the endocytosed viral particles out of the endosome,
is facilitated by low lysosomal pH [1]. This enables the virus to escape the endocytic
pathway just before merging the viral-containing endosome with the lysosome. This
scenario represents the strategy of basic lysosomotropic drugs in antiviral treatment. In
this regard, several acidification inhibitors, such as chloroquine, BafilomycinA1, NH4Cl,
and Niclosamide (FDA-approved to treat tapeworm infestations), facilitate lysosomal–
endosomal merging, which leads to lysosomal-mediated viral degradation [122,123]. The
antimalaria drug Chloroquine, in particular, was among the first few drugs investigated and
even nominated as a drug to prevent SARS-CoV-2 infection [71]. Moreover, pH-dependent
inhibitors affect the recruitment of clathrin and the associated adaptor proteins to the
plasma membrane, and reduce the levels of PIP2 required for clathrin binding [123].



Viruses 2023, 15, 1040 13 of 19

5. Summary and Future Perspectives

Eukaryotic cells utilize seven different endocytosis mechanisms for nutrient uptake,
managing the relative abundance of membrane receptors and transporters, membrane
remodeling, and neurotransmission. Normally, the cell simultaneously utilizes more than
one endocytic pathway. Moreover, some cells adopt particular mechanisms rather than
others to fulfill their basic functions. Intestinal enterocytes, for example, utilize pinocytosis
to absorb fat droplets, whereas phagocytosis is predominantly used by antigen-presenting
cells [124]. CME, however, is considered the major endocytosis mechanism due to its
fundamental role in cell signaling, motility, cell–cell communication, and cell fate. Ad-
ditionally, endocytosis is utilized by the pathogen to invade cells. Viruses, including
SARS-CoV-2, invade cells via one or more of these endocytic pathways. There is consen-
sus agreement about CME as the main mechanism utilized by SARS-CoV-2 to invade its
target cells in addition to other clathrin and/or dynamin-independent endocytic path-
ways. Although vaccination is considered the gold standard protective strategy against
viral infections, drug-based therapy is highly emphasized as a promising strategy to halt
SARS-CoV-2 and other viruses’ endocytosis-mediated cell invasion.

In this review, we reclassified inhibitors of endocytosis, based on their mechanisms of
action, into four main classes. In addition, many of the recently identified inhibitors that
target SARS-CoV2 are assigned to the suggested classes. Class I includes the inhibitors
that hinder the interaction between endocytic proteins required in the initial steps of
endocytosis following the viral attachment to target cell receptors. Class II compounds
inhibit the enzymatic activity associated with different endocytic pathways, particularly
large dynamin GTPase activity. Class III compounds interfere with the structural integrity
of the plasma membrane or actin polymerization. Class IV inhibitors modulate different
cellular physiological conditions deeply involved in the endocytosis process.

The main characteristics of this classification are as follows: First, it is protein, lipid,
pH, or ion channel-specific, rather than pathway specific. Second, it may accommodate
any newly developed inhibitors, as long as they are targeting endocytosis-related events.
Third, all small molecules that target endocytosis, function upstream of viral replication as
they block either viral entry or its release from the endosome (pH-dependent). Fourth, this
classification may aid in the better design of drug-based therapeutic protocols using a com-
bination of inhibitors assigned to different classes to upgrade the limited successes of some
inhibitors. Fifth, although we are focusing on SARS-CoV-2 infectivity, this classification
could be viral type- and variant-independent.

This perspective does not underestimate drugs designed to halt viral replication; it
provides a well-justified and aligned map of viral-entry blockers and opens the gate for
more studies that explore their roles in viral replication and/or side-talk with cellular
non-endocytic proteins. In addition, more investigations and computational studies may
reveal the dual function of endocytosis inhibition and viral replication machinery.
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