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Abstract: Among the different drug targets of SARS-CoV-2, a multi-domain protein known as NSP3
is a critical element of the translational and replication machinery. The macrodomain-I, in particular,
has been reported to have an essential role in the viral attack on the innate immune response. In
this study, we explore natural medicinal compounds and identify potential inhibitors to target the
SARS-CoV-2–NSP3 macrodomain-I. Computational modeling and simulation tools were utilized
to investigate the structural-dynamic properties using triplicates of 100 ns MD simulations. In
addition, the MM/GBSA method was used to calculate the total binding free energy of each in-
hibitor bound to macrodomain-I. Two significant hits were identified: 3,5,7,4′-tetrahydroxyflavanone
3′-(4-hydroxybenzoic acid) and 2-hydroxy-3-O-beta-glucopyranosyl-benzoic acid. The structural-
dynamic investigation of both compounds with macrodomain-I revealed stable dynamics and
compact behavior. In addition, the total binding free energy for each complex demonstrated a
robust binding affinity, of ∆G −61.98 ± 0.9 kcal/mol for Compound A, while for Compound B, the
∆G was −45.125 ± 2.8 kcal/mol, indicating the inhibitory potential of these compounds. In silico
bioactivity and dissociation constant (KD) determination for both complexes further validated the
inhibitory potency of each compound. In conclusion, the aforementioned natural products have the
potential to inhibit NSP3, to directly rescue the host immune response. The current study provides
the basis for novel drug development against SARS-CoV-2 and its variants.

Keywords: SARS-CoV-2; NSP3; macrodomain-I; medicinal compounds; computational biology

1. Introduction

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative
agent of COVID-19, which the World Health Organization (WHO) declared a global pan-
demic in March 2020. The SARS-CoV-2 virus has a 29.8 kb positive-sense single-stranded
RNA genome with 14 open reading frames (ORFs) encoding 29 proteins that include four
structural proteins (Envelope (E), Membrane (M), Nucleocapsid (N), and Spike (S) protein),
16 nonstructural proteins (NSPs), and nine accessory proteins [1,2]. Despite the proof-
reading capacity during replication, the rapid spread of the SARS-CoV-2 virus has led
to a high rate of mutations in the viral proteins. This is evident from the emergence of
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new variants since the start of the pandemic, such as D614G [3–5], Alpha (B.1.1.7) [6–8],
Beta (B.1.351) [9], Gamma (P.1) [10], Delta (B.1.617.2) [11], Epsilon (B.1.427), Eta (B.1.525),
Iota (B.1.526) [12], Kappa (B.1.617.1) [13], Mu (B.1.621), Zeta (P.2), and Omicron (B.1.1.529,
BA.1–BA.5 lineages) [14–17], that have been reported around the world [18]. Furthermore,
these SARS-CoV-2 variants and strains have evolved and are more efficient in host cell
entry and evasion of the immune system.

Advances in clinical research have led to a better understanding of SARS-CoV-2,
facilitating the rapid development of a range of vaccines that present considerable efficacy
against severe COVID-19 infection. Nonetheless, the emergence of SARS-CoV-2 variants has
compromised the efficacy of the developed vaccines [19]. One effective method to address
this issue would involve identifying novel small-molecule drug-like ligands against potent
viral protein sites to serve as therapeutic agents for treating and managing SARS-CoV-2
infection. Therefore, drug discovery target studies have investigated several potential drug
targets, such as papain-like protease (PLpro), S-protein, RNA-dependent RNA polymerase
(RdRp), and the nsp10–nsp16 complex [20–22], in addition to the main protease (Mpro),
which was the principal explored target of SARS-CoV-2 [23,24]. Macrodomain I (Mac-I) of
the NSP3 is an attractive therapeutic target for treating SARS-CoV-2 [25,26]. This conserved
macrodomain lies within NSP3, the largest membrane-associated cysteine protease encoded
by the SARS-CoV-2 genome. Mac-I disrupts the innate immune response to increase viral
pathogenesis and virulence, making Mac-I an appealing drug target [25–28].

NSP3 is a multi-domain protein with three Mac-I domains and two SUD-M-like
domains critical in the SARS-CoV-2 translational and replication machinery. Mac-I, also
known as X-domain, is highly conserved, with an ADP-ribose (ADPr)-binding site reported
in many viruses [29,30], and plays an essential role in the viral attack on the innate immune
response. Mac-I functions by hydrolyzing mono-ADP-ribose from target proteins by
reversing the activity of ADP-ribosyltransferases [28,31–33] to counteract the host anti-viral
response of ADP-ribosylation [28]. As a consequence, the role of Mac-I in ADP-ribosylation
is associated with the degree of viral pathogenicity [28,34]. Therefore, blocking the ADPr
binding to Mac-I would decrease viral pathogenicity, as reported for infectious bronchitis
virus (IBV) [29].

Mac-I subverts the host immune response by interfering with the IFN pathway and
dysregulating the signal transducer and activator of transcription 1 (STAT1) [35,36], suggest-
ing a contribution to the cytokine storm phenomenon [37–39]. Consequently, STAT1 is an
in vivo target of SARS-CoV-2 Mac-I, which precisely counteracts its mono-ADP-ribosylation
with human PARP14 [39]. Additionally, previous studies have reported that targeting Mac-I
attenuates NSP3 activity, leading to a significant reduction in viral pathogenesis and an
increase in interferon response and viral neutralization [40].

Considering the importance of Mac-I in SARS-CoV-2 pathogenesis, it is a potential
druggable target for new anti-viral compounds. In a previous report, Brosey et al. screened
PARGi drugs and reported them as effective candidates against Mac-I in SARS-CoV-2 [40].
Further efforts are needed to discover novel broad-spectrum drugs that could efficiently
interact with Mac-I to reduce or block ADPr binding. Drugs with such characteristics
would debilitate SARS-CoV-2 virulence and help increase the sensitivity of the innate im-
mune response. Molecular screening and fragment-based drug design studies would help
discover fragment binders that function as effective Mac-I inhibitors. In this regard, there is
a growing interest in employing computational studies to identify novel small-molecule in-
hibitors. Studies of the chemical composition of natural products are focused on secondary
metabolites, mainly polyphenols that include flavonoids, quercetin, and bibenzyl [41].
Some secondary metabolites exhibit diverse biological activities with potential medicinal
use [42]. These metabolites are flavonoids, which are reported as effective antioxidants and
potent enzyme inhibitors [43].

This report targets the NSP3–Mac-I domain by screening the MPD3 database with
2295 phytochemicals and the East African Natural Compounds Database (EANCDB),
which includes 1875 compounds, to inhibit the Mac-I–ADPr binding site. Furthermore, the
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conformational stability and dynamic features of Mac-I bound to the selected compounds
were tested by subjecting each complex to 100 ns molecular dynamic (MD) simulations
and the molecular mechanics–generalized Born surface area (MM/GBSA) to extract free
binding energies. This study may provide a basis for in vitro and in vivo experiments for
novel drug development, which could inhibit the binding of ADPr to Mac-I and NSP3
activity in SARS-CoV-2 research.

2. Materials and Methods
2.1. Structures, Sequence Retrieval, and Modeling

The Protein Databank (http://www.rcsb.org/ accessed on 21 December 2022) was
used to retrieve the X-ray crystal structure of Mac-I using PDB ID 6W02 [39,44]. The Mac-I
structure was prepared and minimized using Chimera and AMBER simulation packages
using the FF14SB force field. To screen targets against ligand-specific Mac-I, we utilized
compounds from the MPD3 database and the East African Natural Compounds Database
(EANCDB) [45–47].

2.2. Molecular Screening of Medicinal Compound Databases

The MPD3 database with 2295 phytochemicals and 1875 EANCDB compounds were
retrieved, prepared, and filtered to meet Lipinski rules before the screening [48,49]. The
active site information was based on the available X-ray crystal structure of Mac-I–ADPr
(PDB ID: 6W02) for screening. The “structure-based screening module” available online on
Mcule (https://mcule.com/dashboard/ accessed on 21 December 2022) was used to screen
the MPD3 and EANCDB databases. In addition, Lipinski filtration was employed for the
top-scoring compounds, after which the AutoDock Vina algorithm was used for screening
purposes, and the top-selected compounds were chosen for the induced-fit docking (IFD)
approach to remove false positive results [50].

2.3. Molecular Dynamic Simulation (MD)

The top complexes were subjected to molecular simulation using AMBER20 by adding
water around each complex (OPC water model). The OPC water model has been developed
to accurately reproduce various properties of water, including structure, dynamics, and
thermodynamic properties. It has been extensively validated against experimental data,
providing reliable results in many applications. Moreover, the OPC model is transferable
across various conditions, including different temperatures and pressures. The drugs were
extracted from the proteins and parameterized using GAFF. For the whole protein simula-
tion, FF19SB was employed and then subjected to minimization [51–53]. For minimization,
we applied weak harmonic restraints to the protein backbone atoms (Cα, C, N, and O)
while keeping the solvent and ions unrestrained, helping maintain the protein’s secondary
structure during minimization. The initial energy minimization used algorithms such
as steepest descent or conjugate gradient, which help to relax the system and eliminate
close contacts. The following energy minimization step was conducted without restraints
on the entire protein and solvent, allowing for further relaxation and optimization of the
structure. Each minimization was run for 6000 and 4000 steps, respectively. The heating
and equilibration of each complex were performed, followed by the production of 100 ns.
A linear heating method was employed, gradually increasing the system temperature over
a specified time period to ensure a smooth transition to the desired simulation tempera-
ture. Heating was applied to efficiently raise the system temperature, allowing for rapid
equilibration while avoiding abrupt changes that could lead to structural distortions. The
equilibration process started from 0 K and was gradually raised to the desired simulation
temperature of 300 K, ensuring an appropriate starting point and enabling the system to
reach the target temperature for subsequent simulations. Positional restraints were applied
to specific atoms or groups during the equilibration phase to keep them fixed, ensuring
stability while allowing other parts of the system to adapt to the changing temperature and
relax into a suitable configuration. The equilibration phase was carried out for 50 nanosec-
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onds, providing sufficient time for the system to relax, reach equilibrium, and establish
stable interactions at the desired temperature. The constant pH method was used with a
solvent pH set to 7 since we wanted to emulate a simulation at physiological pH. Constant
pH MD simulation allows the protonation state of ionizable groups in a protein to change
during the simulation according to the local electrostatic environment and the actual pH
of the solution [54,55]. The protonation state of amino acid continuously changes, where
the pKa values of the ionizable groups can then be obtained from the distributions of the
protonation states across the time of the MD simulation. The amino acids with two atoms
carrying a proton are aspartate (Asp) and glutamate (Glu). The protonation/deprotonation
percentages of Asp and Glu are presented in the Supplementary Table S1.

For each complex, the simulation was run three times to achieve accuracy and confirm
the reproducibility of the results. The long-range electrostatic interactions were treated with
the particle mesh Ewald algorithm with a 10.0 Å cutoff distance, while the covalent bonds
were treated with the SHAKE algorithm [52,56]. Finally, the CPPTRAJ package was used to
analyze the trajectories, and PMEMD.cuda was used for running the simulations [57].

2.4. Binding Free Energy Calculations

Estimating free energy for the interacting small molecules and the target receptor is
the most widely used practice to determine accurate binding strengths. It is employed for
diverse macromolecule sets such as protein–ligand, protein–protein, or protein–RNA/DNA
to precisely estimate the interacting energy [53–56]. Thus, to determine the binding free
energy, the top two hits were subjected to a molecular simulation MM/GBSA approach
employed using the simulation trajectory [58]. Along with the total binding energy (G), van
der Waal (vdW), electrostatic energy, generalized Born (GB), and ESURF were estimated.

2.5. Determination of Dissociation Constant and Bioactivity for the Top Hits

Quantifying the binding strength by estimating the dissociation constant (KD) using
PRODIGY-LIG (PRODIGY for LIGands) and in silico bioactivity prediction against vari-
ous classes of druggable proteins informs the selection of the final small molecule with
Molinspiration cheminformatics [59].

3. Results
3.1. Macrodomain I Structural Modeling

The SARS-CoV-2 Nsp3 consists of 1945 amino acids with ten functional domains
(Figure 1A), with the Nsp3–Macro domains contributing significantly to inhibit the innate
immune response. The Mac-I domain is 169 residues in length, highly conserved [34],
and plays an essential role in counteracting host-mediated anti-viral ADPr signaling. The
hydrolase activity enables it to remove ADPr from target proteins, and this biochemical
feature is directly associated with the SARS-CoV-2 pathogenicity level [34]. The Mac-I
domain is an attractive drug target, identifying specific small-molecule inhibitors that
would rescue and support the host immune innate response. In our study, we utilized the
X-ray crystal structure of the Mac-I domain (PDB ID: 6W02) (Figure 1B) to identify natural
compounds from the MPD3 and EANCDB natural product databases that can disrupt the
ADPr interactions with Mac-I.

3.2. Discovery of Small-Molecule Inhibitors by Screening Large Libraries

The Mac-I-ADPr binding site was targeted with a multi-step computational screening
approach using the Mcule [60] and AutoDock Vina docking tools. Initially, for MPD3 and
EANCDB, 4170 compounds were retrieved and subjected to ADMET analysis, whereby
2153 compounds obeyed Lipinski’s rule of five. By setting the docking score threshold to
≥−5 kcal/mol, the MPD3 database presented 30 compounds with docking scores ranging
between −8.2 and −10.6 kcal/mol, while the EANCDB showed 112 compounds’ docking
scores between −6.6 and −10.0 kcal/mol [27]. To further narrow down the selection, the
docking threshold was increased to−9.46 kcal/mol, corresponding to the reported score for
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ADPr docking to Mac-I [27]. The increased threshold resulted in three compounds from MPD3
and eight from the EANCDB database with docking scores higher than −9.46 kcal/mol. The
eleven compounds were re-docked with AutoDock Vina with four compounds, resulting in
docking scores to Mac-I higher than −9.46 kcal/mol (Table 1). Furthermore, for the top two
compounds—3,5,7,4′-tetrahydroxyflavanone 3′-(4-hydroxybenzoic acid) (Compound A)
and 2-hydroxy-3-O-beta-glucopyranosyl-benzoic acid (Compound B)—complexes with
Mac-I underwent MD simulations to measure their conformational dynamics and stability.
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3.3. Binding Modes of the Selected Compounds

3,5,7,4′-Tetrahydroxyflavanone 3′-(4-hydroxybenzoic acid) (Compound A) is an ex-
tract from the moss species Hypnum cupressiforme, commonly known as cypress-leaved
plait-moss. In general, Bryophyta (mosses) are reported to be rich in active metabolites
exhibiting antioxidant, antimicrobial, as well as anti-viral properties (Table 2) [42,61]. Since
Compound A is a polyphenolic compound extracted from Hypnum cupressiforme, it is
expected to have anti-viral and antimicrobial activities. Compound A, with a docking score
of −11.54 kcal/mol, formed three hydrophobic interactions, which included bonds with
Ile1153 and two interactions with Phe1154. In addition, 11 hydrogen bonds were formed
with residues Gly1068, Gly1070, Val1071, Ala1072, Ser1150, Ala1151, Gly1152, Ile1153,
Phe1154, Phe1178, and Asp1179 (Figure 2). 2-hydroxy-3-O-beta-glucopyranosyl-benzoic
acid (Compound B) is extracted from the dried stem and roots of the Strychnos cocculoides
plant (Table 2). Strychnos cocculoides is widely distributed in tropical regions, and in
Tanzanian folk medicine, the root and stem barks are used to treat fevers, stomach pain,
and snake bites [62,63]. The roots are also widely used to alleviate eczema and treat infec-
tions [64]. The interaction pattern of Compound B with Mac-I resulted in two hydrophobic
interactions, including bonds with Ile1153 and Phe1154, while nine hydrogen bonds involv-
ing residues Gly1068, Gly1070, Val1071, Ala1072, Leu1148, Ser1150, Ala1151, and Gly1152
(Figure 3) were formed.
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Table 1. Top hits identified through muti-step screening and rescoring via the IFD method. The table
presents the 2D structures, compound names, and docking scores of the top four.

2D Structure Compound Name IFD Score Identifier
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acid)
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forme
Flavonoid Anti-viral 1 - - - - 6 9 3 164.74
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2-hydroxy-3-
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acid

B 316.26
Strychnos

coccu-
loides

Phenolic Anti-
inflammatory 1 No 2.305 1.294 0.285 6 9 4 156.91

Å2 0.43

ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity). * AMES toxicity test, in-vitro testing
to assess the potential carcinogenic effect of chemicals. ** Tetrahymena pyriformis, the most commonly ciliated
model, used for toxicological studies.
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Figure 2. Interaction pattern of 2-hydroxy-3-O-beta-glucopyranosyl-benzoic acid (Compound B). 
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Figure 2. Interaction pattern of 2-hydroxy-3-O-beta-glucopyranosyl-benzoic acid (Compound B).
(A) Cartoon representation of Mac-I (blue) and the bound ligand shown in stick form with pink
carbon atoms. (B) Two-dimensional representation of the drug–Mac-I interactions. Hydrogen bonds
are represented by green dashed lines; pink dashed lines indicate hydrophobic interactions.
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Figure 3. Interaction pattern of 3,5,7,4′-Tetrahydroxyflavanone 3′-(4-hydroxybenzoic acid) (Com-
pound A). (A) Cartoon representation of Mac-I (blue) and the bound ligand shown in stick form with
purple carbon atoms. (B) Two-dimensional representation of the drug–Mac-I interactions. Hydrogen
bonds are represented by green dashed lines; pink dashed lines indicate hydrophobic interactions.

3.4. Dynamic Stability and Compactness Assessment

The conformational stability and dynamic environment of Mac-I bound to Compounds
A and B were elucidated by running 100 ns MD simulations of the complexes, with the
simulations being run in triplicate to ensure the accuracy of the reproducibility of the
results. The root-mean-square deviation (RMSD) trajectories of the Cα-atoms demonstrated
each system’s dynamic stability and convergence (Figure 4A). The radius of gyration
(Rg) indicates the structural compactness of the Mac-I–ligand complexes as a function of
time (Figure 4B). The structural compactness of the interacting partners reveals essential
information regarding the binding and unbinding events during the MD simulation.
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The complexes of Mac-I with Compounds A and B demonstrated overall stable struc-
tures (Figure 4A). In the initial stages of Mac-I in complex with Compound A, the structure
converged to 1.2 Å in the first 10 ns. From 10 ns onwards, the complex remained at
equilibrium for the duration of the 100 ns simulation. Furthermore, Runs 1, 2, and 3 of
Mac-I (Figure 4A turquoise) in complex with Compound A demonstrated similar RMSD
atomic configurations. For Mac-I in complex with Compound B (Figure 4A magenta),
the RMSD converged to 1.2 Å in the first 15 ns, after which the complex equilibrated and
averaged 1.0 Å during the 100 ns simulation. The convergence of the second and third
Mac-I–Compound B complex runs showed a similar atomic configuration to the first run,
demonstrating the reliability of the MD simulation. For both Mac-I complexes with natural
products, the RMSD was maintained with no structural perturbation, revealing a stable
binding to the active site residues. Moreover, the average RMSD for both complexes was
1.0 Å, indicating that these ligands form a very stable complex with Mac-I and may inhibit
the Mac-I interaction with ADPr, consequently reducing SARS-CoV-2 pathogenesis.

The Rg values of Mac-I binding to Compounds A and B averaged 15.0 Å in both
duplicate runs (Figure 4B). This resulted from the stable binding of ligands with minimal
unbinding events during the simulation, further corroborated by the RMSD results. The
RG data indicate that Compounds A and B may bind Mac-I more favorably than ADPr.
The structural compactness strongly aligns with the RMSD results, with no significant
variations in the size of the MAC-I complex with Compounds A and B. Consequently, such
robust binding indicates the favorable pharmacological properties of both molecules.

3.5. Estimation of Hydrogen Bonding and Residual Flexibility

Hydrogen bonds (H-bonds) contribute to protein–protein and protein–ligand bind-
ing. The determination of H-bonds is vital to ascertaining the intermolecular interactions
between proteins and the selected ligands. The number of H-bonds formed between
Mac-I and Compounds A and B can estimate the strength of the protein–ligand complex
(Figure 5). The average number of H-bonds in the Compound A–Mac-I complex was
79 bonds, while the Compound B–Mac-I complex demonstrated an average of 77 hydrogen
bonds. The higher number of hydrogen bonds in the Compound A–Mac-I complex than
in the Compound B–Mac-I complex indicated a higher-affinity interaction and potentially
more significant inhibitory effect. The H-bond estimation for Runs 2 and 3 revealed a
similar bonding network with an average of 75 to 90 bonds for each complex. As such,
demonstrating a stable conformation for each system could predict the native binding con-
formation, too. Overall, the results from each replica validate and reproduce the findings,
thus showing the reliability of the results and the anti-viral potential of both compounds.
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Figure 5. H-bonds of Mac-I bound to Compounds A (magenta) and B (fuchsia). The H-bonds were
calculated for each run separately.

The root-mean-square fluctuations (RMSFs) of the Cα-atoms demonstrate the flexi-
bility and average position in a given conformation when the protein is in complex with
a protein or ligand (Figure 6). The complexes demonstrated similar residual flexibility,
except in regions 41–50, 95–110, and 125–135 of Mac-I, which showed a slight fluctuation.
The higher fluctuations may have resulted from the higher conformational sampling in the
Mac-I binding pocket. The Mac-I–Compound B complex demonstrated higher fluctuations
between residues 40 and 45, with the Compound A–Mac-I complex showing higher fluctu-
ations between residues 95–105 and 125–135. The results for Run 2 and 3 aligned with the
results for Run 1, thus showing similar dynamic behavior during simulation. Our findings
showed a very low mean RMSF, demonstrating that the residues of Mac-I in complex
with Compounds A and B conformed to favorable energy minima [65]. These results are
consistent with earlier findings describing low RMSF for the best compounds interacting
with SARS-CoV-2 proteins [50].
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the dynamic environment.

3.6. Binding Free Energy Estimation

The MM/GBSA method is more robust in calculating binding energies than the classi-
cal docking scores. In addition, the MM/GBSA approach is computationally affordable
compared with the costly alchemical-free energy methods. Previous studies have widely
applied this approach to discover potential drug candidates for treating SARS-CoV-2.
Henceforth, we employed the MM/GBSA method in the current study to estimate the
binding free energy of Compound A and B complexes with Mac-I (Table 3). The MM/GBSA
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values were calculated for both MD simulation runs, and the average values were compared
between Compounds A and B in complex with Mac-I.

Table 3. Binding free energy calculated as MM/GBSA of Compounds A and B with SD. All the values
are presented in kcal/mol.

MM/GBSACompound
A-Run 1

Compound
A-Run 2

Compound
A-Run 3 Average SD Compound

B-Run 1
Compound
B-Run 2

Compound
B-Run 3 Average SD

vdW −71.16 −68.44 −64.37 −68.0 3.4 −50.96 −50.96 −51.67 −51.2 0.41

Electrostatic −22.77 −21.72 −21.89 −22.1 0.6 −34.13 −28.76 −21.22 −28.0 6.49

ESURF 23.29 18.78 17.64 19.9 3.0 28.10 24.52 23.78 25.5 2.31

EGB 8.05 10.01 8.85 9.0 1.0 13.83 9.29 4.78 9.3 4.53

∆G Bind −62.59 −61.37 −59.77 −61.2 1.4 −43.16 −47.09 −44.33 −44.9 2.02

Our findings revealed average values of vdW (−68 ± 3.4), electrostatic (−21.1 ± 0.6),
EGB (9.0 ± 1.0), ESURF (19.9 ± 3.0), and the total binding energy ∆G (−61.2 ± 1.4)
kcal/mol for the Compound A–Mac-I complex. For the Compound B–Mac-I complex,
the average values were vdW (−51.2 ± 0.41), electrostatic (−28 ± 6.4), EGB (9.3 ± 4.53),
ESUF (25.5 ± 2.31), and total binding energy ∆G (−44.9 ± 2.02) kcal/mol. These findings
demonstrate that Compound A, with an average ∆G of −61.98 ± 0.9 kcal/mol, is a more
potent natural compound in blocking ADPr binding than Compound B, with an average
∆G of −45.125 ± 2.8 kcal/mol. To further corroborate the above findings, we calculated
Mac-I’s entropic values (∆TS) [65] in complex with Compounds A and B, resulting in a
∆TS of −16.26 and −11.74, respectively. This indicates that Compound A demonstrates a
tighter binding with the Mac-I domain, presenting it as a potential drug to bind Mac-I and
inhibit NSP3 activity.

3.7. In Silico Bioactivity and KD Estimation

The dissociation constant (KD) is the fundamental criterion to elucidate the binding
properties of ligands to proteins. In silico PRODIGY-LIG (PRODIGY for LIGands), a post-
MD simulation, and an MM/GBSA analysis were used to calculate the KD of Compounds
A and B bound to Mac-I (Figure 7A). The Compound A complex with Mac-I showed a
KD of –6.9 kcal/mol, whereas Mac-I–Compound B demonstrated a binding affinity of
−5.8 kcal/mol. The stronger binding affinity of the latter correlates with the MM/GBSA
data calculated from the MD simulations. In addition, in silico bioactivity levels for the
complexes were found to be 0.39 and 0.44, respectively (Figure 7A), showing the strong
potency of both compounds, with Compound A being the most potent.
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Figure 7. (A) In silico bioactivity results for 3,5,7,4′-tetrahydroxyflavanone 3′-(4-hydroxybenzoic
acid)–Mac-I and 2-hydroxy-3-O-beta-glucopyranosyl-benzoic acid–Mac-I complexes. (B) KD re-
sults for 3,5,7,4′ tetrahydroxyflavanone 3′-(4-hydroxybenzoic acid)–Mac-I and 2-hydroxy-3-O-beta-
glucopyranosyl-benzoic acid–Mac-I complexes.
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4. Conclusions

The current study used computational modeling and simulation tools to target the
Mac-I domain of SARS-CoV-2. Screening of large libraries such as MPD3 and EANCDB
identified two hits: 3,5,7,4′-tetrahydroxyflavanone 3′-(4-hydroxybenzoic acid) (Compound
A) and 2-hydroxy-3-O-beta-glucopyranosyl-benzoic acid (Compound B). These drugs can
potentially bind to Mac-I and inhibit NSP3 activity, thereby directly rescuing the host
immune response. The current study provides a basis for novel drug development against
SARS-CoV-2 and its variants.
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