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Convergent evolution of the SARS-CoV-2 Spike protein has been mostly driven by
immune escape, in particular by escape to the viral infection-neutralizing antibodies (nAbs)
elicited by previous infections and/or vaccinations [1]. These immune escaping muta-
tions usually come at a cost for SARS-CoV-2 fitness, often compromising binding to the
ACE2 receptor. So, in order to be competitive, a novel SARS-CoV-2 sublineage has to
first largely increase the affinity of the Spike protein for the ACE2 receptor, so that it can
later accommodate further immune escape mutations. Recently, the S:F456L mutation has
been convergently acquired by many independent XBB.1* sublineages and by a single
BA.2.75.3-derived sublineage (DV.7.1), soon followed by the S:L455F mutation, a phe-
nomenon referred to as “FLip” (from the initials of the mutated amino acid residues). The
acquisition has sometimes been detected as simultaneous (see the lower part of Figure 1),
but it should be considered that low genomic surveillance rates in 2023 could account for
missing the intermediate step. When the parent lineage also shows the S:K478R mutation—
either occurring before the “FLip” (as in JF.1), acquired simultaneously with the “FLip” (as
in GW.5), or developed after the “FLip” (as in GK.1.4 and in JR.1.1)—the lineage instead
comes under the nickname “FLippeR”. Real world data have shown that lineages which
were outcompeted and declining started regrowing in a sustained manner after gaining
the FLip, such as XBB.1.5-derived XBB.1.5.70* and JD.1* or CH.1.1-derived DV.7.1. The
biological characteristics of one of the FLips, namely HK.3, have recently been reported in
detail [2].

Both S:F456L and S:L455F largely increase ACE2 affinity and their combination is
synergic [3]. S:L455F also confers some immune escape [4] (and had been observed to
emerge after treatment with casirivimab [5]), but FLip lineages remain sensitive to class
1 antibodies [3]. This has also been proven true for BA.2.86 (Pirola) [6], which soon gained
fitness in the S:L455S-positive descendant JN.1 [7,8]. Amazingly, JN.1 sequences which
have later acquired F456L (nicknamed “Slip’s”) were reported in late November 2023 from
France and New Zealand.

Overall, the prevalence of FLip lineages, never seen before since 2019, has grown
exponentially in the second half of 2023 [9], and the much-increased serological distance on
antigenic chartographies largely explains such expansion [6]. With a plethora of sublineages
having acquired the S:F456L mutation (Figure 1), it should be expected that the FLip family
is going to grow soon. In particular, more than 70 FLip sublineages, most waiting to be
designated, have emerged—especially in China—on the EG.5.1 backbone (tracked in the
GitHub issue #537 [10]): its significance and relationship with the immunity built in the
general population there after the first two waves [11] should be investigated further.
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Figure 1. Summary of PANGOLIN-designated SARS-CoV-2 Omicron sublineages which have ac-
quired the S:F456L mutation as of 18 December 2023. 
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in the GitHub issue #537 [10]): its significance and relationship with the immunity built in 
the general population there after the first two waves [11] should be investigated further. 

The impact of different sublineages with FLips on immune escape has been investi-
gated by several laboratories. Using Spike-pseudotyped vesicular stomatitis virus [3] or 
lentivirus [12,13], XBB.1.5 + S:F456L + S:L455F was found to be 10-fold less sensitive to 
nAbs than XBB.1.5 + S:F456L in historical BA.5/BF.7 and/or XBB* + S:F486P breakthrough 
infection sera [3], XBB.1.5 breakthrough infection sera [6], or contemporary sera [13]. The 
same was true for DV.7.1 [13]. Healthcare workers vaccinated at the third dose with either 
the monovalent (wild-type) or the wild-type + BA.5 bivalent vaccine similarly had reduced 
nAb titers against XBB.1.5 + S:F456L + S:L455F than against XBB.1.5 [12]. At the time of 
writing, no study has been reported yet using live authentic FLip viruses. 

With regard to sensitivity to the anti-Spike monoclonal antibodies authorized for 
clinical use, XBB.1.5 + S:F456L + S:L455F was found to be insensitive to bebtelovimab [3], 
Evusheld™ [3], and sotrovimab (S-309) [3,12] while preserving sensitivity to SA55 [3], 
BD56-1854 [3], S3H3 [3], and Omi42 [3]. 

Another amazing feature of the FLips is the unusually high incidence of second-gen-
eration recombinants ( XCH, XCL, XCM, XCP, XCR, XCS, XCT, XCY, XCZ, and XDC): 
while a plethora of non-FLip recombinants have been recently designated (e.g., XCK, 
XCN, XCQ, XCV, XCU, XCW, XDA, and XDB), this could simply be due to a notoriety 
bias for the FLips; it remains to be investigated whether they are more prone to recombi-
nation [14]. 
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acquired the S:F456L mutation as of 18 December 2023.

The impact of different sublineages with FLips on immune escape has been investi-
gated by several laboratories. Using Spike-pseudotyped vesicular stomatitis virus [3] or
lentivirus [12,13], XBB.1.5 + S:F456L + S:L455F was found to be 10-fold less sensitive to
nAbs than XBB.1.5 + S:F456L in historical BA.5/BF.7 and/or XBB* + S:F486P breakthrough
infection sera [3], XBB.1.5 breakthrough infection sera [6], or contemporary sera [13]. The
same was true for DV.7.1 [13]. Healthcare workers vaccinated at the third dose with either
the monovalent (wild-type) or the wild-type + BA.5 bivalent vaccine similarly had reduced
nAb titers against XBB.1.5 + S:F456L + S:L455F than against XBB.1.5 [12]. At the time of
writing, no study has been reported yet using live authentic FLip viruses.

With regard to sensitivity to the anti-Spike monoclonal antibodies authorized for
clinical use, XBB.1.5 + S:F456L + S:L455F was found to be insensitive to bebtelovimab [3],
Evusheld™ [3], and sotrovimab (S-309) [3,12] while preserving sensitivity to SA55 [3],
BD56-1854 [3], S3H3 [3], and Omi42 [3].

Another amazing feature of the FLips is the unusually high incidence of second-
generation recombinants (XCH, XCL, XCM, XCP, XCR, XCS, XCT, XCY, XCZ, and XDC):
while a plethora of non-FLip recombinants have been recently designated (e.g., XCK, XCN,
XCQ, XCV, XCU, XCW, XDA, and XDB), this could simply be due to a notoriety bias for the
FLips; it remains to be investigated whether they are more prone to recombination [14].

In recent weeks, it has emerged that many of the FLips’ sublineages have further
gained the S:A475V mutation, previously seen in a few BA.2.75* descendants (BL.1.5 and
BN.1.8). This stepped and ordinate convergence is illustrated in Figure 2. Notably, at the
time of writing, FLips + A475V lineages (such as JD.1.1, FL.15.1.1, GW.5.1.1, and GW.5.3.1,
as well as many GK.*s) are among the few lineages resisting the fitness of JN.1 in predictive
models [15]. Yunlong Cao’s lab recently communicated that S:A475V confers evasion to
class 1 antibodies in vitro. A475V has also appeared in the BA.2.86.1 descendant JN.4. Since
November 2023 FLips are suffering competition from the fast-growing JN.1* sublineages
(Figure 3).
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Figure 3. Worldwide prevalence of key Spike protein mutations discussed in the text acquired dur-
ing 2023. Chart generated with CoV-Spectrum [16]. L455S represents JN.1* sublineages. 

In conclusion, SARS-CoV-2 is again confirming its incredible plasticity in escaping 
the consolidating human immune response. Since S:F456L, S:L455F, and S:A475V do not 
occur in the recently marketed XBB.1.5-based “updated” vaccines, the extent to which 
nAbs in vaccine recipients will provide protection from severe disease remains to be es-
tablished. Epidemiological monitoring is highly recommended to assess the relationships 
between specific sublineages and increased clinical severity. 
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In conclusion, SARS-CoV-2 is again confirming its incredible plasticity in escaping the
consolidating human immune response. Since S:F456L, S:L455F, and S:A475V do not occur
in the recently marketed XBB.1.5-based “updated” vaccines, the extent to which nAbs in
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vaccine recipients will provide protection from severe disease remains to be established.
Epidemiological monitoring is highly recommended to assess the relationships between
specific sublineages and increased clinical severity.
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