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Abstract: The persistence of the latent viral reservoir is the main hurdle to curing HIV-1 infection.
SIV infection of non-human primates (NHPs), namely Indian-origin rhesus macaques, is the most
relevant and widely used animal model to evaluate therapies that seek to eradicate HIV-1. The
utility of a model ultimately rests on how accurately it can recapitulate human disease, and while
reservoirs in the NHP model behave quantitatively very similar to those of long-term suppressed
persons with HIV-1 (PWH) in the most salient aspects, recent studies have uncovered key nuances at
the clonotypic level that differentiate the two in qualitative terms. In this review, we will highlight
differences relating to proviral intactness, clonotypic structure, and decay rate during ART between
HIV-1 and SIV reservoirs and discuss the relevance of these distinctions in the interpretation of
HIV-1 cure strategies. While these, to some degree, may reflect a unique biology of the virus or
host, distinctions among the proviral landscape in SIV are likely to be shaped significantly by the
condensed timeframe of NHP studies. ART is generally initiated earlier in the disease course, and
animals are virologically suppressed for shorter periods before receiving interventions. Because
these are experimental variables dictated by the investigator, we offer guidance on study design
for cure-related studies performed in the NHP model. Finally, we highlight the case of GS-9620
(Vesatolimod), an antiviral TLR7 agonist tested in multiple independent pre-clinical studies in which
virological outcomes may have been influenced by study-related variables.
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1. Introduction

Antiretroviral therapy (ART) vastly improves the quality of life for persons with HIV-1
(PWH) but it is not curative, and viremia generally rebounds within weeks of interrupting
ART [1,2]. The source of viral rebound is a pool of anatomically dispersed resting memory
CD4 T cells that harbor latent but inducible HIV-1 DNA. Recent longitudinal studies
indicate that after decades of ART, the reservoir of infectious HIV-1 does not decay and
may even increase in size over long periods [2,3]. It has thus been a long-standing global
health priority to pursue therapeutic approaches that either eradicate latent HIV-1 from the
body or promote a state of long-term ART-free remission.

Nonhuman primate (NHP) hosts of progressive simian immunodeficiency virus (SIV)
infection, namely rhesus macaques of Indian origin, represent the pre-eminent animal
model of HIV-1 infection. Upon infection with SIV, animals display many salient pathologi-
cal features of progressive HIV-1 disease, including but not limited to high viral loads [4],
early gut mucosal CD4 T cell depletion [5], lymphoid tissue fibrosis [6], and immune cell
exhaustion [7]. Like HIV-1, SIV also establishes a latent viral reservoir, and the adapta-
tion of ART regimens that durably suppress viremia has allowed NHPs to be a valuable
tool in the evaluation of HIV cure-related strategies [8]. NHP models of HIV-1 infection
can accurately evaluate the clinical promise of cure strategies for several reasons. The
first is that both latent HIV-1 and SIV respond in a very similar fashion to immune- or
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pharmacologic-based interventions [9–13]. Secondly, HIV cure approaches in NHPs can
be easily evaluated against experimental ART treatment interruptions, which represent a
‘gold standard’ measure of the inducible replication-competent reservoir.

When HIV-1 cure strategies progress to clinical trials, success is evaluated by quan-
titative metrics. Specifically, whether a particular approach can decrease the overall size
of the HIV-1 reservoir or delay HIV-1 rebound after treatment interruption. These end-
points measure HIV-1 reservoir behavior at the population level. Yet, it is important to
point out that population-level behavior is manifested by the sum of the contributions of
individual HIV-1 proviruses. Individual proviral clones are qualitatively heterogenous
and differ by their degree or lack of lethal mutations, the propensity of the infected cell to
undergo division, and the ability to which a provirus can be induced [14–16]. Thus, the
qualitative properties of individual proviruses can underlie quantitative behavior at the
bulk population level. Given that most HIV cure approaches rely on pre-clinical testing
in NHPs, a relevant question to ask is how closely the reservoirs of SIV ART-suppressed
NHPs resemble those of PWH. Data acquired through assays recently adapted to SIV have
noted stark and potentially meaningful differences in the reservoir that overall may not
be related to differing biology per se but to the shortened timeframe of NHP studies. In
this review, we highlight properties of the SIV reservoir related to decay rate, intactness,
and clonal structure and discuss how these are influenced by NHP study-related variables.
When possible, we highlight how variations in these study designs may have impacted the
outcome of HIV-1 cure interventions. For the purposes of this review, we restrict the survey
of the literature in most instances to studies involving the SIVmac239 clone or SIVmac251
viral swarm, given that infection with highly passaged or genetically modified SIVs can
vary widely in reservoir size and cell-type distribution [17,18]. Lastly, we offer guidance on
study design with the goal of promoting rigorous interpretation of cure-related studies in
the NHP model.

2. Timing of ART Initiation in SIV-Infected Macaques

In untreated HIV-1 and SIV infections, the evolution of replicating viral strains is
dynamic over time and reflective of adaptation to ongoing host immune pressures. It was
originally thought that the latent reservoir is seeded predominantly by HIV-1/SIV strains
circulating close to the period of ART initiation [19–21]. Recent evidence, however, suggests
the latent pool of HIV-1 can also contain proviruses that are more archival, indicating
that latency establishment and productive infection are concurrent throughout untreated
infection [22–24]. The long-lived reservoir is thus influenced by the natural history of viral
evolution during untreated infection, and the timing of ART initiation can significantly
shape its size and genetic heterogeneity.

Initially, studies in macaques showed that SIV establishes a small yet generally in-
curable reservoir in gut mucosal and lymphoid tissues by day 3 post-infection, when
plasma SIV is not yet detectable [25,26]. Further understanding of early reservoir forma-
tion has come from several clinical trials that enrolled participants diagnosed with HIV-1
very early in the disease course (RV217: NCT00796146) (RV254: NCT00796146) (FRESH
cohort) [27–29]. The RV217 cohort longitudinally monitored the natural dynamics of HIV-1
DNA levels in the blood of high-risk participants from Thailand who acquired HIV-1
during Fiebig stages I/II. This study found that the size of the reservoir closely paral-
leled the known dynamics of plasma viremia, with exponential growth and peak HIV-1
DNA levels reached between 3 and 14 days after viral RNA detection (Fiebig I–III) [30,31]
(Figure 1A). The set point of HIV-1 DNA was established between 4 and 6 weeks after viral
RNA detection (Fiebig V–VI), where frequencies of infected cells are thought to remain
relatively stable thereafter [32]. The period of Fiebig I–V also marks very dramatic changes
in viral genome heterogeneity. Insights from the FRESH cohort have found that, during
the period of rapid growth (Fiebig stages I/II), the genetic heterogeneity of viral DNA
is limited but rapidly accumulates in Fiebig IV–V and continues to evolve into chronic
untreated infection [33] (Figure 1B). The maturation states of CD4 T cells that harbor viral
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DNA through the early phases of acute infection differ as well. Insights from the RV254
clinical trial have found that during Fiebig I–II, blood CD4 T cells that are actively infected
are predominantly of an effector memory phenotype and exhibit more restrictive T cell
receptor diversity [23,30,34]. As early as Fiebig stage III, however, the central memory
CD4 T cell compartment becomes increasingly susceptible to HIV-1 infection, and viral
latency is established in more long-lived, polyclonal stem-like populations [30] (Figure 1B).
In sum, studies from these cohorts of individuals who are infected very early suggest that
the reservoir establishes a constant size by the set point of plasma viremia while remaining
dynamic in both sequence diversity and cell-type distribution.
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DNA across the 6 Fiebig stages of acute HIV-1 infection. The period in disease course at which ART
was initiated in several NHP studies employing HIV cure therapeutics is noted in red. In most clinical
scenarios, HIV-1 is diagnosed as chronic infection. (B) The contribution of CD4 T cell maturation
states harboring the reservoir across different Fiebig stages of acute HIV-1/SIV and at differing
periods of ART initiation in published NHP cure-related studies.

Unlike in clinical settings, the timing of ART initiation in NHP studies is a variable
set by the investigator, and the issue of when to initiate treatment can profoundly impact
the efficacy of approaches aimed at the eradication of the reservoir. Earlier ART treatment
may favor the proof-of-principle of an intervention, whereas later treatment may favor its
translatability. In general, interventions yielding an efficacious signal in clinical cohorts,
most of which comprise subjects that initiated ART in chronic infection, are extremely
limited and restricted to case reports [35]. Thus, while there is no overall standard for
when to begin ART treatment in NHP studies, most studies have initiated ART within the
first 8 weeks of SIV infection, favoring proof-of-principle of an approach over a design that
is the most clinically relevant (Table 1).

There are several reasons why delaying the initiation of ART is likely to impede the
ability of interventions to meaningfully impact viral persistence. The first is that as the
disease progresses, the reservoir expands to include CD4 T cell maturation subtypes that
are long-lived and likely more difficult to clear therapeutically. As stated earlier, the central
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memory CD4 T cell compartment becomes increasingly susceptible to HIV-1/SIV as the
disease progresses [30,36,37]. By nature of their trafficking to lymphoid tissues, these cells
come into frequent contact with γ-chain cytokines that sustain expression of BH3-only
proteins known to counteract the death of infected cells by viral cytopathic effects or
through immune-mediated clearance [38–41].

Secondly, as the disease progresses, the reservoir becomes more genetically diverse,
and this could hamper eradication strategies that seek to engage innate or adaptive im-
munity. Studies have observed a high degree of CTL escape mutations and functional
resistance to type I/II interferons among circulating viral strains seeded into the long-lived
pool of replication-competent proviruses [42,43]. It is important to note, however, that
despite this extensive diversity, the immune system continues to exert antiviral selective
pressure on the reservoir [44,45]. Thus, while some proviral strains may be capable of
evading host immunity if reactivated, this is likely not true for all HIV-1/SIV strains
within the reservoir. Lastly, the extent of residual immune and tissue damage is certain
to influence the outcome of HIV cure-directed therapies given that many agents under
pre-clinical/clinical testing are predicated on engaging multiple facets of the immune
system [13,46–49]. The majority of these induce transient innate and adaptive immune
activation in the blood [13,48]. It is likely, however, that the bioactive impact of these agents
is orchestrated within lymphoid tissues, and these organs are progressively damaged
during untreated HIV-1 infection [6,50,51]. Several other facets of immunity that become
progressively impaired and do not fully reverse with ART may also hinder the efficacy
of cure-related approaches, including impaired antigen-presenting cell function, as well
as the sustained expression of inhibitory immune receptors [49,52–57]. Thus, as infection
progresses, the reservoir becomes more impervious to therapeutic intervention.

As stated, the majority of interventions tested pre-clinically have been conducted on
NHPs, initiating ART between 1 and 8 weeks post-infection (Table 1). Within this time
window, however, there is considerable variation, and comparing these studies can provide
insights into how the variable of ART timing can influence the outcome of cure-related
interventions. Very few cure approaches have been evaluated under small, less mature
reservoirs that are associated with ART initiation less than 14 days post-infection [58–62].
A subset of these, however, were found to elicit a favorable impact and, in some instances,
promote sustained ART-free remission. The first of these applied a ‘shock and kill’ strategy
(i.e., reactivating latent HIV-1 and stimulating immune clearance) on SIV-infected macaques
that initiated ART at 7 dpi [60]. At full virological suppression, these animals received the
toll-like receptor 7 (TLR7) agonist Vesatolimod (GS-9620) alone or in combination with
the anti-HIV broadly neutralizing antibody (bNab) PGT121. When ART was interrupted,
six out of eleven animals in the combined Vesatolimod/PGT121 group exhibited delayed
viral rebound, and in the remainder of these animals, viral rebound during the 196-day
follow-up period was not observed [60]. The early ART notwithstanding, a caveat to this
study was that it employed a strain of hybrid simian–human SIV (SHIV-SF162P3), many
of which have variable replicative capacity and pathogenicity in vivo [63]. A more recent
study employing wild-type SIVmac251 in neonatal macaques administered ART 7 dpi
concurrently with a CCR5/CD3- or CD4-specific antibody had the goal of stimulating
the clearance of target cells [59]. Upon interruption of ART, plasma SIV in three out of
seven animals rebounded quickly, in two out of seven, rebound was delayed by 3 and
6 months, and in the remaining two, sustained remission was observed up to greater than
3 years post-ART cessation [59]. The remarkable outcomes of these two studies suggest
two exciting possibilities. First, supplemental therapies could further promote the existing
robust clearance of infected cells noted in subjects treated in Fiebig stages I/II of HIV-1
infection to meaningfully enhance the chance of remission [30]. Secondly, cure-related
approaches tested previously on more mature reservoirs and deemed ineffective could
be repurposed for extremely small reservoirs noted in very early ART. Nevertheless, the
outcomes of these studies are largely not relevant to the majority of clinical scenarios.
Most persons living with HIV-1 are diagnosed months to years after infection. Moreover,
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these studies were evaluated on reservoirs that were both quantitatively and qualitatively
different than those of persons who are chronically infected, as are enrolled in most HIV-
1 clinical trials [48,64–67]. In pre-clinical NHP studies that have initiated ART between
Fiebig stages IV and VI (more closely approximating the reservoirs of PWH who are
chronically infected), the success of interventions in these instances has been considerably
more variable [61,68–71]. The vast majority of these have yielded either no significant
changes to the frequency of cells harboring SIV DNA or have reduced replication-competent
HIV-1 DNA to a level that elicited slight delays in viral recrudescence but not sustained
ART-free remission (Table 1). To date, only one NHP study initiating ART at more clinically
relevant periods has noted an intervention to induce durable ART-free remission in a
small subset of animals. In this study, ART was initiated in macaques after 65 days
post-SIV infection, approximating Fiebig V–VI, and after receiving serial doses of the TLR7-
agonist GS-9620, durable ART-free remission was observed in two out of nine animals [10].
Interestingly, a parallel independent study employing the same intervention observed no
delay in viral rebound in animals that initiated ART earlier, at 14 dpi. The reasons for this
somewhat paradoxical outcome are unknown, but they suggest that the influence of ART
timing on efficacy may depend on the particular nature of the intervention. Taken together,
the timing of ART initiation can dramatically impact both the size and composition of the
reservoir as well as the extent of immune and tissue damage. Each of these variables can,
in turn, influence the efficacy of therapeutics aimed at targeting viral persistence. In the
majority of pre-clinical studies, investigators have generally employed a study design that
favors proof-of-concept (ART initiated 1–8 weeks post-SIV) vs one that is more clinically
relevant (ART initiated in chronic SIV) (Table 1). However, when to precisely initiate ART
in NHP studies must be a consideration unique to each study context.
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Table 1. Summary of selected HIV-1 cure-related NHP studies denoting study variables, primary measurements, and outcome.

Study Intervention Class SIV Inoculum ART Initiation
(dpi)

Duration of ART
Pre-Intervention

Reservoir Measurement
Assessed Outcome

Lim et al. [10]
GS-9620

(Vesatolimod),
GS-986

TLR7 agonist SIVmac251 65 437 total SIV DNA, post-ART
SIV rebound

SIV DNA reduction, SIV
remission (2/13 animals)

Nixon et al. [11] AZD5882 SMAC-mimetic SIVmac239 60 420 inducible plasma viremia,
SIV DNA

plasma viral blips, no
reduction in SIV DNA

Policicchio et al [12] Romidepsin HDACi SIVsmmFTq 65 250 inducible plasma viremia,
SIV DNA

plasma viral blips, no
reduction in SIV DNA

Borducchi et al [58] PGT121, GS-9620 bnAb, TLR7 agonist SHIV-SF162P3 7 672 total SIV DNA, post-ART
SIV rebound

SIV DNA reduction, SIV
remission (5/11 animals)

Deere et al. [60] CD4 nAb, CCR5 nAb biologic SIVmac251 7 16 post-ART SIV rebound SIV remission (2/7)

Varco-Merth et al [61] Rapamycin mTOR inhibitor SIVmac239 12 230 total SIV DNA, post-ART
SIV rebound no impact

Gramatica et al [62] Tideglusib Akt/mTOR agonist SIVmac239X 12 672 total SIV DNA no impact

Pino et al. [68] FTY720 (fingolimod) S1P-receptor
antagonist SIVmac239 42 190 total SIV DNA no impact

Swainson et al [69] anti-IFNa biologic SIVmac251 48 84 total SIV DNA faster decline

Micci et al [70] IL-21 cytokine SIVmac239 60 210 total SIV DNA, post-ART
SIV rebound

SIV DNA reduction, no
delay in SIV rebound

Harper et al. [71] anti-IL-10 biologic SIVmac239 35 210 total SIV DNA SIV DNA reduction

Dashti et al [56] AZD5882 + SIV nAb SMAC-mimetic,
biologic SIVmac239 56 609 viral outgrowth (QVOA)

reduced
replication-competent

SIV DNA

Harper et al. [47] anti-CTLA4,
anti-PD-1 biologic SIVmac239 60 407 intact proviral DNA,

post-ART SIV rebound

intact SIV DNA
reduction, no delay in

SIV rebound

Del Prete et al [58] GS-9620
(Vesatolimod) TLR7 agonist SIVmac239X 12 450 intact proviral DNA,

post-ART SIV rebound no impact
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3. Decay Kinetics following ART Initiation in NHPs

The reservoir undergoes several phases of decay when new infections are blocked with
ART. The early phases of this decay are particularly dynamic. Given that pre-clinical testing
of agents in the NHP model is oftentimes evaluated during this period, it is critical to
understand how the SIV reservoir decays naturally with ART so that it can be differentiated
from interventional decay. It is important to note that, during untreated infection and
shortly after ART initiation, a significant amount of viral DNA is not integrated into the host
genome, and exists as labile linear viral DNA (t1/2 = 2d), 1- and 2-LTR circles, which exhibit
greater stability but are not copied or inherited during cell division [72–74]. Moreover, only
a fraction of the integrated viral DNA is intact and considered replication-competent (see
below). It is thus more accurate during this period to refer to the term total viral DNA rather
than proviruses, the latter of which represent most viral DNA measured during long-term
ART suppression. The most detailed study to longitudinally track the dynamics of intact
SIV DNA following ART initiation was performed by Fray et al. [24]. Animals were infected
with SIVmac251 and left untreated for ~1 year upon initiating a standardized ART regimen,
with rapid suppression by 4 weeks of treatment. During 4 years of continuous therapy, the
authors observed a dynamic decay of intact SIV DNA, which consisted of three distinct
phases [24]. The initial 4 weeks of ART induced a rapid decay of intact SIV DNA (mean
t1/2 = 3.3 days). This was followed by a slower, second phase associated with the decay of
intact SIV DNA harbored in longer-lived cells (mean t1/2 = 8.1 months). After a mean of
2.3 years of ART, a third phase became evident that was associated with virtually no decay.
As in PWH, defective SIV genomes differed markedly from intact proviral DNA in their
decay kinetics and did not follow a uniform pattern [24], likely reflecting the influence of
immune selection pressures exerted on the latter [44,45,75–77].

When compared to SIV DNA decay dynamics in the study noted by Fray et al. [24],
ART initiation in PWH induces a similar multiphasic decay of HIV-1 DNA, although
particular differences were noted (Figure 2A). First, the decay of viral DNA close to ART
initiation is more rapid in NHP (mean t1/2 3.3 d vs. 12.9 d) [24,78]. The clearance of intact
SIV DNA is also more rapid in the second phase (mean t1/2 8 months vs. 19 months),
whereas the decay of intact viral DNA that constitutes the stable reservoir during the third
phase is negligible in both PWH and SIVmac251-infected animals [24,78]. It remains to be
determined whether the ART-mediated decay rates observed in the study performed by
Fray et al. are generalizable to all NHP studies. The above analysis was performed on
a group of 10 animals, which is relatively small compared to clinical studies assessing
reservoir decay rates in large cohorts of PWH initiating ART [79]. ART was also initiated
~1 year after infection, much later in the disease course than most cure-related NHP studies
(Table 1). While CD4 T cell counts at the time of ART initiation were not reported in the
study by Fray et al. [24], it is likely that nadir CD4 T cell counts were much lower in these
animals, which is important given that nadir CD4 is highly predictive of reservoir size in
long-term suppressed PWH [80–83].

Importantly, it is now clear that HIV-1 reservoir dynamics enter a fourth phase in
decades-long suppressed PWH that is characterized by an apparent slow increase in
reservoir size, a dynamic that was not captured in 4 years of continuous ART in the NHP
study by Fray et al. (Figure 2A) [2,24]. The inflection point between the third and fourth
phases likely underlies a shift in equilibrium between the opposing forces of cellular
proliferation and selection forces that act on cells harboring intact, inducible proviruses.
Cellular proliferation replenishes the reservoir whereas immune selection eliminates intact
proviral DNA that is transcriptionally active. Over decades of therapy, what remains is
a pool of CD4 T cells continually replenished by physiologic proliferation that harbor
deeply latent proviruses integrated within repressive chromatin regions of the genome [45].
While not as comprehensively described, these opposing forces are likely to be operable
in ART-suppressed SIV+ NHPs as well. Thus, it is conceivable that over a period longer
than 4 years of continuous ART, reservoir dynamics in NHPs may also transition to an
analogous fourth phase of very slow reservoir expansion. The precise time of this inflection
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may differ as the lifespan of NHPs in captivity is roughly one-third that of humans;
however, determination is difficult given the cost of maintaining animals under study for
prolonged periods.
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Figure 2. ART-induced viral DNA decay rate, proviral clonotypic landscape, quantities of unin-
tegrated viral DNA, and typical intervention windows are major factors that differentiate NHP
pre-clinical from clinical studies. (A) Decay rates of viral DNA in SIV NHP (blue) and HIV-1 (red) af-
ter initiating ART. Distinct phases of viral genome decay are noted, with the majority of interventions
tested in the NHP model of HIV implemented significantly earlier after virologic suppression than
those of clinical trials (examples noted in red by the “NCT” clinical trial number). (B) Longitudinal
dynamics of the clonal landscape of integrated viral DNA and quantities of unintegrated forms of
viral DNA that exist as 2-LTR circles. In general, the majority of pre-clinical NHP studies are per-
formed on reservoirs that are less clonotypically skewed and comprise higher levels of unintegrated
viral DNA compared to reservoirs of participants enrolled in clinical trials. This illustration has been
adapted from Kumar et al and the concepts of this illustration are derived from the work of this
study [84].

It is important to note that cure studies in NHPs are typically conducted during
the more rapid second phase of decay (≤2 years ART), whereas most subjects enrolled in
clinical trials have been on ART much longer and exhibit more stable reservoirs
(Figure 2A) [48,64,85–87]. The differing time windows of intervention may have several
implications for cure-related studies. The first is that the natural decay of the reservoir in
NHP models is likely to be more robust across an interventional window when compared
to clinical settings. Thus, natural decay could more easily be mistaken for therapeutic
decay. To illustrate this point, a study by Kumar et al. evaluated the impact of toll-like
receptor agonists on intact viral DNA before and after a 22-week therapeutic window in a
small cohort of SHIV-infected macaques, initiating the intervention at 64 weeks post-ART
initiation [84]. A slight decreasing trend of intact SHIV DNA was noted between pre-
and post-intervention [84]. When these measurements were corrected for SHIV DNA
decay rates that were predictive of having occurred naturally with ART alone, trends
observed within the interventional group were abolished [84]. In cure-related studies, it
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is thus critical to account for the natural decay of the reservoir by employing robust no-
intervention control groups that are evaluated at parallel timepoints to the groups receiving
the intervention.

In addition, because interventions are started earlier in NHP models, a greater frac-
tion of SIV DNA will exist as unintegrated 2-LTR circles that are not part of the stable
reservoir (Figure 2B). These forms of viral DNA are still actively decaying during typical
interventional windows in studies employing NHP models, and at 1 year of ART, they
remain approximately 10-fold higher than levels of 2-LTR circles in long-term suppressed
PWH [88]. Forms of unintegrated viral DNA could thus disproportionately impact decay
rates if interventions are employed at time periods ≤2 years of ART, and accounting for
these in the NHP model is important.

4. Proviral Intactness of the SIV Reservoir

Given the widespread use of SIV-infected NHPs for cure studies, it is relevant to ask
how closely their proviral landscapes resemble those of long-term suppressed PWH. A
major feature of persisting proviral DNA in treated individuals is that most viral genomes
harbor lethal mutations that render them incapable of replicating if ART is interrupted.
These include large internal deletions that arise from template switching during reverse
transcription, APOBEC3-mediated hypermutations, point mutations, and packaging signal
deletions. Proviruses that lack any of these defects are classified as intact, and by near-full
length (NFL) viral DNA sequencing, they comprise only 2–10% of the persisting HIV-1 DNA
in the blood of most ART-suppressed PWH [89–91]. Two studies have employed near-full-
length (NFL) sequencing to interrogate the intactness of persisting SIV proviruses [88,92].
Both of these studies noted that deletions were the most common type of defect [88,92],
similar to that of HIV-1. A distinguishing feature noted in the study by Bender et al. was that
a higher fraction of defective SIV sequences exhibited APOBEC3-mediated hypermutation,
resulting in fatal G → A conversions that led to altered start and stop codons [88]. While
mechanistic insights into this distinction are currently unknown, the observation may
reflect (1) differences in the expression or activity of APOBEC3 family members in NHPs,
(2) differences in vif -induced APOBEC3 degradation between HIV-1 and SIV, or (3) the
shorter timescale of ART [93–95].

The predominance of replication-defective proviral sequences presents a challenge
for both accurately measuring the reservoir and evaluating viral eradication strategies.
Initially, HIV-1 and SIV reservoirs were quantified by amplifying a small, conserved
region of the HIV-1/SIV gag open reading frame. This method, while straightforward
and reliable, cannot discriminate between intact and defective proviral DNA and thus
heavily overestimates reservoir size. NFL sequencing is the gold standard in determining
proviral intactness, yet this technique is not suitable for quantitation because experimental
inefficiencies often preclude adequate sampling depth and the technique biases for the
amplification of shorter, defective proviral DNA that contains large internal deletions [96].
Quantitation of replication-competent HIV-1/SIV reservoirs is further complicated by the
fact that not all intact proviruses are readily induced ex vivo in viral outgrowth assays [96].
To overcome these limitations, digital droplet-based multi-plex PCR assays were developed
that include the intact proviral DNA assay (IPDA), quadruplex quantitative PCR (Q4PCR),
and five-target IPDA (5T-IPDA) [97–99]. An advancement of these assays is that they
allow for the discrimination of intact and defective proviruses in a scalable, labor- and
cost-effective manner. The IPDA is now validated for both SIVmac239 and SIVmac251, as
well as SHIV viral strains [47,84,88], and an initial, surprising observation uncovered by
the IPDA and NFL sequencing was that, relative to HIV-1, the SIV reservoir comprised a
significantly greater fraction of intact and presumably functional proviral DNA (Figure 3).
In the study by Bender et al., intact proviral sequences accounted for roughly 30% of
persisting SIV proviruses [88]. It is important to note that this study employed animals that
initiated ART roughly 2 years after infection, significantly later than most NHP studies.
Other NHP studies assessing proviral intactness have initiated ART sooner. In one of these,
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ART was initiated 1 year after SIVmac239 infection, and these authors observed by NFL
sequencing that ~50% of SIV DNA was classified as fully intact after 1 year of therapy [92].
The same group of investigators studied an additional set of animals initiating ART 1 month
after infection [26], a time window similar to that employed in many pre-clinical HIV-1
cure studies (Table 1). Here, an even greater fraction of proviral sequences in blood were
classified as intact, constituting >80% of persisting SIV genomes [26]. These three studies
collectively illustrate that the longer infection is allowed to progress untreated, the more
defective proviral DNA accumulates, and suggest that the species-specific difference in
reservoir intactness between clinical and NHP models is not due to the underlying biology
per se but rather differences in the timing of ART initiation. Corroborating this evidence is
an observational study that assessed proviral sequence diversity in two individuals with
subtype-C HIV-1 initiating ART at Fiebig stage II, where the majority of viral DNA genomes
persisting in the reservoir were found to be fully intact [33].
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Figure 3. Distinctions in genomic integrity between HIV-1 and SIV reservoirs measured by the
intact proviral DNA assay (IPDA). Representative differences in proviral landscapes of long-term
suppressed PLWH and ART-suppressed NHPs illustrated by the intact proviral DNA assay. Major
distinctions in NHP include higher frequencies of intact viral genomes, lower frequencies of viral
genomes harboring large deletions, and higher frequencies of highly mutated viral genomes that
cannot be detected by conventional IPDA probes. This illustration has been adapted from Bender
et al. and the concepts are derived from the work of this study [88].

Higher fractions of intact proviruses that predominate the reservoir in SIV may have
several implications for the interpretation of viral eradication strategies. The first is that
interventions deemed successful in NHPs may have a high probability of exhibiting efficacy
in clinical trials, given that the bar for obtaining remission in SIV-infected NHPs may be
higher due to greater amounts of replication-competent proviral DNA. The second is that
evaluating the efficacy of cure approaches in the NHP model may be more straightforward.
If ART is initiated within the early months of infection, most of the reservoir will likely be
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intact. The efficacy of an intervention measured by total SIV DNA may thus accurately
approximate changes to the intact and presumably functional reservoir measured by the
SIV IPDA. It is important to note that, in clinical settings, this is notably not the case.
There is at least one instance in which the impact of a cure intervention was measurable
through intact but not total HIV-1 DNA [13]. Employing the IPDA in clinical settings is
also more nuanced given the profound genetic heterogeneity that can exist in the reservoirs
of PWH. Polymorphisms within the IPDA primer/probe binding sites can cause assay
failures and lead to underestimation of intact proviral sequences [16,100,101]. The IPDA
may also misclassify some truly defective proviruses as intact. These instances arise from
HIV-1 DNA that is intact at both assay primer/probe locations but harbors lethal mutations
outside of these sites [102].

This is not to say, however, that the use of the IPDA in SIV does not come without
its own unique set of challenges. The SIV reservoir harbors significantly higher fractions
of hypermutated proviruses. It is not uncommon for proviral DNA to harbor G → A
mutations at both primer/probe locations of the IPDA, leading to a resultant no signal
and the misclassification of droplets containing defective proviruses as uninfected droplets
(Figure 3). Because of this, particularly in SIV, the IPDA is not suitable for quantifying
total proviral DNA and likely overestimates the proportion of total proviruses that are
intact (Figure 3). For these purposes, digital-droplet reactions targeting SIV gag that more
accurately quantify total proviral DNA should be conducted in parallel with the IPDA.
Alternatively, the IPDA can be modified with primer/probes that hybridize specifically to
hypermutated proviral sequences [103].

5. Clonotypic Structure of the SIV Reservoir

The bulk dynamics of the HIV-1/SIV reservoir are driven by the cumulative behaviors
of individual proviral clones. When assessing proviral clones in long-term suppressed
PWH by single genome sequencing of the HIV-1 env gene, an early observation was that of-
tentimes many of them were identical [104]. These proviral clones, soon confirmed by other
groups, were found to comprise full-length replication-competent HIV-1 genomes [15],
persist longitudinally at year-long intervals [105], and were capable of producing infectious
viruses ex vivo and in vivo [106–108]. The fact that HIV-1 proviral clones also share identical
host genomic integration sites indicates that clonal sequences are the product of cellular pro-
liferation. Antigen-driven proliferation, in particular, that is driven by recurring antigens,
enriches the reservoir in select CD4 T cell clonotypes over time [106,109]. Clonal skew-
ing of the reservoir increases progressively with the amount of time on ART [45,110–112],
and long-term suppressed PWH who exhibit negligible decay of the reservoir over time
are characterized by proviral landscapes that are highly clonally skewed [45]. Thus, the
significance of clonal expansion is that it continually replenishes the reservoir.

Two studies have assessed the clonal structure of the reservoir in SIV-infected NHPs,
and both observed identical proviral sequences that were similar to those of HIV-1. Yet,
relative to long-term suppressed PWH, the proviral landscape in ART-suppressed NHPs
was comprised of significantly fewer clonally expanded populations (Figure 2B) [88,113].
The first of these studies sampled over 400 intact env amplicons or near-full-length provi-
ral clones from blood CD4 T cells of seven chronic-SIVmac251-infected macaques on daily
ART for 9 months. Strikingly, only two pairs of clones were found to be identical from
a single animal, constituting 1.7% of the sampled proviruses [88]. The authors found a
similar paucity (three pairs, one triplicate) of identical clones in chronic SIVmac239X-infected
macaques sampled after 53–58 weeks of ART [88]. This study employed animals that
were well-progressed prior to initiating ART and assessed clonality by the SIV genetic
sequence, which may not rule out independent infections by the same SIV variant. A
second study assessed clonality by proviral integration site in blood and lymphoid tissues
among SIVmac239-infected macaques that initiated ART 1-month post-infection, a time-
frame similar to that of many cure-related NHP studies. Following 2 years of daily ART,
in 150 total clones, the mean fractions with identical SIV integration sites observed were
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4.8% and 8.7% in blood and lymphoid tissues, respectively [113]. These are significantly
less than the clonal frequencies observed in long-term suppressed PWH, which oftentimes
comprise 40–60% of proviruses sampled in blood [45,106,107,114,115], and suggest that
the NHP model may not entirely reflect the proviral landscapes of PWH treated with
long-term ART.

What could explain the relative paucity of clonal sequences in reservoirs of SIV-
infected NHPs? It is unlikely that this underlies a unique biology in NHPs, as homeostatic
processes that shape the reservoir are governed by parallel mechanisms in both humans
and NHPs [116]. The immune systems of both species are also exposed to similar recurring
antigens in the form of persistent β-herpesviral infections that drive effector memory T
cell expansion, such as those derived from cytomegalovirus (CMV) [117,118]. Differing
proviral landscapes may be more likely to be shaped by the condensed time window of
NHP studies (Figure 2B). Clonal skewing of the reservoir is the additive effect of both
negative selection by immune pressure and positive selection by antigen stimulation. The
imprint of these two processes is observed over years, if not decades, in the reservoirs of
PWH as opposed to those of NHP models that typically employ treatment windows of
1–2 years. If the duration of ART was prolonged in NHP studies, it is possible that some
proviral clones would expand to frequencies on par with those observed in PWH. The
longest study to date sampled single SIV proviral clones longitudinally in some animals for
up to 4 years of daily ART [24]. As in PWH, the frequency of identical sequences increased
progressively with time on ART, with identical sequences in the reservoir comprising a
mean of ~10% of sampled proviruses after 1 year of therapy and a mean of 20% when ART
was continued for up to 4 years, with some animals exhibiting clonal frequencies as high as
40% [24].

It remains to be determined whether lower frequencies of clonal sequences in SIV
are shaped in any way by inherent biological differences of the virus or host. Viral loads
at the time of ART initiation in untreated SIV infection can oftentimes exceed those of
HIV-1 by roughly 1 log [47,66,88]. A paucity of clonal sequences in treated SIV infection
could reflect, in part, viral dissemination in a more diverse array of CD4 T cell clonotypes
or higher contributions of polyclonal naïve CD4 T cells to the infected cell pool [119,120].
Regardless of the underlying nature, the studies above suggest that cure-related approaches
in the NHP model are evaluated on proviral landscapes that are markedly less clonally
skewed than those of long-term suppressed PWH. Other experimentally studied species
of NHPs may recapitulate the proviral landscapes of PWH more closely. For example,
pigtailed macaques are an additional yet less frequently employed NHP model of HIV-
1. An underappreciated aspect of these species is that they exhibit significantly higher
proportions of effector memory CD4 T cells across tissues when compared to those of rhesus
macaques [121], and these species may better model clonal expansion of the reservoir.

Lastly, one outstanding question is whether distinctions within the proviral landscapes
between NHPs and humans lead to differences in reservoir behaviors at the quantitative
level. Although SIV reservoirs in ART-suppressed NHPs are generally less clonal, particu-
lar studies unique to NHPs have the potential to shed light on the contribution of clonal
expansion to bulk reservoir size. In this regard, specific pathogen-free rhesus colonies
maintained by several of the national primate research centers are seronegative for persis-
tent herpesviruses such as CMV throughout life and exhibit a striking paucity of clonally
expanded effector memory CD4 T cells in circulation, even into late adulthood. Com-
parative studies that evaluate reservoir dynamics in the presence (CMV-seropositive) or
near absence (CMV-seronegative) of clonal proliferation could define how this mechanism
independently contributes to SIV persistence over proliferation induced by other stimuli.

6. Vesatolimod: A Case Study on the Impact of NHP Study-Related Variables on HIV-1
Cure-Related Outcomes

To illustrate how study-related variables, including viral inoculum, time to ART
initiation, and duration of ART before intervention, may have shaped the outcome of
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HIV-1 cure endpoints in NHP studies, we present the case of GS-9620 (Vesatolimod), a
TLR7 agonist with antiviral properties tested in multiple clinical and pre-clinical settings.
HIV-1 cure agents have broadly relied on two interdependent modes of action to facilitate
reservoir clearance: (1) reactivating latent SIV to allow infected cells to become visible to the
immune system, and (2) enhancing innate and adaptive immunity to eliminate these cells.
Compounds tested in early clinical trials exhibited the ability to reactivate latent HIV-1 but
did not effectively stimulate immune effector function and, in some cases, were associated
with immunosuppressive properties [86,122–125]. GS-9620 was one of the first single-agent
compounds discovered to promote both modes of action in vitro [126]. Based on these
antiviral properties, a study employing 21 adult male rhesus macaques was performed
by Lim et al. to assess the in vivo impact of GS-9620 on SIV reservoir clearance [10].
Macaques were infected intrarectally with SIVmac251 and began receiving daily ART 65 days
after infection. ART was continued for approximately 400 days, and the animals were
subsequently administered 10 doses of oral GS-9620 (0.05 or 0.15 mg/kg) every 2 weeks,
followed by a resting period of 3 months while maintaining ART. After the treatment
pause, GS-9620 was resumed for an additional nine doses at the same concentration and
frequency. Concurrently, a separate independent study employing GS-9620 was performed
on six male adult rhesus macaques by Del Prete et al. [58]. This study employed an
identical treatment regimen of two bi-weekly GS-9620 administration windows separated
by a prolonged resting phase but differed by several notable study parameters to that of
Lim et al.: (1) animals were inoculated with a barcoded SIV clone SIVmac239X instead of a
SIVmac251 swarm, (2) ART was initiated earlier, at 14 days post-infection, (3) investigators
waited longer to initiate GS-9620 treatment (550 vs. 400 days on ART), and (4) a portion of
the administrations were given at a higher dose (0.5 vs. 0.15 mg/kg). Both studies observed
GS-9620 to be bioactive, eliciting transient but robust induction of innate and adaptive
immunity [10,58]. Only the study by Lim et al., however, noted a virological impact.
GS-9620 administration in these animals exhibited transient increases in plasma viremia,
significant reductions in levels of total and inducible SIV proviruses, and, interestingly,
long-term remission in two out of nine animals when ART was discontinued. Thus, despite
a comparable bioactive response to GS-9620, SIV reactivation and subsequent clearance of
latent infected cells were only noted in one of these studies. A lack of virological impact
with GS-9620 alone was also noted in separate independent pre-clinical studies in SIVmac251
or SHIV-infected animals [60,127].

A relevant question to ask is whether study design differences contributed to the
diverging impact of GS-9620 on virological outcomes. It is possible that differences in
the inoculums of SIVmac239X (viral clone) versus SIVmac251 (viral swarm) may have
contributed, although the frequencies of total viral DNA at the baseline of the two studies
were comparable [10,58]. Other study-related variables influencing the virological impact
of GS-9620 may be related to the timing of ART initiation or the duration of ART prior to
administering the compound. These in turn could impact both the qualitative aspects of
the reservoir and the degree of immune and tissue damage sustained during untreated
SIV infection. While reservoirs in either study were not assessed for intactness or clonality
at the single-genome level, in clinical trials, GS-9620 has been administered in cohorts
with known distinctions among proviral landscapes and differing degrees of immune
dysfunction, and these studies were associated with diverging virological responses to
GS-9620. A benefit of these studies is that all study parameters between the two were
nearly identical, with the important exception of cohort composition: one study enrolled
typical HIV-1 progressors, and the other study enrolled HIV-1 controllers (HIV-1 RNA,
50 to 5000 copies/mL at ART initiation). HIV-1 control is most consistently associated
with immunity, which is thought to be superior to that of typical progressors [128–130].
Moreover, while HIV-1 controllers as a group are heterogenous, reservoirs in subjects that
control HIV-1 below detection limits (i.e., elite controllers) are significantly smaller and
are qualitatively different at the single clone level than those of typical progressors [131].
In the cohort of HIV-1 controllers, GS-9620 was associated with the induction of immune
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activation, reduced frequencies of intact proviral HIV-1 DNA, and modest but significant
delays in viral rebound when ART was discontinued. In contrast, no significant change
in HIV-1 reservoir size was seen in the cohort of typical progressors on ART in spite of
similar immune induction with GS-9620 [64]. The two studies collectively suggest that host
and virological characteristics may significantly influence the outcome measurements of
HIV-1 cure studies. In all studies that have employed GS-9620, the general consensus on
the antiviral action of the drug is that it alone did not mediate a consistent impact on viral
reservoirs, although it consistently exhibits a transient robust stimulation of innate and
adaptive immunity. Thus, employing GS-9620 in combination with other agents remains a
promising and viable treatment strategy.

7. Concluding Remarks

The utility of NHPs as pre-clinical models in HIV-1 cure studies ultimately depends on
how closely they can inform safety and efficacy measures in clinical trials. In this respect,
they are unmatched when compared to other animal models of HIV-1 infection. It is im-
portant to note, however, that reservoirs in NHPs generally differ in important qualitative
respects when compared to those of PWH. In general, cure-related studies in NHPs are
conducted on reservoirs that are more genetically intact, less clonally skewed, and exhibit
higher rates of natural decay during typical intervention windows (Figures 2 and 3). While
the degree to which species-inherent virus/host factors contribute to these distinctions is
currently unknown, they are likely to be shaped significantly by the condensed timeframe
of NHP studies. ART is typically initiated sooner, and animals are virologically suppressed
for shorter amounts of time before receiving interventions. Because these variables can
impact both quantitative and qualitative aspects of the reservoir and are dictated experi-
mentally by the NHP investigator, we offer the following recommendations in study design:
(1) While there is no general standard for when to precisely initiate ART in NHP studies,
the timing of ART should be considered within the context of each particular study. For
those seeking to establish the proof-of-principle of an approach, it is more beneficial to
initiate ART between Fiebig II and VI (1–8 weeks post-infection) but prior to chronic in-
fection. On the other hand, for studies seeking to model the translatability of a particular
approach, it is more relevant to initiate ART in individuals with chronic SIV infection. If
an efficacious signal is observed in this setting, these therapies may be the most clinically
relevant given that persistent reservoirs formed with ART initiation during chronic in-
fection are likely more difficult to clear therapeutically. (2) Especially if study timelines
cannot accommodate ≥2 years of full virologic suppression prior to intervention, careful,
no-treatment control groups should be employed and evaluated at parallel timepoints
of treatment groups to distinguish natural versus interventional decay across a given
time window.

Lastly, we highlight several unanswered questions relating to HIV-1 cure therapies,
with particular relevance to the NHP model. First, it is currently unknown whether viral
DNA harbored in other cell types, such as myeloid cell populations, impacts reservoir
dynamics and whether they are equally sensitive to therapeutic modalities. In NHP studies,
it is not uncommon to quantify viral DNA by whole PBMC or whole tissue rather than
purified CD4 T cells. While the contribution of myeloid populations to the replication-
competent reservoir remains controversial [132–134], persisting viral DNA can be detected
in these cell types of both PWH and NHPs and may be capable of viral outgrowth [135–141].

Finally, an important but unanswered question remains: how do the noted qualitative
differences in reservoirs of NHPs relate precisely to quantitative metrics evaluated in cure
studies? A clinical study of PWH who were ART suppressed for over 2 decades found
that reservoirs of subjects who maintained viral control after discontinuation of therapy
exhibited robust signatures of immune selection, being dominated by large proviral clones
located in transcriptionally silent regions of the host genome [45]. This may suggest that, as
a result of immune selection, the inducibility of the reservoir decreases over time, and given
that NHP studies are carried out under condensed timeframes, pre-clinical testing of cure
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therapies may be performed under reservoirs that are more inducible than those of long-
term suppressed PWH. It is important to point out, however, that viral outgrowth as a result
of treatment interruption (above study) is inherently different from inducibility mediated
by an exogenous stimulatory agent. Interestingly, a recent study by Mcmyn and colleagues
found that the ex vivo inducibility of the reservoir in PWH does not decay between a mean
of 6 and 22 years of ART and may even increase as a result of infected cell proliferation [2].
This study, however, did not evaluate inducibility during the first 1–2 years of ART, a
window of time often evaluated in pre-clinical testing of cure-related therapies. Thus, a
relatively straightforward but clinically meaningful experiment would be to evaluate the
inducibility of the reservoir at earlier timepoints that are associated with more rapid decay
rates of intact proviral DNA. These questions notwithstanding, it is undoubtedly certain
that NHPs will continue to be the most accurate pre-clinical model to inform the safety and
efficacy of future HIV-1 cure-related therapies to be tested in clinics.
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