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Abstract: Tibetan pig is a geographically isolated pig breed that inhabits high-altitude areas of
the Qinghai–Tibetan plateau. At present, there is limited research on viral diseases in Tibetan
pigs. This study provides a novel metagenomic exploration of the gut virome in Tibetan pigs
(altitude ≈ 3000 m) across three critical developmental stages, including lactation, nursery, and
fattening. The composition of viral communities in the Tibetan pig intestine, with a dominant
presence of Microviridae phages observed across all stages of development, in combination with
the previous literature, suggest that it may be associated with geographical locations with high
altitude. Functional annotation of viral operational taxonomic units (vOTUs) highlights that, among
the constantly increasing vOTUs groups, the adaptability of viruses to environmental stressors
such as salt and heat indicates an evolutionary response to high-altitude conditions. It shows that
the lactation group has more abundant viral auxiliary metabolic genes (vAMGs) than the nursery
and fattening groups. During the nursery and fattening stages, this leaves only DNMT1 at a high
level. which may be a contributing factor in promoting gut health. The study found that viruses
preferentially adopt lytic lifestyles at all three developmental stages. These findings not only elucidate
the dynamic interplay between the gut virome and host development, offering novel insights into the
virome ecology of Tibetan pigs and their adaptation to high-altitude environments, but also provide
a theoretical basis for further studies on pig production and epidemic prevention under extreme
environmental conditions.

Keywords: viral metagenomics; Tibetan pig; gut virome; vAMG; phage lifestyle

1. Introduction

The Tibetan pig, endemic to the Chinese plateau region, exhibits distinct biological
traits that facilitate its acclimatization to the harsh environment of the Tibetan Plateau, char-
acterized by low oxygen levels, cold temperatures, high altitudes, and heightened radiation.
Serving as a consistent meat source for plateau inhabitants, this breed has evolved into a
fundamental economic cornerstone within plateau-based agriculture [1,2]. The gastroin-
testinal microbiota of the Tibetan pig is pivotal for its health, profoundly influencing its
growth and overall well-being. Genomic-level cluster analyses have elucidated that Tibetan
pigs, adapted to this elevated terrain, exhibit marked differences in genetic architecture
compared to other porcine breeds. This indicates a potential interplay between their unique
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genetic attributes and the composition as well as functionality of their gut microflora [3,4].
The realm of fecal virome delves into characterizing intestinal viral communities and their
implications in host health and pathogenesis, shedding light on the role of viruses in animal
development, health, and their possible association with diseases [5,6]. The 16S rRNA
amplicon sequencing technique, an established tool for probing microbial community struc-
tures, offers an exacting approach to analyze the gut microbiota of Tibetan pigs. Recent
investigations using 16S rRNA amplicon sequencing of the porcine cecum microbiota have
unveiled disparities between Tibetan and PIC (lean) pigs. Specifically, the Tibetan pigs
showcased an augmented presence of Bacteroidetes and Spirochaetota, associated predom-
inantly with cellulose degradation, while the PIC pigs displayed a higher abundance of
Proteobacteria, chiefly characterized by Campylobacter and Helicobacter [3]. Through amplicon
sequencing analysis of the colonic contents of Tibetan and Yorkshire pigs, it was discerned
that the bacterial community within the colon of the Tibetan pigs exhibited greater richness
compared to the Yorkshire pigs. Moreover, the relative abundance of Lactobacillus and
Bifidobacterium, genera known for their association with enhanced disease resistance, was
markedly elevated in the Tibetan pigs [7]. Concurrently, research indicates an upregulation
of gut microbial genes associated with propionic acid metabolism and unsaturated fatty
acid biosynthesis in Tibetan pigs residing on elevated terrain. This underscores the potential
adaptive significance of the distinct intestinal microbiota of Tibetan pigs to high-altitude
conditions [8]. However, a knowledge void persists concerning the intestinal virology of
Tibetan pigs, necessitating comprehensive exploration in this domain.

Weaning, a crucial phase in the growth cycle of pigs, involves a switch from lactose
to plant-based carbohydrates in the diet [9]. The incorporation of dietary fiber leads to
alterations in the catabolic pathways of piglets, ultimately impacting the abundance and
diversity of their gut microbiota [10,11]. In a study focusing on the virome of wasting piglets
aged 0 to 9 weeks, it was discovered that weaning facilitated the transition of pathogenic
viruses from enterovirus G and rotaviruses to porcine sapovirus [12]. In addition, Smol’ak
et al. identified that weaners possess fifteen viral genera significantly higher than the
four found in fattened pigs using viral metagenomics [13]. In a separate investigation,
Sachsenröder and colleagues demonstrated that the proportion of porcine viruses in the
intestinal virome decreased with increasing pig age, whereas the opposite was observed
for phages [14]. This suggests a potential correlation between the porcine enteric virome
and age [15,16]. Nonetheless, there is still a gap in the research on the intestinal virome of
weaned Tibetan pigs.

Whether a mild phage infects a host via a lysogenic or lytic cycle depends on the envi-
ronment; stressors such as DNA damage or nutritional deficiencies can induce prophages
to enter the lytic cycle, with phages favoring the lysogenic cycle in the intestinal tracts of
healthy young adults, whereas, in the intestinal tracts of centenarians, concomitant inflam-
matory stimuli and nutritional deficiencies may induce phages to switch more frequently
to the lytic cycle [17]. Host abundance also influences the mode of infection; when bacteria
are more abundant, phages prefer to infect bacteria via the lytic cycle. Host abundance
also affects phage infection, with phages preferring to infect bacteria via the lysogenic
cycle when bacterial numbers are high. In the late stages of infection, when the amount
of bacteria decreases and the phage faces the risk of not finding a new host, it will switch
to the lysogenic cycle state, coexisting with the host for a long time and retaining the
ability to reproduce [18]. In extremely harsh environments such as the deep sea, phages
are more likely to survive by infecting the host through the lysogenic cycle [19]. In the
normal intestine, phages generally integrate their genomes into bacteria via the lysogenic
cycle [20,21].

Phages have the ability to encode viral Auxiliary Metabolic Genes (vAMGs), which
play an important role in phage–host interactions. In recent years, an increasing number of
studies have revealed the important role of vAMGs in altering metabolic and biochemical
processes. In 2015, Maaroufi and Levesque identified a vAMG in Bacillus subtilis phages
that encodes glycoside hydrolase family 32 [22], which may be involved in the metabolism
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of fructose oligosaccharides (FOS), further improving gut function and repairing gut
damage [23]. Mihnea R. et al. found that phages in the gut of individuals at high risk
of developing rheumatoid arthritis disease can encode unique vAMGs associated with
anti-cyclic citrullinated protein antibodies and carry clusters of transferase enzymes that
can affect bacterial cell wall polysaccharide and biofilm formation, thereby participating in
immune evasion and influencing immune regulation and disease progression [24].

This paper aims to fill the research gap in the study of the intestinal virome of Tibetan
pigs at different age groups. Through conducting viral metagenomic and bioinformatic
analyses on Tibetan pigs from various age groups in the Tibetan region, the study uncovers
the relationship between the diversity of intestinal viruses and the growth and development
of Tibetan pigs. Additionally, through comparing the distribution and diversity of porcine
intestinal viruses among different samples and predicting host information for intestinal
phages, this study uncovers differences in the composition of intestinal viruses and the
distinct lysogenic strategies employed by phage hosts. This research represents the first
systematic analysis of the characteristics of intestinal viruses in Tibetan pigs at different
developmental stages, contributing to filling a critical gap in this field. It offers a theoretical
foundation for the production, breeding, and feed compatibility of Tibetan pigs and presents
new avenues for more in-depth research.

2. Materials and Methods
2.1. Animal Management and Sample Collection

The experiments were conducted in a randomized block design with 5 piglets at the
stage of lactation (L), 5 pigs at the stage of nursery (N), and 5 pigs at the stage of fattening
(F). Pigs were housed with 5 pigs per pen divided into 3 blocks. Pigs had free access to
food and clean water.

In this study, five fecal samples were collected from pre-weaned piglets, five fecal
samples were collected from the floor of the pens on day 7 of weaning of nursery pigs,
and five fecal samples were collected from fattening pigs. To avoid contamination of the
fecal samples, the floor of the pens was cleaned prior to sampling, and the sampling time
was 1–2 h of peak defecation per day or morning feeding. Fecal samples were stored at
−20 ◦C for one week. Our experiment was approved by the Institutional Animal Care and
Use Committee of Huazhong Agricultural University to meet the requirements of animal
ethical welfare (HZAUSW-202400021).

2.2. Metagenomes Collection and Sequencing

Fifteen samples were enriched by the precipitation enrichment method, and 1.5 g of
fecal samples were separately suspended in 15 mL of sterile PBS buffer, then subjected
to vigorous oscillatory mixing for 5 min. The mixture was subsequently incubated at a
temperature of 4 ◦C for 30 min. The suspension was subjected to centrifugation at 4 ◦C
and 4500 rpm for 10 min to separate the larger particles. Subsequently, the supernatant
was transferred to a new EP tube and centrifuged again under the same conditions. Af-
terwards, filter the supernatant through a 0.45 µm PVDF membrane (Millipore, USA) to
exclude eukaryotic, bacterial, and cell-sized particles. The precipitate was subjected to
ultracentrifugation at 4 ◦C and 180,000× g for 3 h. Then, it was resuspended in 400 µL of
sterile PBS and incubated with 8 U of TURBO DNaseI (Ambion, USA) and 20 U of RNase
A (Fermentas, Canada) for 30 min at 37 ◦C.

Subsequently, viral nucleic acids were extracted using the QIAamp MinElute Virus
Spin Kit (Qiagen, Germany) in accordance with the manufacturer’s instructions and eluted
into RNase-free water. The resulting high-quality viral DNA samples (OD260/280 = 1.8
to 2.2, OD260/230 ≥ 2.0) were used to construct sequencing libraries for next-generation
sequencing.

Metagenomic libraries were prepared following TruSeqTM Nano DNA sample prepa-
ration Kit from Illumina (San Diego, CA, USA), using 1 µg of total DNA. DNA end repair,
A-base addition, and ligation of the Illumina-indexed adaptors were performed accord-
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ing to Illumina’s protocol. Libraries were then size-selected for DNA target fragments
of ~400 bp on 2% Low-Range Ultra Agarose followed by PCR amplification using Phu-
sion DNA polymerase (NEB) for 15 PCR cycles. All samples were sequenced by the
Illumina NovaSeq 6000 platform (150 bp × 2, Shanghai Biozeron Biotechnology Co., Ltd.,
Shanghai, China).

2.3. Metagenomic Assembly

The quality control of metagenomic raw reads was performed using the Trimmo-
matic v0.36 [25] with default parameters. The sequence data containing the host genome
were then removed by bowtie2 [26–28], resulting in high-quality viral DNA reads for
subsequent analysis.

Meanwhile, the high-quality reads were assembled utilizing MegaHit v1.1.1 [29] with
the parameter “--min-contig-len 200” to generate contigs for each sample. Afterwards, the
contig with a length exceeding 2000 bp was chosen to identify the virus through IMG/VR
v4, VirFinder v1.1, and VirSorter2 v2.0 [30–32] tools with the database.

2.4. Virus Operational Taxonomic Unit (vOTU) Clustering and Annotation

All curated viral contigs with an identity of ≥95% and a coverage of ≥85% were
dereplicated using Mummer software [33]. The longest contig sequences for each cluster
were chosen as representative sequences for the corresponding vOTUs. To verify the
novelty of the vOTUs, the vOTUs sequences were compared with the IMG/VR virus
database through blastn v2.0.6 software [34]. Following this, the species identification was
established by geNomad software v1.8.0 [35], and PhaBOX (https://phage.ee.cityu.edu.
hk/) [36] was employed to predict the host information of the phage. The taxonomic level
of the sample was determined using the geNomad results, including phylum, class, order,
and family. Virus–host correlation was subsequently analyzed using the PhaBOX results.

After the initial analysis of vOTUs, functional annotation of vOTUs and their corre-
sponding contigs was required. The prediction of open reading frames (ORFs) for vOTUs
was undertaken through METAProdigal v2.6.3 [37]. A search was then conducted on
the gene set, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database was
utilized with kofam v1.2.0 [38] to recognize proteins and obtain their functional annotations.
Additionally, structural and functional annotations were obtained through BLASTP-based
searches employing DIAMOND (v0.9.22.123) [39] against Gene Ontology (GO) database,
NCBI NR database, Swiss-Prot database [40], and eggNOG v5.0 [41].

2.5. Fluctuation Trend of Variables and Function Identification of vOTU

To assess the variations in viral operational taxonomic units (vOTUs) across different
growth stages of piglets, we analyzed dissimilarities by assessing coverage values. The
coverage value could be counted as the sequence length of vOTUs covered by reads in
each sample as a proportion of the total length of vOTUs. Kruskal–Wallis tests were used
to appraise the distribution of every vOTU among the three groups. In case of significant
dissimilarities, further Dunn’s tests were conducted to ascertain pairwise significance.
The vOTUs were classified into six categories: singleton, constant, continuous growth,
initial growth followed by decline, continuous decline, and initial decline followed by
increase. An enrichment analysis was conducted on the annotated vOTUs outcomes, with
an emphasis on retaining q-values.

2.6. The Identification and Analysis of Viral Auxiliary Metabolic Genes (vAMGs)

In order to identify putative viral auxiliary metabolic genes (vAMGs) that may fa-
cilitate host adaptation to the environment, DRAM-v [42] workflow was performed on
viral contigs using default parameters. As required, CheckV v0.7.0 [43] was employed to
eliminate vOTUs in regions with host contamination, and then all the identified vOTUs
were annotated through VirSorter2 (--prep-for-dramv) to produce the affi-contigs.tab file.
DRAM-v assesses the presence of viral genes both upstream and downstream of the pu-
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tative vAMGs, generating an ‘auxiliary score’ to measure the confidence of the vAMGs
prediction. By default, a gene is considered a potential vAMG if the auxiliary score is less
than 4, has been assigned a metabolism flag (M), and has not been assigned an attachment
flag (A), viral flag (V), or transposon flag (T). Those without gene IDs or gene descrip-
tions were also discarded, and annotation matches for KEGG were present for all retained
vAMGs. Following the previous reports [44–46], we manually removed specific metabolic
pathways that would be expected in viruses, including nucleotide metabolism, glycosyl
transferases, and ribosomal proteins.

2.7. Methods of Lysogenic and Lytic Lifestyle Identification

Phage lifestyle prediction was performed using BACPHLIP v0.1 [47] and PHATYP
v3.0 [48] software. The input sequences were ensured to be annotated as phages by
geNomad. According to the different needs between the software, the BACPHLIP input
sequences were also verified as complete by CheckV v0.7.0. Results labelled as low-quality
or unclassified were excluded and the relative abundance difference between lysogenic
and lytic was counted between each group.

2.8. Statistics Analysis

R packages vegan (version 2.6.2) and tidyverse (version 1.3.1) were used to calculate
alpha diversity (Richness, Shannon, and Simpson) to reflect the diversity of microbial
communities. The Kruskal–Wallis test was employed to test for differences between the
groups. Additionally, the beta diversity was evaluated by implementing non-metric multi-
dimensional scaling analysis (NMDS) and principal coordinate analysis (PCOA). One-way
ANOVA calculations and plotting for species between groups were analyzed using prism
8.0; the rest of the plotting was completed via ggplot2.

To describe the relative abundances of viruses, TPM (Transcripts Per Kilobase of exon
model per Million mapped reads) values were used. The RPK (Reads Per Kilobase) values
of contigs were calculated, and each contig was standardized. Quality-controlled reads
from each sample were mapped to viral operational taxonomic units (vOTUs) using BWA
MEM (https://github.com/lh3/bwa, default parameters). To standardize the sequencing
depth, the number of reads was divided by the total number of reads for each sample [49].
The equation is as follows:

PM =
Ni
Li

× 106/∑n
1

(
Ni
Li

)
where Ni epresents the abundance of each vOTU, Li epresents the length of each vOTU,
and ∑n

1

(
Ni
Li

)
epresents the sum of values normalized by length.

3. Results
3.1. Sequencing Data and Quality Control

In this study, fecal samples were collected for viral metagenomics sequencing from
five 15-day-old unweaned piglets, five 21-day-old post-weaning nursery pigs, and five
150-day-old fattening pigs. The sequencing data volume of each sample was 10 G, and a
total of 150 G of original data were generated. Through the quality control of the sequencing
quality of the original data and removal of the host genome fragment, it was found that the
sequencing positive rate of the viral metagenomics was greater than 85% and the library
construction quality was good (Supplemental Table S1).

3.2. Assemble of Metagenomic Data and vOTUs Construction

Considering the potential for false-positive errors arising from read-based categorical
annotations, we employed the Megahit algorithm for the assembly of quality-filtered reads
in this investigation. Pertinent assembly metrics, as delineated in Supplemental Table S2,
will inform subsequent annotation analyses with heightened precision. Notably, the assem-

https://github.com/lh3/bwa
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bled metagenomic datasets in this investigation exhibited commendable contiguity, with
an N50 exceeding 1000 bp. Concurrently, the average assembly across the datasets revealed
in excess of 30,000 viral samples, underscoring the robustness of the dataset for ensuing
viral taxonomic analyses.

To enhance the precision of the viral sequence annotations, we obtained potential
viral sequences through IMG/VR, VirFinder, and VirSorter2. A total of 46,562 contigs were
retained (Supplemental Figure S1). During sequence alignment via the MUMmer software
v2.1 suite, the sequences were recognized as a single vOTU and were amalgamated if
they displayed a sequence similarity greater than 95% and the aligned length constituted
over 85% of the complete sequence length. Implementing this integration criterion yielded
40,433 vOTUs with a mean length of 4898 bp. Subsequently, the blastn software v2.9.0
was employed to align the 40,433 vOTUs with the IMG/VR virus database. Thresholds of
≥90% similarity and ≥5% coverage were set to delineate “reported viruses”; sequences
failing to meet these criteria were classified as “unreported viruses”. This analysis resulted
in the identification of 2318 “reported virus” fragments within the Tibet pig gut virome,
corroborating the annotation outcomes derived from the three aforementioned tools.

3.3. Taxonomy Composition of Tibetan Pig Gut Virome

The taxonomy annotation from the geNomad software is shown in Figure 1A,B. The
viruses belonging to the Microviridae family demonstrated an abundance exceeding 57.7%
across all 15 samples, positioning them as the most predominant viral entities in this dataset.

Alterations in Predominant Microbial Families: We employed one-way ANOVA to
elucidate the dynamics within the major microbial families. As illustrated in Figure 1C,
pronounced differences (p < 0.05) were detected in the Petitvirales Unclassified, Cirlivirales
Unclassified, Caudoviricetes Unclassified, and Mulpavirales Unclassified families. Specifi-
cally, within the Petitvirales Unclassified family, the expression level of the lactation group
markedly surpassed that of the nursery group and fattening group. Similarly, in the Cirlivi-
rales Unclassified family, the expression of the lactation group was significantly elevated
compared to the fattening group. Furthermore, within the Mulpavirales Unclassified family,
the lactation group exhibited a significantly enhanced expression level relative to both the
nursery and fattening groups.

Alterations in Dominant Viral Phyla: Comprehensive analysis of the major microbial
phyla revealed pronounced discrepancies within Uroviricota, as presented in Figure 1D
(p < 0.05).
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Figure 1. Results of DNA virus taxonomy composition across three developmental stages. (A,B) Rela-
tive abundance distribution at the virus phylum level and virus family level. (C) One-way analysis of
variance (ANOVA) for the seven most abundant virus families at the family level. The shapes of the
points vary according to three age groups. The number in the top right corner represents the p-value
from one-way ANOVA. When the difference is significant (p < 0.05), pairwise t-tests are performed
between groups; (*): pt < 0.05, (**): pt < 0.005 (D) One-way analysis of variance (ANOVA) for the
seven most abundant virus phylumat the phylum level. (E) Alpha diversity analysis. Different colors
represent data from different age groups. (F) Principal Coordinates Analysis (PCoA) at the phylum
level. Different colors represent data from different age groups.

3.4. Analysis of Diversity Differences between Samples Based on vOTUs

To discern the variations among the samples, we computed the Richness, Shannon,
and Simpson diversity indices. We depicted the comparative analysis of these parameters
across samples employing box-and-line plots; the ensuing illustrations elucidate the results
comprehensively. As inferred from the box plots (refer to Figure 1E), there is a discernible
trajectory wherein the viral diversity in the intestinal tract of Tibetan pigs initially esca-
lates and subsequently attenuates as the pigs advance in age. Such a trend suggests a
conceivable correlation between the intestinal viral consortium of Tibetan pigs and their
developmental phase.

Additionally, beta diversity analysis was employed to discern inter-sample disparities
in viral diversity. Segmented by respective age brackets, this study harnessed PCoA
(principal coordinate analysis) and NMDS (non-metric multidimensional scaling analysis)
for a more granular quantitative assessment. As depicted in Figure 1F, the samples from
distinct age brackets manifested salient clustering tendencies within both the PCoA and
NMDS analytical frameworks, categorically partitioning them into the pre-weaned piglet,
nursery pig, and fattening pig clusters. Consistent with the results of the Richness, Shannon,
and Simpson diversity indices, this further confirms that the diversity of viruses in the
intestinal tracts of Tibetan pigs of different ages differed significantly and may be related to
their growth and developmental processes.

3.5. Host Prediction of Tibetan Pig Gut Virome

Host prediction: To better understand the presence of viruses in the intestine, we
predicted the hosts of the virus by PHABOX. As shown in Figure 2, the Sankey plot
reveals the dominant hosts of the five phages. The three highest-ranking bacterial genera
are Lactobacillus, Streptococcus, and Flavobacterium, with the species including Lactobacillus
fermentum, Streptococcus gordonii, and Flavobacterium columnare.
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VirusFamily

Herelleviridae

Rountreeviridae

Schitoviridae

Salasmaviridae

Straboviridae

Herelleviridae

Rountreeviridae

Salasmaviridae

Lactobacillus

Flavobacterium

Streptococcus
Schitoviridae

Straboviridae

Figure 2. Sanky plot of the host prediction results from PhaBOX. On the left are viral families, and on
the right are predicted host genera at the genus level.

3.6. Functional Annotation and Functional Enrichment Analysis of vOTUs

Given the pronounced disparities in the viral diversity within the gastrointestinal
tracts of Tibetan pigs across three distinct age brackets, and the correlations with their
growth and physiological maturation, our investigation delved deeper into this observation
at the gene functional dimension. To achieve this, we employed the METAProdigal tool
for the genetic annotation of all the vOTUs fragments, leading to the identification of
287,705 coding sequences. Subsequently, these inferred gene sequences underwent blastx
alignment against the NR, Swiss-Prot, eggNOG, KEGG, and GO databases, with the intent
of gleaning functional insights pertaining to the respective viral genes. As demonstrated
in Supplemental Table S3, functional annotations based on these five different protein
databases successfully provided annotations for 32.78% of the vOTU genes, providing a
database for further comparative analysis.

To elucidate the potential functional ramifications of vOTU genes on Tibetan pigs,
this study leveraged the COG, GO, and KEGG databases for a comprehensive functional
annotation analysis of the annotated vOTU genes (Figure 3A–C). As illustrated in Figure 3A,
the annotation analysis using the COG database revealed a total of 26 functions. The
predominant functions encompassed aspects of viral replication, recombination, and repair-
related functional proteins. These were closely trailed by functionalities pertinent to the
biosynthesis of cellular membranes and envelope structures. Such findings suggest a strong
functional affinity of the vOTU genes primarily with biometabolic processes.

In the subsequent phases of this study, we utilized the KEGG database to annotate the
signaling pathways in which the vOTU genes are involved, and to delve into their specific
functional mechanisms. As illustrated in Figure 3B, annotation via the KEGG database
yielded 20 pivotal signaling pathways. Among these, the metabolic pathway emerged
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as the most enriched, with 2800 hits, trailed by the nucleotide metabolic pathway (1592),
pyrimidine metabolic pathway (1562), DNA replication pathway (1051), and homologous
recombination (992). These findings align with the results from the COG analysis, rein-
forcing the notion that vOTUs’ genes predominantly engage in processes related to viral
replication and metabolism.

In the concluding analyses, the GO database was employed to functionally enrich
the biological processes, molecular functions, and cellular localizations associated with
vOTU genes, as depicted in Figure 3C. With respect to the biological processes, the vOTU
genes predominantly participate in metabolism, cellular growth and development, and
interspecific communication. From a molecular function standpoint, these genes are prin-
cipally associated with catalytic activity, molecular binding, and small-molecule activity.
As for cellular localization, the vOTU genes are predominantly localized within viruses
and cellular environments. Synthesizing insights from both the KEGG and COG databases,
it is evident that the vOTU genes situated within metabolic pathways often manifest cat-
alytic functions through small-molecule interactions. To delve deeper into the metabolic
function of vOTU genes and their influence on Tibetan pigs across various age groups, we
conducted a statistical analysis on the coverage of each vOTU across the three cohorts using
the Kruskal–Wallis test. For those samples exhibiting pronounced differences, pairwise
significance was assessed using Dunn’s test. Based on this methodology and as presented in
Supplemental Table S4, the vOTUs can be delineated into six distinct categories: a. vOTUs
that manifest exclusively at a specific age stage of Tibetan pigs; b. vOTUs that are present
across all three growth stages without substantial variations in coverage; c. vOTUs whose
coverage escalates significantly as Tibetan pigs grow; d. vOTUs with a marked increase
in coverage during the pigs’ growth, subsequently followed by a significant decrease; e.
vOTUs that consistently demonstrate a notable decrease in coverage throughout the growth
phases of Tibetan pigs; and f. vOTUs that initially show a pronounced decrease in coverage
but subsequently exhibit a significant upsurge as the pigs mature. From this categorization,
a total of 40,435 vOTUs were apportioned across the six categories. Notably, aside from the
category with stable coverage, category ‘c’—representing continuous growth—has the most
significant representation (Supplemental Table S4). Secondly, an additional annotation
analysis was performed on the grouped vOTUs, and the calculated enrichment levels and
q-values were retained, as depicted in Figure 3D,E.

In Figure 3D, regarding the selected results from the Gene Ontology (GO) level 3
terms, significant enrichment was observed in group a (manifesting exclusively at a specific
age) for terms such as ‘killing of cells of other organism,’ ‘cell killing,’ ‘modulation of
process of other organism’, and ‘immune response’. The host cell surface binding functions
were enriched in the growth followed by decline group (group d), indicating a putative
upregulation of viral invasion function after weaning. In the continuous decline group
(group e), enrichment in the function ‘viral terminase’ complex was noted. The decline
followed by rise group showed enrichment in the ‘cell aggregation’ and ‘cell adhesion’
functions.

In Figure 3E, the selected results from the Gene Ontology (GO) level 4 terms demon-
strated notable enrichment (p < 0.05) regarding the terms related to ‘response to salt’ and
‘response to heat’ in the continuous growth group (group c), suggesting that viruses ex-
hibiting sustained growth across the growth stages possess better environmental tolerance.
‘Aggregation of unicellular organisms’ and ‘cell-substrate adhesion’ were enriched in the
decline followed by rise group (group f).
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Figure 3. Functional annotation analysis of intestinal virome. (A) Result of Cluster of Orthologous
Groups (COG) functional annotation. (B) Result of Kyoto Encyclopedia of Genes and Genomes
(KEGG) functional annotation. (C) Annotation result at the level 2 of Gene Ontology (GO). (D,E) Re-
sult of GO enrichment based on the patterns of vOTUs categorized into six subgroups. Background
genes include all genes, and foreground genes consist of genes within each subgroup. In Level 4,
group e did not show a significant presence.

3.7. Auxiliary Metabolic Genes Identification from Tibetan Pig Gut Virome

DRAM-v software v1.5.0 was used based on annotations from the KEGG database,
and five putative vAMGs were identified from the thirty-eight fragments (Figure 4A,B and
Supplemental Table S5). After calculating the cumulative TPM to determine the relative
abundance for each sample, the sum value was used to represent the vAMGs’ abundance
across different growth periods. The proportions of the five vAMGs are as follows: DNMT1
(31%), queD (23%), GCH1 (23%), queC (16%), and NAMPT (5%) (Figure 4A). It can be
visualized from the results that the lactation group has more abundant vAMGs than the
nursery and fattening groups. Profiles of vAMGs, including queD, GCH1, and queC, were
mainly retained in the lactation stage, while DNMT1 presents at certain levels at each stage.
Meanwhile, four putative metabolic pathways were found to be related to the vAMGs,
including cysteine and methionine metabolism, folate biosynthesis, cofactor biosynthesis,
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and nicotinate and nicotinamide metabolism (Figure 4B). A similar decreasing trend with
age growth was observed.
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Figure 4. Comparative analysis of vAMGs with phylogeny. (A) Heatmap displaying the standardized
total Transcript Per Million (TPM) sum for each sample entry. Heatmap color intensity after summing
and applying log10 to all values. Upper panel represents metabolic annotated genes by KEGG, while
lower panel represents annotated pathways. (B) Positions of vAMGs in the virus gene, exemplified
by 10 vOTUs. (C) Phylogenetic analysis of the DNMT1 obtained in this study compared to others
from bacteria. The results are categorized into clades represented by four different colors, with the
Tibet sample labeled in red. The image was modified by iTOL.

The potential origins of vAMGs can be traced through the analysis of vAMG phylo-
genetic trees (Figure 4C). The host of DNMT1 associated with cysteine and methionine
metabolism was predicted. Phylogenetic analysis showed that viral DNMT1 from the Tibet
sample clustered with DNMT1 from Phycisphaerales and Flavobacteri, indicating that the
origin of this vAMG may be traced back to phages infecting these bacteria.
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3.8. Phage Lifestyle Identification Results

To ensure the accuracy of our predictions, two software programs, PHATYP and
BACPHLIP, were employed. After data pre-processing, 27,945 vOTUs identified as phage
sequences by geNomad were entered into the PHATYP software, of which 5079 vOTUs
were further identified as complete by checkV and entered into the BACPHLIP software.
As illustrated in Figure 5, despite the differences in the proportion of temperate phages
between the two software outputs, similar trends were found between the samples. The
lytic phages found dominated the composition in both outputs, and the summed TPM
value of the lytic phages was significantly higher than that of the temperate phages within
the three groups (p < 0.001). A comparison of the TPM totals for each group revealed that
the mean and variance of the abundance of temperate phages in the nursery group were
smaller than those in the lactation group, and the distributions of the conservation and
fattening groups were roughly the same. The Kruskal–Wallis test yielded an insignificant
p-value (p = 0.1212).
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Figure 5. Results of lysogenic and lytic lifestyles prediction and abundance calculation. (A) Predicted
phage lifestyles by BACPHLIP and PHATYP. The x-axis represents the proportion of vOTUs count rel-
ative to the total. (B) Box plots for each development stage representing the sum of log10-transformed
TPM values of vOTUs in 5 samples. t-tests are employed to detect differences between each group of
temperate and virulent. ***: p < 0.001 (C) Box plots of lytic abundance across three developmental
stages. The box plots display the distribution of lytic abundance across three developmental stages.
The Kruskal–Wallis test result, with a p-value of 0.1212, indicates no significant difference in lytic
abundance among the stages (p > 0.05). L: lactation group; N: nursery group; F: fattening group.

4. Discussion

Research on the genomic characterization of species in unique environments has
been a longstanding focus. A recent study on Tibetan humans and Tibetan pigs com-
pared samples from different altitudes using 16S-based diversity analysis, revealing unique



Viruses 2024, 16, 606 13 of 18

gut bacteriomes and host adaptation events in high-altitude conditions [8]. A previous
study conducted metatranscriptomic sequencing of fecal samples from 56 bird species and
91 small mammals, including shrews, rats, hamsters, and pikas, to characterize the RNA
virome. In this study, 12 vertebrate RNA viruses were identified, exhibiting less than 40%
amino acid identity to known viruses [50]. Another study focused on the viromes of her-
bivorous animals, including camels, cattle, and donkeys, in the northwest plateau of China,
revealing diversity differences among regions and species [51]. These findings underscore
the potential for Tibetan pigs in the Qinghai–Tibetan Plateau region to possess distinct
intestinal virome compositions compared to domestic pigs in lowland areas. Intestinal
virome analysis has been applied to Tibetan pig diarrhea samples [52]. Moreover, this
study is the first to investigate the composition and function of gut virome communities in
normal Tibetan pigs at different developmental stages. A total of 15 samples were collected
from the lactation, nursery, and fattening stages, generating 150 GB of sequencing data.
Our analysis identified the primary viral community, including Microviridae, Petitvirales
unclassified family, and Cirlivirals unclassified family, while suggesting potential major
hosts, such as Lactobacillus, Streptococcus, and Flavobacterium. Comparisons with other
Chinese studies revealed variations in viral communities. For instance, a study in Guangxi
Province on neonatal domestic piglets identified Siphoviridae (Caudoviricetes), followed by
Myoviridae and Podoviridae, as the major viral community [53]. In a separate study in Hubei
Province (Duroc x Landrace x Yorkshire), Podoviridae was found to be the most dominant
viral community, followed by Siphoviridae (Caudoviricetes), and then Myoviridae [15]. In
a study from Shanxi, the characterization results varied across different regions, with
Siphoviridae, Podoviridae, and Microviridae being the primary communities, respectively,
in the domestic pig gut [44]. Meanwhile, Podoviridae and Caudoviricetes ranked lower in
Tibetan pigs compared to domestic pigs.

Environmental factors, such as dietary patterns and living conditions, significantly
influence the gut microbiome relative to the host’s genetic background [54]. Despite
the debate over whether geography impacts the composition of viral communities in
the pig gut [44,55], Microviridae were not the predominant community in lower-altitude
areas [15,53]. Our findings in Tibetan pigs revealed that Microviridae were consistently
the predominant viral community at all the stages of development in Linzhi, Xizang, PR
China (altitude ≈ 3000 m) (Figure 1B). Interestingly, similar patterns have been reported
in northern pig farms with high altitude (between 1000 and 2200 m) in Shanxi Province,
PR China, where Microviridae constituted a significant proportion of the gut virome [44],
suggesting that the abundance of the Microviridae family in the intestinal community may
be associated with geographical locations with high altitude.

Viruses are considered to be important components of the gut microbiome, and
recent studies have identified the interactions between viruses and bacteria that affect the
biological health of the host through functional annotation [56–58]. Through our functional
annotation and enrichment of the six vOTUs change patterns, we found that, among the
constantly increasing vOTUs groups, there are some enriched functions related to viruses’
adaptability to the environment, such as salt response and heat response. The genes
enriched in this category, including hunger-related gene groEL and housekeeping gene
rpoD, have been shown to have increased resistance to heat treatment and oxidative stress
in Campylobacter jejuni. Meanwhile, we found that some functional terms contributing to
viral invasion peaked at the nursery stage, such as ‘host cell surface binding’. This suggests
the possibility of increased viral aggressiveness after weaning.

Viral-encoded vAMGs have demonstrated their influence on host metabolic processes
and have been a topic of investigation in both animal gut and environmental systems [54,59].
This study represents the first attempt to characterize vAMGs across various growth stages
of Tibetan pigs through fecal virome analysis. As for the lactation stage, the vAMGs in-
volved queD, queC, and GCH1, whose functions, related to folate and cofactors biosynthesis,
are significantly higher than those of the other two stages. The folate biosynthesis pathway
associated with queD, queC, and GCH1 contributes to the de novo synthesis pathway of
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queuosine (Que) in the process of tRNA biosynthesis [60]. Studies suggest that phages and
their hosts may have complementary Que biosynthetic pathways, potentially enhancing
translation efficiency through tRNA synthesis [61], suggesting that vAMGs involving queD,
queC, and GCH1 contribute to the successful colonization of their host by phage–bacteria
mutualism during the lactation period.

During the nursery and fattening stages, the contribution of many types of vAMGs de-
creased, leaving only DNMT1 at a high level. DNMT1 has been reported to participate in the
protection of phages from the restriction–modification system [3,4], which are concurrently
engaged in the synthesis of S-adenosyl-L-homocysteine (SAH) in bacteria. Interestingly, a
comparable distribution was observed in human research where viral-encoded DNMT1
and MetK were found to be highly prevalent in centenarians, contributing up to 50% of
the combined viral and bacterial abundance [17], which may contribute as a factor in
promoting health.

Weaning is regarded as a challenge for intestinal microbial community homeosta-
sis [62]. Various investigations have demonstrated that vAMGs play a crucial role in
promoting the host’s adaptation to the environment [63,64], but studies on vAMG differ-
ences at various growth stages are scant. Notably, a substantial decrease in the abundance
of most vAMGs from the lactation to the nursery period in this study (Figure 3C) suggests
that the weaning process might have a significant impact on the composition of the micro-
biome in Tibetan pigs, and weaning represents a transition from liquid to solid food [65],
so this nutritional shift could be a key factor causing changes in the microbial genomes.

Phages capable of undergoing lysogenic replication are referred to as temperate
phages [66]. The distinction between the lysogenic cycle and the lytic cycle lies in the
integration of the phage genome into the bacterial genome during its life cycle [67]. Metage-
nomic studies have identified temperate bacteriophages as prevalent and adaptable com-
ponents within the viromes of both the human gut and deep ocean [17,19]. In this study, a
coexistence analysis of lysis–lysogeny was conducted for the first time on the fecal virome
obtained from Tibetan pigs. The results showed that viruses preferably adopt lytic lifestyles
from the lactation stage to the fattening stage.

The prevailing view is that phages tend to favor a lysogenic lifestyle in harsh host
environments [68]. However, this study showed that viruses preferentially adopt a lytic
lifestyle from the lactation to the fattening stage, suggesting that phages are more active
in their invasive behavior. This finding supports the increased viral aggressiveness ob-
served in functional annotations. In this study, Lactobacillus was regarded as the putative
primary host, which is a typical probiotic involved in the digestion of protein and fiber
feeds [69]. Research indicates that, during the succession of the intestinal microbiota in
piglets, Lactobacillus gradually assumes a dominant position in the ileum as the piglets
develop [70]. Other studies have demonstrated that host abundances can impact the in-
vasibility of phages; higher densities of susceptible hosts elevate the likelihood of phage
particles released through lysis encountering and infecting new hosts [71–73]. Combining
the information above, we propose that the active state of bacteriophages may be attributed
to the dominant development of the primary host in the intestinal tract.

In recent years, diarrheal diseases caused by diarrheagenic Escherichia coli (DEC) have
become a significant concern in Tibetan pig farming. Z Cao et al. collected feces of Tibetan
piglets from the Nyingchi area and demonstrated a 41.3% isolation rate of DEC from Tibetan
pigs [74]. A previous study investigated the adverse effects of DEC on the gut microbiota
of Tibetan piglets, but research on viromes in the same condition remains limited [75].
Azadeh Vahedi et al. demonstrated the therapeutic potential of phage therapy through
in vitro and in vivo experiments on DEC [76]. This study presents a virome analysis based
on healthy samples, providing baseline data for future virome studies in Tibetan pigs,
especially under specific pathological conditions. It should be noted that this study does
not provide a complete analysis of the virome as RNA viruses were not included, and no
typical enteropathogenic viruses were detected. Additionally, it is important to recognize
that the abundance of phage nucleic acid in fecal samples is influenced by the abundance
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of bacteria. A high concentration of bacterial nucleic acid, even following viral enrichment,
can hinder the detection of viral nucleic acid.

5. Conclusions

This study provides an in-depth analysis of the gut virome in Tibetan pigs at different
developmental stages, highlighting the unique adaptation to the high-altitude Tibetan
Plateau. The consistent presence of Microviridae phages across all stages suggests a po-
tential link with the geographical and environmental conditions. In the vOTUs groups
exhibiting continual growth, functional annotation emphasizes the viruses’ adaptability to
environmental challenges like heat and salt. This suggests an evolutionary adaptation in
response to the demanding high-altitude conditions. The discovery of distinct patterns in
viral-encoded vAMGs across different growth stages, especially in relation to crucial sulfur
metabolic pathways, underscores the dynamic interplay between the gut virome and the
host’s developmental and environmental context. Interestingly, the study also observes
a predominant lytic lifestyle in these viruses, offering a new perspective on phage–host
interactions in harsh environments. These findings contribute to our understanding of
the microbial ecology of Tibetan pigs and could inform further studies in similar extreme
environments.
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