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Abstract: Interferons (IFNs) are antiviral cytokines that defend against viral infections by inducing
the expression of interferon-stimulated genes (ISGs). Interferon-inducible transmembrane proteins
(IFITMs) 1, 2, and 3 are crucial ISG products and members of the CD225 protein family. Compelling
evidence shows that IFITMs restrict the infection of many unrelated viruses by inhibiting the virus–
cell membrane fusion at the virus entry step via the modulation of lipid composition and membrane
properties. Meanwhile, viruses can evade IFITMs’ restrictions by either directly interacting with
IFITMs via viral glycoproteins or by altering the native entry pathway. At the same time, cumulative
evidence suggests context-dependent and multifaceted roles of IFITMs in modulating virus infections
and cell signaling. Here, we review the diverse antiviral mechanisms of IFITMs, the viral antagonizing
strategies, and the regulation of IFITM activity in host cells. The mechanisms behind the antiviral
activity of IFITMs could aid the development of broad-spectrum antivirals and enhance preparedness
for future pandemics.

Keywords: IFITMs; antiviral activity; virus and cell membrane fusion; viral glycoproteins; virus
evasion; immune modulation

1. Introduction

Interferons (IFNs) are produced following pathogen recognition by membrane-bound
or cytosolic receptors, such as Toll-like receptors and RIG-I-like receptors. There are three
families of interferons, type I (e.g., IFNα), type II (e.g., IFNγ), and type III (e.g., IFNλ).
IFNs bind to IFN receptors and activate the transcription of interferon-stimulated genes
(ISGs), which act against pathogens and regulate innate and adaptive immunity. Interferon-
induced transmembrane (IFITM) genes are typical ISGs, although they can be constitutively
expressed in some cells, like stem cells and barrier epithelial cells [1]. The discovery of
the antiviral activity of IFITMs was dated back to the early 1990s, when IFITM1 was
found to inhibit the replication of vesicular stomatitis virus (VSV) [2]. Expanding upon
this observation, one subsequent study identified IFITMs as host factors restricting H1N1
influenza virus infection by siRNA screening in 2009 [3]. These discoveries stimulated
the research on the antiviral activity and the underlying mechanisms of IFITMs. A large
body of in vitro and in vivo work has been conducted to dissect the role of IFITMs at the
early steps of viral infection through employing live viruses, pseudotyped viruses, IFITM
overexpression and knockdown cells, and animal models. Here, we review the various
mechanisms by which IFITMs modulate viral infection and the viral strategies to escape
and/or hijack IFITMs.
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2. The Broad-Spectrum Antiviral Activity of IFITMs

The human ifitm locus is approximately 18 kb long and located on chromosome 11.
It comprises five genes, ifitm1, ifitm2, ifitm3, ifitm5, and ifitm10, among which IFITM1, 2,
and 3 are ubiquitously expressed in human tissues and stimulated by type I and type II
IFNs, while the IFITM5 and 10 are not induced by IFNs [4]. As ISGs, IFITM1, 2, and 3
have an interferon-stimulated response element (ISRE) in their promoters in addition to a
gamma-activated sequence (GAS) [4]. Most vertebrates have two or more ifitm genes and
frequent gene duplications have been observed on immunity-related ifitm (IR-ifitm) genes
in primates and rodents [5]. A comparative genomic analysis reveals that ifitm3 is the oldest
ifitm gene with known antiviral activities [6]. Moreover, ifitm2 emerged relatively recently
in human, chimpanzee, and gorilla [6]. The ongoing duplication of ifitm genes in different
species suggests a positive selection pressure and is expected to provide advantage to
species survival [6]. The ifitm gene duplication also leads to the generation of pseudogenes.
Xiao et al. recently reported that the long noncoding ifitm3 pseudogene (ifitm4p) acts as
a competing endogenous RNA that binds to the microRNA miR-24-3p, which represses
mRNAs of IFITM1, 2, and 3, thereby regulating the mRNA levels of IFITM1, 2, and 3 and
their virus restriction ability [7]. Overall, gene duplications expand the repertoires of the
ifitm gene family and indicate a positive selection in IFITM evolution that is consistent with
their role in antiviral immunity.

IFITMs inhibit a wide range of RNA and DNA viruses (Table 1) by mechanisms of
preventing the fusion of viral and cellular membranes during the initial stage of virus
infection (Figure 1). IFITMs also inhibit the infection of non-enveloped viruses by interfer-
ing with endosome function. For example, IFITM3 alters the function of late endosomal
compartments, thus slowing rotavirus to escape from endosomes and limiting infection [8].
A large number of viruses restricted by IFITMs are clinically important, pathogenic viruses,
such as influenza A virus (IAV) [3], Ebola and Marburg viruses [9], respiratory syncy-
tial virus (RSV) [10], Human Immunodeficiency Virus-1 (HIV-1) [11,12], and Zika virus
(ZIKV) [13], illuminating the importance of IFITMs in protecting humans from viral dis-
eases. IFITMs can inhibit viral infection through multiple pathways and mechanisms,
such as modulating virus-cell membrane fusion [14–16], targeting viral glycoproteins and
host receptors [11,17,18], and altering the key factors in the entry pathway (e.g., endo-
somes) [19,20].

Table 1. Viruses targeted by IFITMs and potential mechanisms of action.

Viruses Targeted Mechanisms of Action Subcellular Localization References

RNA viruses

Coronaviridae

Severe acute respiratory
syndrome coronavirus
2 (SARS-CoV-2)

SARS-CoV-2 spike (S) hijacks IFITM2 for efficient
infection by interacting with ACE2. Plasma membrane, endosomes [17,21,22]

IFITMs Inhibits SARS-CoV-2 S-mediated membrane
fusion and impairs cell surface expression of ACE2. Endosomes, plasma membrane [18,23–25]

Severe acute respiratory
syndrome coronavirus
(SARS-CoV)

IFITMs inhibit SARS-CoV S-mediated entry, and the
inhibition can be counteracted by trypsin treatment,
which bypasses the SARS-CoV’s dependence on
lysosomal cathepsin L.

Lysosomes [9]

Human coronavirus
OC43 (hCoV-OC43)

HCoV-OC43 uses IFN-induced IFITM2 or IFITM3 as an
entry factor to facilitate its infection in host cells. Endosomes [26]

Human coronavirus
229E (hCoV-229E)

IFITMs inhibit hCoV-229E S-dependent entry. The
inhibition can be rescued by TMPRSS2 treatment. Endosomes [27]

Middle East respiratory syndrome
coronavirus (MERS-CoV)

IFITMs inhibits MERS-CoV entry by a
cholesterol-independent mechanism. Endosomes [28]

Transmissible gastroenteritis
virus (TGEV)

IFITM3 inhibits TGEV replication and interferes with
its binding to PK15 cells. Endosomes [29]

Coronavirus infectious bronchitis
virus (IBV)

The antiviral effects of chIFITMs on IBV depend on
virus and cell types. Cell membrane [30]
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Table 1. Cont.

Viruses Targeted Mechanisms of Action Subcellular Localization References

Retroviridae

Human immunodeficiency virus
type 1 (HIV-1)

IFITMs restrict HIV-1 infection by antagonizing
HIV-1 envelope glycoprotein (Env), modulating
membrane property, reducing viral particle infectivity
via incorporation into virus particles, and inhibiting
viral protein synthesis by excluding viral mRNA
from polysomes.

Cell surface, endosomes [11,12,31,32]

Simian immunodeficiency
viruses (SIV)

IFITMs inhibit the cell entry of SIV, and the inhibition
depends on the viral vectors and incorporation
of tSIV-Env.

Cell surface, endosomes [33]

Foamy virus (FVs)
IFITM1-3 overexpression inhibits prototype FV entry
into target cells and reduces the number of prototype
FV envelope proteins.

Plasma membrane,
intracellular compartments [34]

Feline foamy virus (FFV) IFITMs inhibit FFV at late steps of viral replication. Intracellular membranes,
plasma membrane [35]

Orthomyxoviridae

Canine influenza virus (CIV) caIFITM1, caIFITM2a, caIFITM2b, and caIFITM3
inhibit the fusion of viral and cellular membranes. Cell surface and cytoplasm [36]

Influenza A viruses (IAV)
IFITM1, 2, and 3 restrict an early step in IAV
replication by blocking the fusion pore enlargement
and modulating membrane properties.

Late endosomes [3,15,16]

Paramyxoviridae

Parainfluenza virus-3 (PIV-3)
Metapneumovirus (MPV)
Respiratory syncytial virus (RSV)

IFITM1 blocks the fusion between viral and
cellular membranes. Plasma membrane [37]

Nipah virus (NiV) IFITM3 promotes NiV glycoproteins-mediated virus
entry by interacting with the fusion protein. Plasma membrane and endosome [38]

Flaviviridae

Tick-borne encephalitis
virus (TBEV)

IFITM1, IFITM2, and IFITM3 inhibit TBEV infection
and prevent virus-induced cell death.

Plasma membrane,
endosomal membrane, and
lysosomal membranes

[39]

Dengue virus (DENV)
West Nile virus (WNV)

IFITM2 and IFITM3 disrupt early steps of the
viral infection. Endosomes [40]

Hepatitis C virus (HCV)
IFITM1 disrupts HCV viral entry by interruption of
viral co-receptor functions at the tight junctions of
HCV-infected liver cells.

Tight junction, cell surface [41]

Zika virus (ZIKV)
IFITM1 and IFITM3 inhibit ZIKV infection early in the
viral life cycle. IFITM3 can prevent Zika virus-induced
cell death.

late endosomes and lysosomes [13]

Yellow fever virus (YFV) IFITMs, especially IFITM3, block membrane fusion by
toughening the host membrane. Late endosomes [3]

Rhabdoviridae

Vesicular stomatitis virus (VSV) IFITMs inhibit virus infection by blocking virus fusion
with cell membranes. Plasma membrane, endosomes [2,42]

Filoviridae

Ebolavirus (EBOV) Marburg
virus (MARV)

IFITMs inhibit the replication of infectious EBOV and
MARV. EBOV and MARV are more susceptible to
IFITM1 than IFITM3.

Lysosomes [9]

Reoviridae

Rotavirus (RV) IFITM3 limits RV infection by affecting the function of
the late endosomal compartment. Late endosome [8]

Arteriviridae

Porcine reproductive and
respiratory syndrome
virus (PRRSV)

IFITM3 inhibits PRRSV by inducing cholesterol
accumulation and impairing viral-cell
membrane fusion.

Early endosomes, late endosomes,
and lysosomes [43]

Togaviridae

Chikungunya virus
(CHIKV)Mayaro virus (MAYV)

IFITMs restrict CHIKV and MAYV infection at
glycoprotein-mediated entry, both in the context of
direct infection and cell–cell transmission.

Cell surface and endosomes [44]

Sindbis virus (SINV)
Semliki Forest virus (SFV)

IFITMs, especially IFITM3, restricts SINV and SFV by
inhibiting virus–cell membrane fusion. Early endosomes [45]

Bunyaviriales

Rift Valley fever virus (RVFV)
La Crosse virus (LACV)
Hantaan virus (HTNV)
Andes virus (ANDV)

IFITM2 and 3 prevent virus membrane fusion in
the endosomes. Endosomes [46]
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Table 1. Cont.

Viruses Targeted Mechanisms of Action Subcellular Localization References

DNA viruses

Herpesviridae

Kaposi’s Sarcoma-associated
herpesvirus (KSHV) and Rhesus
Monkey Rhadinovirus (RRV)

IFITM1 restricts KSHV and RRV by acting at the level
of membrane fusion. Cell surface [47]

Pseudorabies virus (PRV)
IFITMs restrict PRV infection by interfering with PRV
cell binding and entry. IFITM2 inhibits PRV by
regulating cholesterol levels in endosomes.

Endosomes [48]

Herpes simplex virus-1 (HSV-1) IFITM1 restricts infection of HSV-1 that enters at the
plasma membrane. Plasma membrane [37]

Human Cytomegalovirus
(HCMV)

HCMV exploits IFITMs to facilitate the formation of
the virion assembly compartment in human fibroblasts. Cytoplasm [49]

Epstein–Barr virus (EBV)
IFITM1 enhances the initial entry of EBV, but the
incorporation of IFITM2/3 into viral particles reduces
the infectivity of progeny viruses.

Cytoplasm [50,51]

Poxviridae

Vaccinia virus (VACV)

IFITM3 restricts VACV infection, replication, and
proliferation by interfering with virus entry processes
prior to virus nucleocapsid entry into the cytoplasm.
VACV counteracts IFITM3 by inhibiting its translation.

Endosomes [52]

Asfarviridae

African swine fever virus (ASFV) SwIFITM1a, -1b, -2, -3, or -5 restrict the fusion of virus
membrane and plasma membrane.

Plasma membrane, cytoplasm,
and the perinuclear region. [53]
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The importance of IFITMs in antiviral defense in vivo has been well addressed in stud-
ies using IFITM3 knockout (KO) mice and mice lacking the entire IFITM locus (IFITMdel).
Using these mouse models, IFITM3 was shown to prevent severe pathology upon virus
infections in mice, including SARS-CoV-2 [54], IAV (H1N1 and H3N2) [55,56], WNV [57],
CHIKV, Venezuelan equine encephalitis virus [58], RSV [59], and CMV [60]. For example,
the IFITM3 KO mice are more susceptible to H1N1 and H3N2 IAV infection than WT mice,
manifesting more severe weight loss, greater mortality, higher virus titers in the lungs, sys-
temic lymphopenia, and drastic production of pro-inflammatory cytokines in the lungs [56].
Interestingly, although IFITMdel mice were more susceptible to IAV infection than mice
carrying intact IFITM gene locus, IFITMdel mice did not manifest more severe infections
than IFITM3 KO mice, implying that the IFITM3 protein is critical in restricting IAV in
mice [56]. SARS-CoV-2 infection resulted in greater weight loss and lethality in IFITM3 KO
mice along with higher viral titers in the lungs, elevated levels of inflammatory cytokines,
immune cell infiltration, and histopathology as compared to WT mice [54]. A mechanistic
study revealed that IFITM3 expression is selectively maintained in the anti-influenza CD8+
resident memory T cells in the lungs so that these cells are resistant to IAV infection and
capable of protecting against subsequent infections [61]. In addition to the lungs, IFITM3
has also been shown to protect the heart against severe IAV infection since the IFITM3
KO mice develop aberrant cardiac electrical activity following infection with the highly
pathogenic A/PR/8/34 H1N1 virus [62]. Similarly, IFITM3 was capable of restricting RSV
in vivo either by directly restricting RSV infection or by controlling pathogenesis [59].

In support of viral infection results in IFITM KO mice, multiple studies have shown
that single nucleotide polymorphisms (SNPs) in IFITM3 are associated with the severity of
IAV and SARS-CoV-2 infections. Everitt et al. reported that the substitution of a majority T
allele by a minority C allele of SNP rs12252 was associated with hospitalization during the
pandemic H1N1/09 or seasonal influenza infections in 2009–2010 [55]. This substitution
codes for the IFITM3 variant lacking the first 21 amino acids at the N-terminus (N∆21)
due to alternative splicing of the IFITM3 mRNA transcript. Further in vitro experiments
show that the N∆21 protein fails to restrict the replication of several virulent influenza viral
strains [55]. However, the alternative splicing hypothesis is challenged when the alternative
splicing transcript of IFITM3 rs12252-C SNP was not detected in another study [63]. The
association between IFITM3 rs12252 and IAV infection severity was not observed in a
multicenter cohort of US children admitted to the intensive care unit [64]. Similarly,
Kim et al. did not observe a significant difference in the genotype distribution of the
rs12252 SNP between the healthy and 2009 H1N1 IAV-infected populations in Korea [65].
Nonetheless, IFITM3 rs12252 was linked to severity and mortality in SARS-CoV-2-infected
patients during the COVID-19 pandemic. Patients with the IFITM3 rs12252 (C) allele
had a higher risk of COVID-19 mortality than those with the T allele in Chinese and
Caucasian populations [66–68]. In comparison, a third G allele of IFITM3 rs12252 was
significantly associated with hospitalization and mortality in COVID-19 patients in a
large Arab population, particularly in the younger population [69]. A second IFITM3
SNP (rs34411844-A) in the IFITM3 promotor was associated with severe IAV infections
and death in African–American and European populations. The rs344118844-A SNP
downregulates IFITM3 protein and mRNA levels by disrupting the CTCF binding to the
IFITM3 promoter [70]. A total of eight IFITM1 SNPs have been reported to date, and the
substitution of G to A at rs77537847 may be associated with susceptibility to ulcerative
colitis in Korea [71], but no evidence shows association between IFITM1 SNPs and the
susceptibility to 2009 H1N1 IAV infection [72].

3. The Structure and Post-Translational Modifications of IFITM Proteins

IFITMs belong to the dispanin/CD225 family of proteins and are characterized by
a similar structure (Figure 2a). Human IFITM3 consists of a variable N-terminal domain
(NTD; residues 1–57), an intramembrane domain (IMD; also known as IM1, residues
58–80), a cytoplasmic intracellular loop (CIL; residues 81–107), and a transmembrane
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domain (TMD; also known as TM2, residues 108–133). Although predicted to have multiple
membrane topologies, IFITM3 is recognized as a type II transmembrane protein with a
C-terminus facing the lumen/extracellular environment, an intramembrane segment in
the membrane leaflet, and a transmembrane helix with its N-terminus exposed to the
cytoplasm, as detected by NMR [73,74] (Figure 2b).
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Post-translational modifications (PTMs) regulate IFITMs trafficking and localization.
The palmitoylation/depalmitoylation cycle, a covalent fatty acid modification on cys-
teine residues, is critical for the trafficking, localization, and function of many membrane-
associated proteins. IFITM3 is S-palmitoylated on membrane-proximal cysteine residues
(71, 72, and 105) [76,77]. These cysteine residues are conserved among the IFITM protein
family in vertebrates [75,76]. Early studies show that alanine mutants of the S-palmitoylated
cysteine residues in IFITM3 lead to the loss of antiviral activity against influenza virus [76].
A gain-of-function study showed that the site-specific lipidation of cysteine 72 enhances the
antiviral activity of IFITM3 by modulating its conformation and interaction with lipid mem-
branes [78]. S-palmitoylation of IFITM3 can facilitate its binding to cholesterol in cells [79],
although IFITM3 partitions to the lipid-disordered phase in lipid vesicles in vitro [80].
S-palmitoylation on Cysteine 72 of IFITM3 regulates the trafficking of IFITM3-positive
vesicles toward the IAV-bearing vesicles in HeLa cells [19]. The palmitoyl acyltransferases
(PATs) with conserved DHHC amino acid motifs are responsible for the S-palmitoylation of
IFITM3, and a single PAT is sufficient to increase the antiviral activity of IFITM proteins [81].
A depalmitoylase, α/β-hydrolase domain-containing 16A (ABHD16A) is identified as a
critical enzyme that catalyzes the depalmitoyl reaction of the S-palmitoylated IFITMs and
thus decreases the antiviral activity of IFITMs [82]. The N-terminal region of human IFITM3
contains a 20YEML23 sorting signal that localizes IFITM3 to the endosome [83–85]. The
phosphorylation or mutation of Y20 redistributes IFITM3 from endosomes to the plasma
membrane and results in decreased antiviral activity against IAV but not HIV-1 [83,84].
The endosomal localization is also regulated by ubiquitination. IFITM3 is polyubiqui-
tinated at lysine-48 and lysine-63 [76]. Poly-ubiquitination of IFITM3 dysregulates the
endosomal localization of IFITM3 and its antiviral activity against IAV [76]. The phospho-
rylation and mutation of Y20 lead to decreased IFITM3 ubiquitination [76]. IFITM3 can
be monomethylated on the lysine 88 residue by lysine methyltransferase SET7, while the
role of monomethylation in IFITM3’s antiviral activity remains unclear [86]. These multi-
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layered PTMs provide more means of regulating the activities of IFITMs under various
physiological conditions.

4. The ifitm Genes in Different Species and Their Antiviral Ability

Although research on non-human IFITMs is limited, several recent studies reported
the antiviral activity of IFITMs in bats and domestic animals [30,36,53,87–89]. In spite of du-
plication and polymorphisms in the ifitm genes, an alignment of 160 amino acid sequences
of IFITM proteins in vertebrates demonstrates that the IFITM family members contain a
conservative CD225 domain and two terminal hypervariable regions [5]. Several amino
acid residues and motifs in the CD225 domain are central to the antiviral activity of IFITMs,
such as the amphipathic helix [80,90,91], the cysteine residues for S-palmitoylation [77],
and a GxxxG motif [75]. Both pig and microbat IFITM3 inhibit cell entry mediated by mul-
tiple IAV hemagglutinin and lyssavirus glycoproteins. Knockdown of IFITM3 in newborn
pig trachea (NPTr) cells and primary microbat cells also enhance virus replication [88].
S-palmitoylation is critical for antiviral restriction by microbat IFITM3 and has a significant
effect on its subcellular localization [87]. Functional studies have confirmed that codon 70,
within the conserved CD225 domain of IFITMs in mammals, influences the antiviral activ-
ity and S-palmitoylation of microbat IFITM3 [87]. IFNs and/or viral infection induce the
expression of canine IFITMs (caIFITM), which include caIFITM1, caIFITM2a, caIFITM2b,
and caIFITM3. They have potent antiviral activity against the canine influenza virus [36].
Similarly, Cai et al. discovered that swine IFITM1a (swIFITM1a), -1b, -2, -3, or -5 can
significantly inhibit the replication of African swine fever virus (ASFV), and knocking out
these genes increased ASFV replication [53]. Additionally, chicken IFITMs (chIFITMs) serve
various functions in different host cells. ChIFITM3 exhibits an antiviral role in chicken
fibroblasts, and knocking down the constitutive expression of chIFITM3 in chicken fibrob-
lasts enhances IAV infection [89]. Notably, chIFITM1 significantly increases IBV replication
in the chicken hepatoma cell line LMH [30]. Since certain IFITM functions are conserved
in different species, it is likely that IFITMs could serve as a barrier for virus cross-species
spillover. For example, chimeric SIV/HIV-1 viruses (SHIVs), which have HIV-1 Env in
the SIV genome, exhibit poor replication in macaque lymphocytes, and this restriction is
partially attributed to the inhibition by macaque IFITM proteins [92]. Adaption of this SHIV
to better replicate in macaque lymphocytes leads to changes in HIV-1 Env and resistance to
macaque IFITMs, supporting the role of IFITMs in preventing early cross-species spillover
events [92].

5. Mechanisms for IFITMs Inhibition of Membrane Fusion

An important mechanism of IFITM restriction of virus infections is through modulat-
ing membrane properties. The fusion between cellular and viral membranes is essential for
infection by enveloped viruses. Fusion of the viral and cellular membranes is a three-step
process: (1) the membranes are brought to proximity where the repulsive electrostatic
forces need to be overcome before lipids of the outer leaflets can interact; (2) the outer
leaflets of the opposing membranes mix, resulting in hemifusion; (3) the inner leaflets of
the lipid bilayers mix, opening a fusion pore (Figure 3) [93]. In some cases, the fusion pore
opening is followed by an irreversible fusion pore expansion that allows the delivery of
the viral contents into target cells [93]. The biophysical characteristics driving this process
involve membrane fluidity facilitating lipid mixing alongside a notable shift from positive
to negative membrane curvature [93]. These features depend on the lipid composition of
both viral and cellular membranes. The energy required to overcome electrostatic repul-
sions between membranes and drive the transitions in membrane curvatures is supplied
by conformational changes in viral glycoproteins upon binding to the host receptor or
alterations in pH [93]. These essential features of the virus–cell fusion provide a framework
for understanding the IFITM proteins’ role in restricting viral entry.
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determined by membrane rigidity and the radius of viral particle and endosome or plasma membrane
where the membrane fusion occurs [93]. Figure adapted from Vigant et al. [93].

IFITMs can restrict membrane fusion by targeting hemifusion and fusion pore for-
mation (Figure 3). For example, IFITMs block membrane hemifusion mediated by the
Jaagsiekte sheep retrovirus envelope and IAV hemagglutinin, partly as this block cannot
be rescued by chlorpromazine (CPZ), a chemical known to promote the transition from
hemifusion to full fusion, but can be counteracted by oleic acid, which induces negative
membrane curvature and promotes hemifusion [14] (Figure 3). More prominently, in situ
cryo-electron tomography captures IFITM3-mediated arrest of IAV membrane fusion in
endosomes, supporting that IFITM3 stabilizes hemifusion between the viral and endoso-
mal membranes [16]. Further, single-virus imaging showed that IFITM3 overexpression
abrogates the release of viral content into the cytoplasm by inhibiting pore formation,
but does not inhibit lipid mixing, a hallmark of hemifusion formation [94], between the
fluorescence-labeled IAV viral membrane and endosomal membrane [15]. Regardless,
current evidence supports that IFITMs restrict viral–cellular membrane fusion by inhibiting
the transitional steps at hemifusion and fusion pore formation.

IFITMs inhibit membrane fusion by modulating membrane fluidity and curvature,
and this activity has been mapped to several motifs in IFITMs [75,80,91,95]. Amphotericin
B (AmphoB) is an anti-fungal drug that binds to a fungal membrane constituent, ergosterol,
leading to pore formation and ion egress [75,95]. AmphoB rescues IFITM2- and IFITM3-
restrictions of IAV by counteracting IFITMs-mediated membrane order enhancement,
as shown by fluorescence lifetime imaging [75]. Moreover, IFITM1 inhibits IAV HA-
mediated cell–cell fusion by decreasing the membrane fluidity via fluorescence recovery
after photobleaching assay (FRAP) [95]. The IFITM’s ability in membrane order and
curvature modulation is conferred by an oligomerization motif GxxxG and an amphipathic
helix (AH, Figure 2) domain, conserved among IFITM1, 2, and 3 (Figure 2). The GxxxG motif
was found to be responsible for increasing the membrane order (Figure 4), thus rendering
IFITM3 the ability to restrict IAV, as measured by Laurdan staining and FliptR [75]. The AH
domain is known to generate membrane curvature via asymmetric leaflet expansion [96].
The IFITM3 AH partitions into lipid-disordered domains, induces negative membrane
curvature in liposomes, and increases lipid order and membrane stiffness, as assessed
by Laurdan staining [80]. The membrane modulation ability of the IFITM3 AH peptide
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correlates with the fusion inhibition activity, as targeting the ectopically expressed AH
peptide to the cytoplasmic leaflet of the cell plasma membrane diminishes IAV-cell surface
fusion induced by exposure to acidic pH [80,90].
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Figure 4. Mechanisms by which interferon-inducible transmembrane proteins (IFITMs) inhibit
membrane fusion in target cells and the production of infectious viruses on viral-producing cells.
IFITMs recruit 3,4,5-triphosphate (PIP3) through lysine residues in the CIL domain to restrict viral
entry into endosomes. IFITMs modulate membrane fluidity and curvature by GxxxG motif, amphi-
pathic domain, and S-palmitoylation. IFITMs incorporated into virions inhibit virus spread from
virus-producing cells to new target cells.

The IFITM-mediated modulation of membrane fluidity and curvature may be at-
tributed to its ability to undergo lipid sorting [16,91,96]. IFITM3 can interact with choles-
terol directly via the AH domain, and disruption of the AH structure inhibits the cholesterol
binding and membrane insertion of IFITM3 in cultured cells [91]. IFITMs have also been
shown to bind cholesterol via S-palmitoylation, and the antiviral activity of IFITMs is
correlated with the level of S-palmitoylation [79]. IFITM3 recruits phosphatidylinositol
3,4,5-triphosphate (PIP3) via the lysine residues in the CIL domain [97,98] (Figure 4). These
lysine residues are required for IFITM3 restriction of viral entry in endosomes not at the
plasma membrane [97]. Continuum modeling of the IAV-endosome fusion site based on
the theory of lipid membrane elasticity predicts that the palmitoylated IFITM3 induces the
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local depletion of cholesterol and recruitment of negative curvature lipids, leading to a
decrease in mechanical stress and increased fusion pore tension, which, in turn, increases
the energy barrier for fusion pore expansion and inhibits membrane fusion [16]. IFITMs
have been reported to disrupt intracellular cholesterol homeostasis by interacting with
vesicle–membrane–protein-associated protein (VAPA) and antagonizing VAPA-oxysterol-
binding protein (OSBP) function [99]. The IFITM3-VAPA interaction results in increased
cholesterol levels in multivesicular bodies and late endosomes. This is believed to block the
infection of VSV and IAV by inhibiting viral release from the endosomes [99,100]. However,
conflicting data cast a shadow on the role of VAPA in IFITM-mediated viral restriction. A
study shows that IFITM3 overexpression poorly correlates with the total cellular cholesterol,
and the LDL-derived cholesterol transport inhibitor and knockdown of the cholesterol
transporter NPC1 do not inhibit the membrane fusion of IAV and VSV [15]. Another study
shows that overexpression of VAPA and disruption of the VAPA–IFITM3 interaction by
mutations modestly alleviate IFITM3 restriction of IAV infection [95]. Overall, these studies
suggest that IFITMs participate in lipid sorting and thus modulate membrane curvature
and fluidity at the local virus entry sites.

6. IFITMs Inhibit the Production of Infectious Viruses in Infected Cells

IFITMs are expressed in both virus target cells and virus producer cells. While pro-
tecting virus target cells from being infected, IFITMs in virus producer cells also exert
their antiviral activity by getting incorporated into viral progeny and negatively affecting
viral infectivity and spread [101]. Studies reveal that IFITMs impair HIV-1 Env process-
ing, especially IFITM2 and 3, by directly interacting with Env in virus-producing cells
and promoting gp120 shedding [11]. Interestingly, all three IFITM proteins expressed in
virus-producing cells are incorporated into HIV-1 virions, but the restriction activity does
not correlate with their abundance in the virions, suggesting that the membrane fusion
restriction by IFITMs on virions is independent of their incorporation levels [11]. A later
study confirms that IFITM2 and IFITM3 in virus-producing cells reduce virus infectivity by
causing defective processing of Env and degradation of Env precursor in endolysosomes,
wherein decreased Env levels in IFITM2- and IFITM3-positive virus-producing cells are
also observed [102] (Figure 4). This antiviral function of IFITM3 in virus producer cells can
be overcome by the glycoGag protein, a murine leukemia virus (MLV) protein previously
known to antagonize the antiviral activity of serine incorporator (SERINC) proteins, as well
as by a high abundance of Env protein in virions [102]. However, HIV-1 Env defect is not
evident in IFITM-positive virions that are produced by U87 cells expressing physiological
levels of IFITMs, and that the IFITM restriction on HIV-1 infection is mainly conferred in
target cells [103]. Further highlighting the importance of IFITMs in virus producer cells
in restricting viral infection, it is reported that IFITM3 in uninfected target cells does not
inhibit HIV-1 infection when infection is mediated by co-cultured HIV-infected lympho-
cytes, while overexpression of IFITM3 in virus-producing lymphocytes and 293T cells
restrict viral spread [101]. Moreover, the expression of IFITM2 and IFITM3, but not IFITM1,
in the virus-producing 293T cells significantly inhibited the spread of HIV-1 to Jurkat or
HeLa cells [11]. This difference was mapped to the C-terminus of the IFITM proteins
using a series of chimeric IFITM mutants [11]. Together, these data suggest that IFITMs
are more effective in preventing cell-to-cell transmission of HIV-1 when present in virus
producer cells than in virus target cells [11]. Nonetheless, IFITMs were found to become
incorporated into a variety of different viruses and diminished viral infectivity, supporting
the mechanism of IFITMs’ action against viral progeny [50].

7. Viral Glycoproteins Regulate the Viral Sensitivity to IFITMs

Not all viruses are inhibited by IFITMs. Early studies already reported that glycopro-
teins of Lassa virus (LASV) and MLV, when used to pseudotype lentivirus particles, confer
resistance to IFITMs [3]. A recent study showed that LASV-pseudotyped virus particles,
after being endocytosed, are able to avoid fusion with IFITM3-positive membrane com-
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partments, whereas IFITM3-sensitive viruses, such as IAV and EBOV-pseudotyped viruses,
are intercepted by these IFITM3-positive compartments [19], supporting the scenario that
LASV glycoprotein evades IFITMs by directing and completing virus entry at an intracel-
lular site devoid of IFITMs. Some viruses have even developed a dependence on IFITMs.
For example, infection of common cold human coronavirus OC43 is promoted by IFITM2
and IFITM3 at the step of virus entry [26]. Knockdown of IFITM proteins severely impairs
SARS-CoV-2 replication [17]. Mechanistic studies of this pro-viral effect are expected to
shed more light on the complex functions of IFITMs in viral infections.

For viruses that are restricted by IFITMs, different viral strains can exhibit various
sensitivities. One prominent example is HIV-1. Transmitted founder HIV-1, which initiates
HIV-1 infection, was found to resist IFITM inhibition but become sensitive over time as
mutations accumulate in viral Env glycoprotein in order to escape from neutralizing anti-
bodies [103]. This observation was confirmed by subsequent studies reporting that HIV-1
Env clones from the transmitted founder HIV-1 strains are resistant to IFITM3, but the
resistance is gradually lost as infection progresses into the acute and chronic stages [104]
and that the increased IFITM sensitivity results from the acquisition of mutations in Env
and Vpu, which mediate escape from neutralizing antibodies [105]. Interestingly, the
IFITM3-sensitive HIV-1 is more inhibited by the neutralizing antibody PG16 than the
IFITM3-resistant viruses, suggesting that the IFITM3 in virus producer cells may modulate
the conformation and the degree of epitope exposure of viral Env [105]. Further studies
mapped the IFITM3 resistance of an HIV-1 strain AD8-1 to the V3 loop on Env [106],
which is corroborated by the results of a separate study showing that the IFITM3 resis-
tance of HIV-1 clones is conferred by the V1, V2, and V3 loops in viral Env [105]. The
IFITM3-resistant Env is believed to adopt a neutralizing antibody-resistant, low-energy,
and “closed” conformation [106]. These studies suggest that HIV-1 Env glycoprotein is
under the selection pressures of both IFITMs (innate immunity) and neutralizing antibodies
(adaptive immunity); the necessity of evading one may increase sensitivity to the other.

Development of viral resistance to IFITMs has been recapitulated in long-term replica-
tion of HIV-1 in IFITM-expressing CD4+ T cells, and the resistant mutations were mapped
to viral Env glycoprotein, further confirming the role of Env in assisting the escape from
IFITM restriction. For example, an IFITM1-sensitive HIV-1 strain BH10 was able to turn
resistance by mutating viral Env at G367E and inserting a stop codon at amino acid position
34 of Vpu [107]. Similarly, exchanging the Env sequences between the IFITM1-sensitive
BH10 and IFITM1-resistant NL4-3 reversed the susceptibility of the parental strains to
IFITM1 inhibition [108]. Mechanistic studies revealed that the mutated Env and the loss
of Vpu increase cell-to-cell transmission of HIV-1, and this gain-of-function resists IFITM1
inhibition, thus warranting efficient spread of HIV-1 among cultured cells [11,107].

IFITM1, 2, and 3 assume different subcellular localization, with IFITM2 and 3 pre-
dominantly localized to endosomal and lysosomal compartments, whereas IFITM1 is more
observed at the plasma membrane. The outcome is that all three IFITM proteins together
guard virus entry sites both at the cell surface and the intracellular membrane compart-
ments if all three proteins are equally well expressed in a given cell type. Because of the
distinct subcellular localization of IFITMs, viruses, depending on their primary entry sites,
exhibit different sensitivity to each of the three IFITM proteins. In a similar vein, a virus
may avoid a potent inhibitory IFITM protein by altering its entry route. For example,
HIV-1 glycoprotein, upon binding to receptor CD4, can use either CCR5 or CXCR4 as a
co-receptor to complete entry, and co-receptor usage can dictate the site of viral entry. It
was reported that the CXCR4 HIV-1 displays significantly greater sensitivity to IFITMs 2
and 3 than the CCR5 HIV-1, while most CCR5-using viruses were more sensitive to IFITM1
than CXCR4-using viruses [103]. The swap of the co-receptor usage determinants at the
V3-loop of the Env protein results in exchange for the IFITMs restriction phenotypes of the
viruses [103]. These findings suggest that the Env glycoprotein dependent-entry route of
HIV-1 modulates viral sensitivity to IFITMs. This report is contested by the observations of
a separate study showing that both CCR5 and CXCR4 HIV-1 strains are equally restricted
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by the three IFITM proteins in both lymphocytes and monocytes [109]. More studies are
warranted to address this controversy.

Similarly, the sensitivity of SARS-CoV-2 to IFITM inhibition is modulated by the
protease TMPRSS2 usage and virus entry route. For example, the cellular protease furin
cleaves the polybasic cleavage site between the S1 and S2 subunits in the Spike (S) protein.
This cleavage enables SARS-CoV-2 entry at the cell surface where the protease TMPRSS2 is
expressed and cleaves the S protein at the S2’ site, leading to the exposure of fusion peptide
and initiating membrane fusion [20]. Mutating this polybasic site in the S1/S2 boundary
renders virus entry to endolysomes, and the mutated virus is much more inhibited by
endosomal IFITM2 protein [80,90]. Along with SARS-CoV-2 evolution, more mutations
are accumulated in the S protein to escape from neutralizing antibodies that are produced
either in response to natural SARS-CoV-2 infection of COVID-19 vaccines. The omicron
variant accumulates so many mutations in the S protein that its entry becomes TMPRSS2-
independent and follows the endocytic pathway [110]. As a result, omicron SARS-CoV-2
is more inhibited by IFITM2 and IFIM3 than the earlier variants, including Beta and
Delta [25]. This presents an example further illuminating the concept that viral escape
from the adaptive immunity pressure only sensitizes the virus to innate immunity, which
is expected to contribute to viral attenuation.

8. Immune Modulation by IFITMs

IFITMs play important roles in the regulation of adaptive and innate immune re-
sponses. Stacey et al. used murine cytomegalovirus (CMV) as a model to show that IFITM3
limits herpesvirus-associated pathogenesis without directly preventing virus replication
but by regulating antiviral cellular immunity that controls cytokine-driven viral patho-
genesis [60]. IFITMs also regulate murine CD4+ Th cell differentiation, thus influencing
Th1/Th2 polarization in allergic airway disease models [111]. IFITMs regulate T and B
cell differentiation and Th2 inflammatory activity as transcriptional targets of Bcl6 and
hedgehog/Wnt signaling pathway [112–115]. On a cellular level, IFITM3 fine-tunes the
response of myeloid cells to CMV infection by promoting the proteasomal degradation
of the reticulon 4 isoform, Nogo-B. Nogo-B mediates TLR-dependent pro-inflammatory
cytokine production, elevates viral pathogenesis in vivo, and alters the cellular localization
of TLR2 and TLR2 responses [116]. An in-depth mechanistic study showed that IFITM3
was responsible for the malignant transformation of B cells by forming a PIP3 scaffold
to promote PI3K signaling amplification downstream of B cell receptors and adhesion
receptors. IFITM3-mediated assembly of the signaling complex leads to the recruitment of
B cell receptor, integrin receptors, and cholesterol and the amplification of PI3K signaling
downstream of the BCR and adhesion receptor [98]. IFITM3 has also been shown to asso-
ciate with IRF3, a key transcription factor regulating the expression of IFNs, and regulate
the homeostasis of IRF3 by mediating autophagic degradation of IRF3 [117]. Similarly,
IFITM3 may regulate the cGAS-STING-IRF3 signaling pathway by directly binding to
STING and p62/SQSTM1, which participate in a negative feedback loop on the cytosolic
DNA sensing pathway by facilitating autophagic degradation of STING [118–120]. Another
study showed that IFITM1/3 promotes the IFNγ-stimulated synthesis of HLA-B and ISG15
in cervical cancer cells, thus leading to enhanced expression of MHC Class I molecules
and antitumor innate immune response [121]. These studies highlight the pivotal role of
IFITMs in immune regulation, orchestrating a broad spectrum of antiviral responses by
modulating both innate and adaptive immunity, including the differentiation of T and B
cells, and influencing cytokine-driven pathways and cellular signaling mechanisms. This
multifunctional involvement underscores their critical function in fine-tuning the immune
system’s balance between antiviral defense and inflammatory pathogenesis.

9. Conclusions

As a key player in innate immunity, IFITMs act as the first line of defense against
viral infection. Studies in the past two decades have established that IFITMs restrict virus
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replication of enveloped viruses by affecting membrane fluidity and curvature and, as a
consequence, membrane fusion. IFITMs, especially IFITM3, have been shown to play multi-
faceted roles in regulating the various signaling pathways involved in both adaptive immu-
nity and cancer development [122,123]. Despite the conserved ability in membrane property
modulation, the antiviral activity of IFITMs depends on the post-translational modifica-
tion [6], the virus entry routes [25], the virus strains, and viral glycoproteins [11,103,106],
the host factors [27], and the cell types [17]. Given the context-dependent nature of IFITMs’
antiviral activity, it is critical to broaden the investigation and interpretation of their mecha-
nisms beyond the localized virus attachment site. Instead, it is essential to consider how the
interplay between host factors and IFITMs, triggered by virus infection, leads to broader
changes in antiviral response in infected cells, tissue, and/or individuals. Moreover, studies
on HIV-1 and SARS-CoV-2 have revealed that the IFITM sensitivity conferred by the viral
glycoprotein, links to the selection pressures imposed by adaptive immunity. The delicate
equilibrium between viral evasion of host immunity and viral transmission is expected to
shape the evolution of existing viruses and the emergence of new ones. Understanding the
precise mechanisms governing this balance is crucial for elucidating and predicting virus
pathogenesis and prevalence.
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