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Abstract: Human immunodeficiency virus (HIV) infection is principally a mucosal 

disease and the gastrointestinal (GI) tract is the major site of HIV replication. Loss of 

CD4
+
 T cells and systemic immune hyperactivation are the hallmarks of HIV infection. 

The end of acute infection is associated with the emergence of specific CD4+ and CD8+ T 

cell responses and the establishment of a chronic phase of infection. Abnormal levels of 

immune activation and inflammation persist despite a low steady state level of viremia. 

Although the causes of persistent immune hyperactivation remain incompletely 

characterized, physiological alterations of gastrointestinal tract probably play a major role. 

Failure to restore Th17 cells in gut-associated lymphoid tissues (GALT) might impair the 

recovery of the gut mucosal barrier. This review discusses recent advances on 

understanding the contribution of CD4
+ 

T cell depletion to HIV pathogenesis. 
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1. Introduction 

Programmed cell death (PCD) and necrosis are two major processes by which cells die. Necrosis 

normally results from a severe cellular insult, which may lead to macrophage activation and the release 
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of proinflammatory cytokines. These cytokines act as a ―danger signal‖ and provide the costimulation 

required for T cell activation and immunity. Apoptosis, type I PCD, is a fundamental biological 

process in development and cellular homeostasis and occurs without inflammation or injury to 

surrounding tissues. Apoptosis is involved in embryonic development, hormonal regulation, immunity, 

regulation of inflammation and neoplasia. It is a controlled process, in organogenesis and tissue 

remodeling during development, to eliminate used-up, damaged, or misplaced cells during the 

embryonic development and the tissue homeostasis of multicellular organisms. Deregulation of 

apoptosis can disrupt the balance between proliferation and cell death. Failure of cells to die is  

an integral mechanism leading to malignancies such as cancer, and autoimmune phenomena. 

Conversely, an abnormal increase in cell death is observed in neurodegenerative disorders or in  

immunodeficiency [1]. So, in order to preserve homeostasis in a given system, it is crucial to maintain 

an equilibrium in the expression control among genes that promote proliferation, genes that influence 

survival/death and genes that inhibit proliferation. 

There are a wide variety of stimuli and conditions, both physiological and pathological, which can 

trigger apoptosis. It is an energy-dependent process which implicates the activation of a group of 

cysteine proteases called caspases in a complex cascade of events. Depending on the initiating stimuli, 

two major mechanisms could be defined: the intrinsic pathway or mitochondrial pathway [2], that 

involves members of the bcl-2 family and mitochondrial functions, such as the role of mitochondrial 

membrane potential (m) in which fluctuations appear to be central to the distribution of proapoptotic 

molecules; and the extrinsic pathway which is activated by extracellular signals that act via death 

receptors (DR) [3,4] (Figure 1). Several DRs have been described that all belong to the tumor necrosis 

factor (TNF) receptor superfamily. Each pathway activates its own initiator caspase which, in turn, 

will activate the executioner caspase-3. There are evidences that the two pathways are linked and that 

molecules in one pathway can influence the other [5]. A third pathway, involving T-cell mediated 

cytotoxicity and perforin/granzyme dependent killing of cell works in a caspase-independent fashion 

(Figure 1). Autophagy, type II PCD, is a highly regulated physiological mechanism conserved among 

the evolution from yeast to mammals. Autophagy, a cellular catabolic pathway, is a process by which 

the cell, using membranes to isolate organelles or regions of cytoplasm, eliminates damaged organelles 

or consumes intracellular components as resources during starvation or other limiting condition [6]. It 

is a complex process as it can lead to cell survival as cell death. Apoptosis and autophagy are not 

mutually exclusive and the molecular regulators of both pathways are inter-connected leading to a 

cross-talk [7]. Autophagy is also a mechanism involved in innate and adaptive immunity against 

pathogens, and is a fundamental antiviral mechanism [8]. 

A fundamental characteristic of the immune system is its ability to expand rapidly the number of 

antigen-specific lymphocytes to combat pathogens. Apoptosis is of crucial importance for termination 

of the acquired immune response. This immune response is a multistep process: naïve T cells are 

activated through cross-linking of antigen to the T-cell receptor (TCR), leading to proliferation and 

differentiation into effector cells. After expansion of antigen-specific T cells, the majority of the 

activated T cells enter the so-called deletion phase and are eliminated to prevent undesirable immune 

responses such as autoimmunity whereas a portion of them survive as memory T cells [9]. The 

apoptotic process of elimination of activated T cells during the termination phase of an immune 

response is called activation-induced cell death (AICD) [10–12]. 
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Figure 1. The extrinsic (death receptor-mediated) and intrinsic (mitochondria-mediated) 

pathways that lead to apoptosis of HIV infected helper T cells. The main HIV proteins (in 

red) implicated in CD4
+
 T cell death are the envelope glycoprotein gp120, the negative 

effector Nef, the transactivator of transcription (TAT) and the viral protein R (vpr). HIV 

gp120 uses CD4 on helper T cells and the chemokine receptors CCR5 or CXCR4 as 

coreceptors for virus cell entry and upregulates Fas-ligand (FASL) on these cells. Soluble 

Nef protein interacts directly with CXCR4 to induce cell apoptosis. Exogenous Nef protein 

directly stimulates TCR-CD3 complex and upregulates Fas/FasL expression on the cell 

surface while inhibiting the anti-apoptotic proteins Bcl-2 family. As endogenous Nef 

protein, Tat upregulates the Fas/FasL pathway and directly activates caspase 8. Tat and 

Vpr inhibit bcl-2 family while increasing mitochondria dysfunctions and cytochrome c 

release that promotes the formation of the apoptosome. HIV-1 Vpr also arrests cells in the 

G2 phase of the cell cycle. TCR: T cell receptor; CTL: cytotoxic T lymphocyte;  

FasL: Fas ligand; FADD: Fas-associated death domain; Caspase: cysteinyl aspartic  

acid-protease; BCL-2: B-cell lymphoma protein 2; BCL-X: BCL-2 like 1; Bax: BCL2 

associated X protein; APAF: Apoptotic protease activating factor; PTPC : permeability 

transition pore complex. 

Figure 1 Fevrier et al., 2010
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Pathogens have evolved molecules that affect the death pathway [13]. Human immunodeficiency 

virus (HIV) type-1 appears to induce cell death whereas other pathogens preserve their host by 

inhibiting the induction of a cell death pathway. This review presents an overview of the relationship 

between HIV-1 and CD4
+
 T cell death that complements the information presented in a recent review 

by Cummins and Bradley [14]. Literature concerning nonhuman primates naturally or experimentally 

infected with SIV (Simian Immunodeficiency Virus) is as important as literature concerning  

HIV-infected humans. This is the reason why we have decided to focus, in this review, only on recent 

data concerning humans infected with HIV-1, to try to understand how HIV is able to destroy CD4
+ 

T 

cells which take a central position in the immune system. 

2. HIV: Structure and Pathology 

2.1. The Virus 

HIV-1, the causative agent of AIDS (Acquired ImmunoDeficiency Syndrome) in human, belongs to 

the Lentivirus genus of the Retroviridae family. This family has a unique enzyme called reverse 

transcriptase that converts viral RNA to DNA upon viral entry into the cell. The genome of HIV, 

composed of two identical copies of single stranded RNA molecules, encodes nine open reading 

frames that produce 15 proteins, defining two general classes of proteins, structural and regulatory [15]. 

The three structural proteins are Gag, Pol and Env polyproteins which are subsequently proteolyzed 

into individual proteins: (1) the four Gag proteins, MA (matrix), CA (capsid), NC (nucleocapsid) and 

p6, (2) the two Env proteins, SU (surface or gp120) and TM (transmembrane or gp41) are structural 

components that make up the core of the virion and outer membrane envelope; and (3) the three Pol 

proteins, PR (protease), RT (reverse transcriptase) and IN (integrase), provide essential enzymatic 

functions and are also encapsulated within the particle. HIV encodes six additional proteins: Tat and 

Rev provide essential gene regulatory functions and four additional proteins often called accessory 

proteins, Vif, Vpr and Nef are found in the viral particle, whereas Vpu indirectly assists in assembly of 

the virion [16]. 

Cell entry of HIV is mediated by the binding of the viral envelope glycoprotein (Env) to the CD4 

molecule on target cells along with a chemokine coreceptor, such as CCR5 or CXCR4 [17] 

determining the tropism of the virus (R5 or X4 respectively) for particular cell types (Figure 1). 

However, the majority of newly transmitted HIV strains uses CCR5 as a coreceptor [18]. CD4
+
 T cells, 

macrophages, monocytes and microglial cells are infected and killed by the virus [19,20], but activated 

CD4
+
 T cells are the optimal viral targets since HIV more efficiently infects and replicates in these 

cells [21]. After binding of the virus and entry, viral RNA is retro-transcribed and the provirus 

integrated into the cellular genome; virus proteins are then synthesized, the virus assembled and 

budding occurs. 

2.2. Pathology 

HIV is transmitted primarily through blood and genital fluids and to newborn infants from 

infected mothers. 
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HIV infection is principally a mucosal disease and events occurring in blood may not reflect events 

occurring at mucosal surfaces. The gastrointestinal (GI) tract is the major site of HIV replication, 

which results in massive depletion of lamina propria CD4
+
 T cells [22,23], in the first 3–6 weeks of 

infection and is maintained throughout the chronic phase. Years of antiretroviral therapy allow only a 

partial restoration of these CD4
+
 T cell populations. T cells in the blood or lymph nodes do not show 

the same degree of depletion: in acute HIV infection, blood CD4
+
 T cell numbers decline sharply, but 

as soon as antiviral immune response is established, these cells have the potential to reach a 

moderately subnormal level [24]. Following the initial peak of viremia, HIV-specific humoral and  

cell-mediated immune responses are readily detected; in particular HIV-specific CTL play a major role 

in the initial downregulation of virus replication in peripheral blood [25]. These immune responses 

generated by the host partly control viral replication, viremia declines by several orders of magnitude 

until it reaches a lower steady state level (viral setpoint); but these responses fail to eliminate the virus 

leading to a chronic infection in most individuals during an asymptomatic period which can go on 

several years. During the chronic phase of the infection, blood CD4
+
 T cell count declines slowly; this 

loss can be partially reversed by successful antiretroviral treatment, but it is accelerated during AIDS. 

Studies of large cohorts of HIV-infected individuals have clearly indicated that the rate of progression 

of HIV disease may be substantially different. Among the total population of HIV-infected individuals, 

the majority (70%–80%) belong to the group of typical progressors (the median time from initial 

infection to progression to AIDS is five to ten years). However, four additional subgroups have been 

identified [26]: rapid progressors who have an unusually rapid disease progression (AIDS or  

AIDS-related death within three years after seroconversion); the long-term nonprogressors (LTNP, 

two subgroups) [27] without progressive disease for several years (eight to ten) and the elite 

controllers with a viral load well below the detection limit of most conventional tests [28]. 

The viral persistence during the chronic phase of the infection is due in part to latent HIV reservoirs 

in resting CD4
+
 T cells [29] and additional cell populations [30,31]. HIV-1 infection causes a 

generalized state of immune dysfunction characterized by simultaneous chronic immune activation 

[32] associated with a paradoxical anergy in both CD4
+
 and CD8

+
 T cell compartments resulting in 

increased susceptibility to opportunistic infections and malignancy [33,34]. Proliferation of memory T 

cells is markedly elevated but the average lifespans of these cells are dramatically shortened [24,35]. 

3. Cellular Immunology of HIV 

3.1. CD4
+
 T Cell Subpopulations 

CD4
+
 T cells orchestrate immune responses by differentiating into T helper (Th) cell subsets which 

recruit and activate other immune cells including B cells, CD8
+
 T cells, macrophages and other 

effector cells. The diverse functions of CD4
+
 T cells are determined by their cytokine secretion 

patterns and their tissue locations (Figure 2). In 1986, Mosmann et al. [36] divided T cell clones into 

two subsets, Th1 and Th2, which respectively produced the signature cytokines interferon (IFN) and 

interleukin (IL)-4 and IL-13. Th1 cells promote the cytotoxic effector functions of natural killer (NK) 

cells, CD8
+
 T cells and macrophages and are important for clearance of intracellular pathogens as 

viruses, intracellular bacteria and protozoan parasites. They also promote antibody-dependent  
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cell-mediated cytotoxicity (ADCC) by supporting B cell production of IgG1 in humans. By contrast, 

Th2 cells promote humoral immunity, mediated by B cell-produced IgG4 and IgE in humans and are 

critical for clearance of extracellular parasites. The appropriate development of polarized Th cell 

responses to different classes of pathogens is still under investigation [37]. 

Most of CD4
+
 T cells reside within the gastrointestinal (GI) tract, lymph nodes (LNs) and other 

lymphatic tissues rather than in peripheral blood [38,39]. In the GI tract, the majority of CD4
+
 T cells 

are CCR5
+
 memory cells and constitute ideal viral targets [40,41]. Indeed these cells are very 

permissive to in vitro HIV infections [42]. 

Recently, this dualistic view of Th cell lineages has been complicated by the recognition of two new 

major subsets of Th cells, namely Th17 and Treg cells although others lineages may exist [43] 

(Figure 2). 

Figure 2. Differentiation of effector CD4
+
 T cells. Following activation by a given antigen, 

cytokines secreted in the microenvironment dictate the type of effector cells subsequently 

induced from naive T cells. Th1, Th2, Th9, Th17, TH22, TFH and Treg lineages are defined 

depending on the expression of transcription factors, effector cytokines, and chemokine 

receptors. Fully functional Th cells contribute to the immune response. 

Figure 2 Fevrier et al., 2010

 

 

Th17 cells, a subset of helper T cells, are identified in situ as a population of CD4
+
 memory T cells 

expressing the IL-23 receptor (IL-23R), CCR6 and the transcription factor ROR-t. In peripheral 
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blood, approximately 0.4% of CD4
+
 T cells are IL17

+
CD4

+
 T cells. Most of them are 

CD45RA
−
CD45RO

+
 [44]. They are important for intestinal homeostasis and are characterized by 

secretion of the proinflammatory cytokines IL-17, IL-1, IL-6, IL21, IL-22 and TNF-. These cells 

arise exclusively from a population of CD161
+
CD4

+
 T cells in the presence of IL-1 and IL-23, and 

this precursor population has gut-homing potential (for review see [45]). They mediate inflammation 

and development of autoimmune diseases [46] but they also confer protection against extracellular 

bacteria, fungi and mycobacteria [47]. Th17 are involved in control of epithelial integrity of the 

gastrointestinal barrier and microbial invasion. 

Regulatory T (Tregs) cells are a subset of circulating CD4
+
 T cells with suppressive properties 

implicated in the control of self immune tolerance [48], auto-immune diseases, cancer, transplantation, 

materno-fetal tolerance and inflammation induced by chronic pathogens [49,50]. They are 

phenotypically defined as CD4
+
CD25

+
FoxP3

+
; their development, maintenance and function require 

the expression of the master transcription factor FoxP3 (forkhead box P3) [51,52]. They express also 

the memory marker CD45RO and several activation markers such as HLA-DR [53,54]. Natural Tregs 

(nTreg) are generated in the thymus [55], would prevent autoimmunity and raise the activation 

threshold for all immune responses [56]. Adaptive or induced Tregs (iTregs) develop in the periphery 

from mainstream peripheral T cells using self [57] or foreign antigens [58]. They are essential in 

mucosal immune tolerance and during normal homeostasis of the gut. Tregs have the capacity to 

actively block immune responses as they have been implicated in the suppression of T cell activation, 

proliferation and cytokine production through mechanisms not fully known [59]. They play a key role 

in regulating immune responses as a global ―brake‖ on immunity [60]. Treg action is through the 

production of bioactive molecules, such as IL-10 and TGF- as well as through cell-cell contact [61]. 

A lot of observations suggest flexibility in polarization of human cells. Memory T cells are 

considered flexible with regard to cytokine production. Several modes of plasticity of T cell subsets 

have recently been described (for review see [62]). TFH (Follicular Helper T cells), Th3, Tr1 and Th9 

have been proposed as new potential Th cell lineages but their formal status of subsets seems uncertain 

as they could represent subsets of Th1, Th2, Th17 or Treg lineage. Very recently, Th22 clones derived 

from patients with psoriasis and secreted IL22, and not IL-17, have been described. They infiltrate the 

epidermis in individuals with inflammatory skin disorders [63,64]. 

3.2. HIV and CD4
+
 T Cell Depletion  

T lymphocyte numbers in the human body are kept constant by homeostatic mechanisms. These 

mechanisms fail in HIV infection characterized by progressive immune deficiency. Loss of CD4
+
 T 

cells and systemic immune activation are the hallmarks of HIV infection. 

HIV pathogenesis can be divided into two major phases: the acute infection phase associated with a 

dramatic loss of CD4
+
 T cells residing in mucosal tissue, especially in GALT (gut-associated lymphoid 

tissue) [23,65] and a chronic phase characterized by an immune activation with a massive production 

of proinflammatory cytokines [66,67], which in turn is responsible for clonal deletion [32,68] and 

gradual loss of peripheral CD4
+
 T cells over time [68,69]. 

During primary HIV-1 infection, the number of CD4
+
 T cells declines in association with high 

viremia levels, before the onset of antiviral immune response. HIV-1 infects preferentially those CD4
+
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T cells that are HIV-1 specific, rather than CD4
+
 T cells specific for unrelated antigens [70]; moreover, 

ex vivo HIV-1 specific CD4
+
T cells have greater apoptotic potential than those specific for CMV [71]. 

Loss of CD4
+
 T cells after HIV infection is also a result of several mechanisms such as impairment 

of de novo production of T lymphocytes by the thymus, induction of syncytium formation, alteration 

of membrane permeability, mitochondrial dysfunction, killing by HIV-specific cytotoxic T cells or 

through expression of DRs due to heightened levels of immune activation. The importance of each will 

be discussed below. The thymus, the primary organ of thymopoiesis, is highly active during early life 

and thymic output and function progressively declines during ageing [72]. HIV infection leads to 

major alterations in T cell homeostasis due in part to destruction of thymic structures [73], reducing 

input of naïve CD4
+
 T cells into peripheral naïve T cell pool compared to uninfected individuals [74]. 

However, in almost all cases, loss of CD4
+
 T cells is associated with apoptosis which represents the 

major mechanism of CD4
+
 T cell depletion [75–77] and the number of apoptotic cells greatly exceeds 

the number of HIV-infected cells [77,78]. Apoptosis in lymph nodes is observed primarily in the HIV-

negative cell fraction [79] leading to the conclusion that during HIV-1 infection, apoptosis occurs in 

bystander cells and not only in the productively infected cells themselves.  

3.3. The Direct Cytopathic Effect of HIV-1 

After HIV-1 infection, lymphoid tissue has been identified as a major site of HIV replication and a 

reservoir for HIV in vivo [80,81]. CD4
+
 T cells in the GI tract are 10-fold more frequently infected by 

the virus than are those in the peripheral blood [82], and the GI tract shows the most substantial CD4
+
 

T cell depletion at all stage of HIV disease, which affects the CCR5
+
 CD4

+
 T cell subset, the majority 

of GI tract CD4
+
 T cells [22]. Infection frequencies of other mucosal lymphoid sites could be similar to 

those in blood (0.01–1% CD4
+
 T cells) [83].  

The mechanisms of this cell death could have two explanations: a direct killing via virus-induced 

cytolysis by mechanisms related to direct infection of the cells [84] and the killing of virus-infected 

cells which occurs via the immune surveillance through the action of killer T cells [85,86]. HIV 

specific CD8
+
 T cells play a key role in the control of viral replication. Appearance of CTL responses 

at early stage of infection coincides with a rapid fall in plasma viremia [87]. CTLs recognize short 

epitopes associated with class I molecules of the major histocompatibility complex (MHC). However, 

selection of escape mutants is a major driving force of HIV evolution [88]. This phenomenon leads to 

an immediate decline of the corresponding CTL responses [89]. These responses exert a strong 

selection pressure, but as the founder epitopes are replaced by mutational variants, these responses are 

always race against the clock with de novo development of responses to epitope variants. Beneficial 

effects of CTL responses are largely impaired and do not avoid viral load at a high level during 

chronic infection [86]. 

Syncytia are generated by the fusion of HIV-infected cells, expressing Env (gp120/gp41) on the 

plasma membrane, with uninfected target, expressing a suitable coreceptor (CD4 or CCR5); however, 

the vast majority of syncytium-inducing HIV-1 variants employ CXCR4 as a coreceptor [90]. Syncytia 

are condemned to die by apoptosis after a latency phase explained in part by genomic instability [91], 

but p53 emerges also as a critical mediator of syncytial apoptosis [92]. Syncytia are frequently 

observed in vitro [93]. In vivo, biopsy and autopsy studies revealed that HIV-infected multinucleated 
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cells, presumably formed by cell-cell fusion, are present in brain and lymphoid tissue of HIV-infected 

patients thus contributing to the depletion of CD4
+
 T cells. However, the overall extent of cell-cell 

fusion in vivo has not been estimated [93]. 

Whereas direct cytopathic effects affect the survival of infected CD4
+
 T cells, indirect mechanisms, 

such as activation-induced cell death, are likely to play a major role in elimination of uninfected CD4
+
 

T cells, corresponding to ―bystander‖ cells. 

3.4. Hyperactive Immune State Upon HIV Infection 

During chronic untreated HIV infection, practically every arm of the immune system that has been 

investigated has been shown to be in a hyperactive state: high T cell turnover, nonspecific T cell 

activation and proliferation, polyclonal activation of B cells and elevated proinflammatory cytokines 

are characteristic of HIV infection [94]. HIV, through the induction of immune activation, generates its 

own targets for replication. 

A direct link between immune activation in chronic HIV infection and catastrophic events occurring 

at the mucosal surfaces during acute infection has been provided by recent studies. HIV causes a 

profound and complex disturbance of the mucosal immune function. In chronic HIV infection, 

intestinal permeability and enteropathy (diarrhea, gastrointestinal inflammation, malabsorption) are 

increased [95], a poorly controlled translocation of immunostimulatory microbial products occurs and 

correlates with immune activation markers, which in turn, are associated with disease progression [96]. 

Th17 cells are important for intestinal homeostasis [97]; they are involved in control of epithelial 

integrity of the gastrointestinal barrier and microbial invasion.  

In healthy donors, there is a significantly higher frequency of IL-17-producing CD4
+
 T cells in the 

GI tract compared to peripheral blood (about 6% versus 2% respectively). During HIV infection, Th17 

cells appear to be preferentially lost from the gastrointestinal tract, relatively early in the disease [98], 

even in patients with a high absolute CD4
+
 T cell count. In blood of chronically HIV-infected 

individuals, the proportion of Th17 cells is reduced 10-fold compared to HIV-uninfected controls [95]. 

Th17 cells represent ideal targets for HIV by virtue of high expression of the second receptor CCR5 

and low secretion of CCR5 ligands MIP-1 and MIP-1 [99]. They are permissive to HIV infection  

in vitro and in vivo, but they do not appear to be the preferential targets of HIV [98]. Nevertheless, 

there is a preferential depletion of Th17 in the gut of HIV-infected humans. CD161
+
 CD4

+
 T cells, 

identified as gut homing Th17 precursor population [100], express particularly high level of CCR5, are 

permissive to HIV infection and are also lost during HIV infection. Depletion of Th17 cells and their 

precursors is mediated by direct infection of target cells, bystander apoptosis or a combination of 

mechanisms like other infected CD4
+
 T cells. Moreover, CD4

+
 T cells in HIV-infected patients are 

skewed toward a Th1 phenotype to the detriment of Th17 cells. This combined loss of Th17 and their 

precursor CD161
+
CD4

+
 T cells may contribute to impaired mucosal T cell immunity and microbial 

translocation [95]. The disturbed GALT function, depletion of Th17 and microbial translocation are 

accompanied by an incessant vicious circle of immune activation and inflammation with deleterious 

consequences on viral replication, T cell and epithelial death, and dysfunction of multiple additional 

cells [101]. One major consequence for the immune system is an increasing of activation-induced T 
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cell death (AICD) leading to an exacerbation of physiologic mechanisms which control peripheral T 

cell depletion following an immune response [102].  

A very recent paper revisits the mechanisms by which CD4 T cells, in lymphoid tissues, are 

depleted in HIV-infected hosts [103]. Authors suggested that the vast majority of bystander cell death 

in these tissues involved abortive HIV infection: naïve CD4
+
 T cells are refractory to productive HIV 

infection; after viral entry, infection is aborted as reverse transcription is initiated but fails to reach 

completion [104,105]. Accumulation of incomplete reverse transcripts in nonpermissive resting CD4
+
 

T cells activates a host defense program that elicits proapoptotic and proinflammatory responses 

involving caspase-3 and caspase-1 activation. 

3.5. HIV and Activation-Induced T Cell Death 

During the termination phase of an immune response, the death of activated lymphocytes serves to 

limit the immune response by killing cells that are no longer needed. Molecular mechanisms involved 

in the death of peripheral T cells have been recently reviewed [12]. These mechanisms depend on the 

expression of TNF superfamily ligands and their receptors, e.g., Fas/FasL and TRAIL-DR5 

[106,107,108] (Figure 1). After acute and during chronic HIV infection, immune activation is 

exacerbated and drives cells into apoptosis, reflecting an amplified normal process for homeostatic cell 

regulation. 

Naïve T cells (CD45RA
+
) express little or no cell-surface FasL, while it is expressed in relatively 

large amounts by previously activated T cells (CD45RO
+
). Expression of c-myc is required for the 

activation-induced expression of FasL [109], upon which mature T-cell AICD depends. AICD utilizes 

at least in part the Fas/FasL system; but significantly, functionally distinct subsets of CD4
+
 T-helper 

cells have different sensitivities to AICD: after TCR ligation, Th1 cells express significantly higher 

levels of FasL and undergo AICD much more readily than do Th2 cells [110] (Figure 1). TRAIL 

contributes also to AICD in T cells but is exclusively observed in Th2 clones and primary T helper 

cells differentiated under the Th2 conditions [111,112]. Curiously, infected cells are more resistant to 

apoptosis than uninfected cells [113]; this involves a modulation of the mitochondrial pathway of 

apoptosis [114]. A consequence of this is that indirect cell killing via Fas/FasL will destroy activated 

but uninfected cells while sparing the fraction of infected cells. 

Low frequencies of APC (CD13
+
 myelomonocytic cells, comprising macrophages, dendritic cells 

and granulocytes) were observed within the GI tracts of HIV-infected patients [98] and may contribute 

to an altered cytokine environment required for Th17 development and would favor the differentiation 

of CD4
+
 T cells along a Th1 rather than a Th17 pathway [115]. Th1 are highly sensitive to AICD and 

are lost more rapidly than the other Th cells [110]. Thus if Th17 cells, expressing the HIV receptor 

CCR5, and their precursors CD161
+
 T cells are lost mainly by cytopathic effect of the virus, and the 

cytokinic context in gut is modified by a change in proportion of antigen-presenting cells, favoring 

Th1 development instead of Th17, this could explain (in part) the preferential depletion of Th17 in the 

gut. As Th1 cells are very sensitive to AICD, in a context of hyperactive immune state, this could 

explain (also in part) the massive loss of CD4
+
 T cells during HIV infection. 
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3.6. Role of Regulatory T Cells in HIV Disease Progression 

Tregs represent a heterologous population with different localizations but with equal suppressive 

capacities [54]. In healthy subjects, Tregs show higher turnover rates in vivo compared to  

conventional CD4
+
 T cells, without any immune activation [116,117]. The mechanisms of Treg cell 

function are still a matter of debate, but they can be grouped into four basic ‗modes of action‘: 

suppression by inhibitory cytokines as IL-10 and TGF- [118] suppression by cytolysis [119], 

suppression by metabolic disruption and suppression by modulation of dendritic cell (DC) maturation 

or function [120]. However, it seems that apoptosis induction in T effector cells is not important for 

human Treg mediated suppression [121]. 

Tregs, as conventional T cells, are progressively lost during HIV infection. Indeed, during HIV 

chronic infection, frequency of circulating Tregs is higher compared to normal controls, but their 

absolute counts are substantially decreased [122] and immune activation increases with decline in Treg 

count [95]. The fall in circulating Treg number may be explained by several mechanisms: preferential 

HIV infection and/or apoptotic properties of Tregs and/or relocalization in other lymphoid tissue.  

Tregs express HIV co-receptors CCR5 and CXCR4, and are susceptible to HIV infection [53] only 

if they are previously stimulated [123]. Precursor population of Treg cells, termed naïve Tregs 

(nTregs), isolated from peripheral blood has been phenotyped as CD4
+
CD45RA

+
CD25

+
 and expressed 

high level of FoxP3 mRNA and protein. After TCR activation, these cells express high levels of HIV 

co-receptors CCR5 and CXCR4 and are preferentially infected by HIV early after activation, 

compared to naïve CD4
+
 T cells [124].  

Little information is available regarding the homeostasis of Tregs and relevant mechanisms in 

chronic HIV infection. Treg cells display a rapid turnover level indicated by a proliferation marker 

(Ki-67) and apoptosis markers (active caspase-3 and Annexin-V) ex vivo in HIV-infected subjects. 

This turnover was associated with disease progression and is positively correlated with immune 

hyperactivation [125]. Freshly isolated human Tregs are highly sensitive to CD95-mediated apoptosis 

but show a relative resistance to AICD [126]. This susceptibility to apoptosis has also been attributed 

to low levels of the antiapoptotic molecule bcl-2 [116]. On the contrary, nTregs showing unique  

self-generating capacities seem to be more resistant to apoptosis [127].  

Chronic HIV infection changes CD4
+
CD25

+
 Treg tissue distribution [128] with an increase of these 

cells in peripheral lymph nodes and mucosal lymphoid tissues where most HIV replication occurs: 

when frequencies of Tregs are compared in peripheral blood and in duodenal mucosa, the frequency 

and the absolute count of mucosal Tregs are highly increased in untreated HIV patients [129–131].  

HIV binding on Tregs increases the expression of homing receptors CD62L and 47, enhances 

their homing to peripheral and mucosal lymph nodes, and enhances their survival [123] 

HIV induces abnormal development of Tregs in the thymus, resulting in an enrichment of Tregs 

[74]. The consequences are ambiguous: as Tregs suppress T cell activation, they could be of either 

benefit—diminishing bystander apoptosis, T cell loss and hyperactivation—or detrimental—

impairment of HIV-specific responses and participation to viral persistence. Study of natural hosts of 

SIV can yield important information regarding resistance to pathogenesis. After SIV infection, natural 

hosts (e.g., African green monkeys, sooty mangabeys) do not progress to clinical AIDS; they maintain 

high SIV viral loads, but avoid the chronic, generalized immune system activation associated with 
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disease progression in HIV-infected individuals [132]. Both Th17 and Tregs are preserved. During 

HIV infection, frequency of Tregs is significantly increased in thymus, but input of these cells into 

peripheral T cell pool does not allow the preservation of this population as their absolute counts are 

substantially decreased [122]. The ability of this subset to elicit a beneficial effect is impaired. 

4. HIV Protein and Apoptosis 

Only 0.00001 to 0.01% of HIV-1 virions are infectious in vitro and in vivo. Thus, noninfectious 

virions may contribute to HIV-1 pathogenicity by inducing bystander T-cell apoptosis.  

In addition to infecting and killing of CD4
+
 T cells, virtually every protein encoded by HIV can 

influence apoptosis in host cells [133] but the major players in HIV-induced apoptosis are Env, Nef, 

Tat, HIV protease and Vpr. They kill infected and uninfected lymphocytes through intrinsic or 

extrinsic pathways (Figure 1).  

4.1. Env (gp 120) 

Envelope glycoproteins have been implicated as the major cause of bystander cell death in T and 

other cell types [134]. Sources of gp120 are multiple: soluble gp120 resulting from shedding of the 

surfaces of the viral particles or infected cells, Env expressed on virions or at the surface of  

infected cells.  

Cross-linking of the cellular receptor (CD4) and co-receptor CCR5 with gp120 activates the 

Fas/FasL (CD95/CD178) pathway and downmodulates a caspase inhibitor, the FLICE (FADD-like 

interleukin1-converting enzyme)-like inhibitory protein (FLIP) [135]. This extrinsic pathway 

involves cell death receptors leading to the downregulation of bcl-2 and the activation of caspases 8 

and 10, which in turn activate caspase 3 to initiate apoptosis. Intrinsic mechanisms of Env-mediated 

apoptosis have been described: engagement of CD4, expressed on uninfected cells, separately from 

TCR, with Env expressed on the surface of infected cells influences the expression of the proapoptotic 

protein Bax, which in turn induces dissipation of the mitochondrial transmembrane potential m that 

could initiate apoptosis in lymphocytes [5]. CXCR4, a natural co-receptor of HIV Env, can also 

transduce a death signal when bound to Env through mitochondrial transmembrane depolarization, 

cytochrome C release and activation of caspase-9 [136]. 

Env from both R5 and X4 strains triggers autophagy and cell death in bystander CD4
+
 T cells [137]. 

It is a cell-type dependent process [138]. Currently, it is not known how autophagy is controlled, and 

what the importance of this phenomenon is in general CD4
+
 T cell depletion during HIV infection. 

4.2. Nef 

Nef (negative factor) protein is one of the earliest and most abundantly expressed viral proteins 

preliminary localized to cellular membrane. It is also present in the serum of infected individuals 

[139]. HIV-1 Nef protein (27 kDa) consists of four regions and its cellular localization depends on its 

conformation allowing interactions with many different cellular proteins. Among the pleiotropic 

effects of this protein, Nef modulates surface expression of various cellular proteins including CD4 

and MHC class I and II, is required for the efficient replication of the virus and affects signal 
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transduction pathways. Endogenous Nef upregulates both Fas and FasL [140]. Soluble extracellular 

Nef induces apoptosis in bystander T cells indirectly via the increased expression of FasL on infected 

cells [141] or directly by interacting with the CXCR4 chemokine receptor [142]. Nef can also be 

released in the plasma from HIV-infected individuals, in exosome-like microvesicles containing CD45 

(leukocyte common antigen). As long as they contain Nef, these vesicles cause activation-induced cell 

death of resting CD4
+
 T cells [143,144]. The predominant mechanism of Nef-induced apoptosis is 

associated with death receptors; however, Nef may also trigger the intrinsic pathway by decreasing 

bcl-2 and bcl-XL expression and increasing caspase-mediated effects [145]. Depending on the 

situation, Nef can be anti-apoptotic [5,144]. 

4.3. Tat 

Tat (Trans Activating Factor) is a regulatory protein of HIV indispensable for viral replication. Tat 

can be secreted in plasma from HIV-infected patients and can cross the cell membrane to enter 

uninfected cells [146,147]. This protein triggers extrinsic and intrinsic apoptosis pathways in  

both infected and uninfected cells [148]. For the first pathway, Tat induces the upregulation of  

Fas/FasL-mediated apoptosis, and when secreted it enhances the susceptibility of bystander cells to 

Fas-mediated killing [149,150]. Activated FOXO3a (Forkhead box transcription factor O class 3a) 

controls the expression of several proapoptotic genes, including FasL, Bim and TRAIL. Tat protein 

can activate the Egr1-PTEN-FOXO3a pathway leading to apoptosis of HIV-infected and non-infected 

cells [151]. Association of Tat with PTEN and PP2A promoters has been identified as the initiating 

event of Tat-mediated apoptosis [152]. Tat protein is implicated in the intrinsic apoptosis pathway 

through interactions with numerous intracellular targets. Tat stimulates the transcription of cyclin B1, 

which increases cyclin B1 level and promotes cell apoptosis [153]. Tat decreases bcl-2 [154] and 

increases Bax, caspase 8 expression [155]. Several mitochondrial interactions of this protein have been 

described: disruption of mitochondrial calcium homeostasis, down regulation of mitochondrial isoform 

of superoxide dismutase, translocation of Bim (Bcl-2 interacting mediator of cell death) from 

microtubules to mitochondria [5]. 

4.4. HIV Protease 

The essential role of HIV protease is the cleavage of viral precursor proteins to yield mature virion 

proteins. In addition to its role in viral replication, HIV protease may also contribute to HIV 

pathogenesis. The protease substrate specificity is not restricted to viral proteins since the 

cytoprotective protein bcl-2 could be cleaved by HIV protease, leading to apoptosis [156]. Moreover, 

this viral enzyme directly cleaves procaspase 8 generating a novel peptide, casp8p41, and thus triggers 

the mitochondrial-dependent pathway of apoptosis that involves cleavage of Bid, loss of mitochondrial 

potential and nuclear fragmentation. After in vitro HIV-infection, almost all casp8p41
+
 cells are 

apoptotic whereas casp8p41
−
 cells are not. In cells from HIV-1 patients, this peptide is present only in 

CD4
+
 T cells, predominantly the memory subset, and initiates apoptotic cell death. Exogenous protease 

does not kill uninfected cells [157]. This mechanism may contribute to death of HIV-1 infected cells. 
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4.5. Vpr 

Vpr (Virus protein R) is a virion-associated accessory protein necessary for virus replication [158]. 

It is expressed at the late stage of the virus life cycle, but is present during the early steps of infection 

because it is packaged into viral particles. HIV-1 Vpr exists in three forms: soluble, intracellular and 

virion-associated. Vpr, incorporated into the HIV-1 virion, shows multiple activities including nuclear 

transport of the preintegration complex to the nucleus, activation of the transcription, cell cycle arrest 

at the G2/M transition (cells infected with HIV-1 cease to proliferate) and induction of apoptosis. The 

cell cycle transition into G2 is required for Vpr to induce apoptosis. Muthumani et al. [159] 

demonstrated that Vpr induces apoptosis via the intrinsic pathway. Virion associated Vpr caused 

activation of initiator caspases 8 and 9 and effector caspases 3/7 and a drop of m confirming that 

death is initiated. Furthermore, the mitochondrial protein Bax (an independent mitochondrial  

pore-forming protein), has been identified as the key executioner of apoptosis in the context of HIV-1 

vpr [160]. It is confirmed in human activated PBMCs [161]. It has been recently proposed that  

virion-associated Vpr could amplify Fas-induced cell death, a process that could involve the 

amplification effect of caspase 8 through the mitochondrial pathway [161]. So, Vpr can contribute to 

the depletion of CD4
+
 T lymphocytes either directly or by enhancing Fas-mediated apoptosis during 

acute HIV-1 infection.  

5. Conclusion 

HIV infection is associated with a progressive decline of circulating CD4
+
 T cells and loss of 

immune functions; however this infection shows a more severe depletion of CD4
+
 T cells in the  

gastro-intestinal tract than in blood [22,23,162]. In the acute phase of infection, the virus depletes 

CD4
+
 T cells in the mucosal tissue of the gut as they represent the ―ideal targets‖ of the virus 

(activated CD4
+
 T cells, near the front door of the virus, at the lining of the vagina or anus). In this 

process, the virus also destroys the gut mucosas‘s structural cells, allowing gut bacteria or other 

pathogens to penetrate the body; these phenomena lead to irreversible damage to the immune system. 

Finally, HIV triggers chronic immune activation. Recently, a strong association between the 

destruction of intestinal CD4
+
 T cell homeostasis in the gut and the level of systemic CD4+ T cell 

activation [162] has been described. 

The relationship between hyperimmune activation and loss of CD4
+
 T cells has been analyzed in 

different systems. First, natural hosts of SIV (HIV-like simian immunodeficiency virus), monkeys 

from Africa, do not show immune activation, do not lose their CD4
+
 T cells and do not evolve to AIDS 

whereas asian monkeys, nonnatural hosts, develop the pathology after SIV infection. It is fundamental 

to elucidate the mechanisms that allow natural hosts to coexist with SIV without overt disease [132]. 

Second, the initiation of antiretroviral therapy (ART) has significantly reduced morbidity and mortality 

of HIV-infected patients. This therapy has the ability to restore a normal circulating CD4
+
 cell count in 

most patients, associated with a low to undetectable plasma HIV RNA level [163]; however, there 

exists significant patient-to-patient heterogeneity as there is no consensus with regard to how to best 

define immunological success or failure of the treatment. From studies of large cohorts, up to 10 to 

30% of patients fail to achieve CD4
+
 T cell counts of > 500 cells/μL and high levels of gut-associated 
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HIV-DNA are associated with persistent immune activation and microbial translocation [164]. It  

has been hypothesized that this might be related to persistent dysregulation of gut CD4
+
 Th17  

subsets [165]. 

Finally, the study of the immunological responses of resistant patients to the disease progression 

(LTNP and elite suppressors representing 10–15% and less than 1% of HIV-infected population, 

respectively) would give us important information concerning factors involved in disease progression 

and responses to be induced upon vaccination. Indeed, these populations are actively studied to 

understand how infected individuals control viral replication and immune activation for at least 10 

years. Is it virus, or is it the host or is it all in the genes [166–171]? A very recent paper shows that 

LTNPs have intact CD4
+
 T cell populations in the gut mucosa with similar IL-17 expression and 

plasma LPS level to HIV-uninfected controls [172].  

The next question is how can therapeutic strategies reproduce this privileged status without adapted 

genetic background? One thing appearing fundamental is the necessity to preserve the integrity of the 

gut mucosa; one approach would be to ‖test and treat‖, a prevention strategy that promotes HIV testing 

and initiating antiretroviral therapy upon diagnosis, regardless of CD4 cell count [173]. According to 

the published results, the most important step to control HIV infection should be to manage the 

integrity of the gut mucosa. 
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