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Abstract: For many viruses, one or two proteins enable cell binding, membrane fusion and 

entry. The large number of proteins employed by poxviruses is unprecedented and may be 

related to their ability to infect a wide range of cells. There are two main infectious forms 

of vaccinia virus, the prototype poxvirus: the mature virion (MV), which has a single 

membrane, and the extracellular enveloped virion (EV), which has an additional outer 

membrane that is disrupted prior to fusion. Four viral proteins associated with the MV 

membrane facilitate attachment by binding to glycosaminoglycans or laminin on the cell 

surface, whereas EV attachment proteins have not yet been identified. Entry can occur at 

the plasma membrane or in acidified endosomes following macropinocytosis and involves 

actin dynamics and cell signaling. Regardless of the pathway or whether the MV or EV 

mediates infection, fusion is dependent on 11 to 12 non-glycosylated, transmembrane 

proteins ranging in size from 4- to 43-kDa that are associated in a complex. These proteins 

are conserved in poxviruses making it likely that a common entry mechanism exists. 

Biochemical studies support a two-step process in which lipid mixing of viral and cellular 

membranes is followed by pore expansion and core penetration. 

Keywords: vaccinia virus entry; viral membrane fusion; endocytosis; macropinocytosis; 

transmembrane proteins 

 

1. Introduction 

Poxviruses comprise a family of genetically related, large, enveloped, DNA viruses that replicate 

exclusively within the cytoplasm of vertebrate or invertebrate cells [1]. Homologs of approximately 
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100 of the 200 or more genes are present in all Chordopoxviruses and 50 are recognizable in both 

Chordopoxviruses and Entomopoxviruses [2]. The products of the highly conserved genes are involved 

in cell entry, gene expression, DNA replication, intramolecular disulfide bond formation and virion 

assembly; products of the less conserved genes participate in specific host interactions. The most 

intensively studied poxviruses belong to the Orthopoxvirus genus, including variola virus (causative 

agent of smallpox, eradicated from nature), vaccinia virus (VACV; the modern smallpox vaccine, now 

endemic in Brazil), cowpox virus (the original smallpox vaccine, indigenous in Europe, occasionally 

infects humans) and monkeypox virus (indigenous in Africa, causes a smallpox-like disease of 

humans). Studies of VACV have provided most of what we know about poxvirus entry [3]. 

For historical reasons, VACV genes and open reading frames are commonly identified with a 

capital letter (representing a HindIII restriction endonuclease genome fragment), an arabic number 

(representing the position within the HindIII fragment) and L or R (indicating transcription to the left 

or right, respectively). Proteins have the corresponding designation except that L or R is omitted. For 

example L1 is the protein encoded by L1R. The www.poxvirus.org is a useful website for correlating 

these common names, which are listed for the Copenhagen strain of VACV, with GenBank 

annotations for other VACV strains such as Western Reserve (WR). 

2. Poxvirus Replication Cycle  

DNA viruses typically replicate and express their genomes in the nucleus making extensive use of 

cellular proteins. In contrast, poxviruses rely heavily on virus-encoded proteins enabling them to 

replicate in the cytoplasm [1]. The infectious VACV membrane-bound particle contains a core, within 

which reside the linear, double-stranded DNA genome and virus-encoded enzymes and factors that 

allow transcription of the early set of genes. When the core enters the cytoplasm, early mRNA and 

protein synthesis occur, followed by DNA replication [4a]. The replicated DNA provides a template 

for the synthesis of intermediate and late classes of mRNA. The most recent analysis of VACV WR 

suggests that there are 118 early, 53 intermediate and 38 late genes [4b]. Following late gene 

expression, virus assembly begins. The initial infectious form, called a mature virions (MV) [5], has a 

single external membrane [6–8] (Figure 1). Some MVs are wrapped in a modified trans-Golgi or 

endosomal membrane to become triple-membrane particles called wrapped virions (WVs), whereas 

other MVs remain free or in inclusions within the cytoplasm until liberated by cell lysis [9–11]. The 

WVs are transported on microtubules to the periphery of the cell where the outer membrane fuses with 

the plasma membrane to release an extracellular enveloped virion (EV), consisting essentially of a MV 

with one additional membrane [12,13] (Figure 1). At least 20 proteins are associated with the MV 

membrane and 6 others with the outer EV membrane. In older papers and some recent ones, MVs may 

be referred to as INVs or IMVs; WVs as IEVs; and EVs as EEVs and CEVs. 
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Figure 1. Two major forms of infectious virions. The mature virion (MV) contains more 

than 80 proteins and consists of a nucleoprotein core surrounded by a lipid membrane 

(black) with about 20 proteins. Approximately 20 proteins within the core are devoted to 

synthesis and modification of mRNA. The enveloped virion (EV) consists essentially of a 

MV with an additional membrane (red) containing about 6 proteins distinct from those in 

the MV membrane. 

 

 

MVs are very stable and are thought to mediate transmission between host animals, whereas EVs 

have a fragile outer membrane and are specialized for exiting the intact cell and spreading within the 

host. EVs can remain associated with the tips of actin-containing protrusions at the cell surface or 

released into the surrounding fluid but the former are predominant in most VACV strains and are 

largely responsible for cell-to-cell spread [14–18]. However, a few VACV strains, such as IHD-J, 

release relatively large numbers of EVs [19]. Enhanced EV release may be a tissue culture adaptation 

of some VACV strains. The difference in the amounts of EVs released by WR and IHD-J is largely 

due to a single amino acid change in the A34 EV membrane protein [20]. Mutations of other EV 

proteins can also increase EV release [21]. Partly for technical reasons, the majority of entry studies 

have been carried out with MVs, usually of the WR VACV strain. A high percentage of EVs that are 

released from cells have a partly disrupted outer membrane, making experiments with these particles 

difficult to interpret. There have been virtually no investigations of entry mediated by cell-associated 

EVs, despite their biological importance.  
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3. Entry Pathways 

Entry of the core or nucleoprotein of enveloped viruses requires fusion of the viral membrane with 

either the plasma or endosomal membrane [22]. The latter route is thought to provide an advantage in 

providing passage through the dense cell cortex. For VACV, it is necessary to consider the existence of 

two infectious forms of virus, the single-membrane MV and the double-membrane EV. On theoretical 

grounds alone it seemed unlikely that the outer EV membrane would fuse since that would leave a 

membrane bound MV-like particle in the cytoplasm. Indeed, some electron microscopic images show 

fusion of the single MV membrane with the plasma membrane of the cell [23–25]. Moreover, electron 

microscopic images show MVs fusing with plasma membrane after dissolution of the EV membrane, 

apparently by interaction with glycosaminoglycans at the cell surface [26].  

In addition to the above images of VACV fusing with the plasma membrane, other images show 

MVs within endosomes [27,28]. Further microscopic (Figure 2) and biochemical studies indicate that 

VACV MVs can enter cells via neutral pH plasma membrane or low pH endocytic pathways [25]. The 

strong enhancement of entry following brief low pH (<6) treatment of cell-bound virions (mimicking 

the low pH of late endosomes) and inhibition of entry by preventing acidification of endosomes 

(Figure 3) suggests that the endocytic route is dominant for the WR strain of VACV [25].  

Figure 2. Transmission electron micrographs showing a VACV MV fusing with the 

plasma membrane (A) and endosomal membrane (B). Prior to cryosectioning, the infected 

cells were stained with a monoclonal antibody to the MV membrane protein D8 followed 

by protein A conjugated to gold spheres. Modified from reference [25]. 
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Figure 3. Effects of low pH and inhibitors of endosomal acidification on VACV MV entry. 

(A) Following adsorption of a recombinant VACV MV that expresses firefly luciferase at  

4 °C, cells were incubated with buffers at the indicated pH for 3 min at 37 °C. The cells 

were then incubated with regular medium for 1 h at 37 °C, lysed and luciferase activity 

measured; (B) Cells were pretreated with indicated concentrations of bafilomycin A1 for 

50 min at 37 °C and then infected with MVs, briefly exposed to pH 5 or 7.4 buffer, and 

luciferase activity measured as in panel A. Note that incubation at pH 5 allows fusion at the 

plasma membrane and bypasses the effect of the inhibitor. Modified from reference [25]. 

 

Low pH as well as brief proteinase treatment can stably activate MVs prior to their adsorption to 

cells suggesting a triggering or unmasking effect, but these procedures do not alleviate sensitivity to 

inhibitors of endosomal acidification [29]. Entry of some other VACV strains, such as IHD-J, are  

not accelerated by low pH or inhibited by lysomotropic agents indicating entry through the plasma 

membrane or a neutral pH endocytic route [30]. Adaptation of entry pathways could have occurred 

during extensive cell culture passaging of VACV strains. Several recently isolated orthopoxviruses 

have been shown to be more similar to WR than IHD-J with regard to entry pathway, emphasizing the 

importance of the endocytic route (Z. Bengali, P.S. Satheshkumar and B. Moss, unpublished). There 

have been few studies of members of other poxvirus genera. Myxoma virus entry is not enhanced by 

low pH [31].  

Recent evidence suggests that the VACV A25 and A26 proteins serve as fusion suppressors for 

MVs and determine strain-specific virus entry pathways [32]. Thus, MVs containing functional A25 

and A26 proteins do not fuse readily with the plasma membrane and enter through the endocytic 

pathway, whereas those missing these proteins enter through the plasma membrane. Further discussion 

of these proteins and mechanistic aspects of the model will be presented below. The route of infection 

also depends on the cell type [30,33]. VACV can even enter insect cells, though replication is abortive [34–

36]. Entry into Drosophila S2 cells is exclusively through the endocytic route [36]. 

Engulfment of the large VACV MV particles occurs by clathrin- and caveolin-independent 

macropinocytosis or fluid phase endocytosis and is dependent on actin dynamics and cell  

signaling [37–39]. The requirement for cell signaling may have led to earlier proposals that chemokine 

receptors serve as poxvirus entry portals [40–42]. Two cellular proteins, VPEF and CD98, associated 

with lipid rafts participate in the fluid phase uptake of MVs [37,43]. EVs may enter through the plasma 

membrane or following endocytosis [26,44,45].  
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The infectivity of intact and detergent extracted MVs can be enhanced by incubation with 

liposomes containing phosphatidylserine [46,47]. This finding was recently confirmed and extended 

by Mercer and Helenius [37], who also showed that annexin 5 inhibits VACV entry. They proposed 

that the role of phosphatidylserine in MV endocytosis is similar to the role of this lipid in uptake of 

apoptotic bodies. The infectivity of lipid-extracted MVs could also be enhanced by the non-biologically 

relevant D-stereoisomer of phosphatidylserine as well as by other phospholipids that are not known to 

signal uptake of apoptotic debris [48]. Therefore, the putative lipid receptor would have low specificity 

suggesting a role for bridging molecules. A soluble protein called Gas6 can bridge phosphatidylserine 

and the TAM receptor tyrosine kinase Axl on certain cells [49]. However, Gas6 had little or no effect 

on MV entry, although EV entry was enhanced [49]. Paradoxically, annexin 5 was reported not to 

inhibit EV entry, suggesting that phosphatidylserine is not involved [45]. Further studies are needed to 

understand the role of lipids in VACV entry. 

4. Attachment 

Proteinase treatment of cells can prevent binding of MVs suggesting a role for cell surface  

proteins [50,51]. Four viral proteins can mediate MV attachment. D8 binds chondroitin sulfate [52] 

and A27 and H3 proteins bind heparan sulfate [53–56] indicating the importance of 

glycosaminoglycans (Table 1). Heparin appears to have a greater inhibitory effect on VACV strains 

that preferentially enter by a neutral pH mechanism [30]. The A26 protein binds laminin [57]. Of  

the four attachment proteins, only H3 is highly conserved among poxviruses. D8 and H3 have 

transmembrane domains; the A26 and A27 proteins interact with each other and the latter is  

anchored by the A17 transmembrane protein, which is an important structural element of the MV 

membrane [58–60]. The attachment proteins are multifunctional and are not individually essential, 

though deletion of A27 and H3 severely reduce VACV infectivity [55,61,62]. H3 also participates in 

MV assembly and A27 is required for formation of the WV. In addition, the A26 protein mediates the 

incorporation of MVs into so-called A-Type cytoplasmic inclusion bodies of some orthopoxviruses 

including cowpox virus and ectromelia virus [63]. The A25 protein of VACV, recently described as a 

fusion suppressor [32], is a truncated form of the A-type inclusion protein [64,65]. A soluble, 

truncated, recombinant form of the L1 protein, described below, can attach to cells lacking 

glycosaminoglycans and prevent VACV entry suggesting that it is a receptor binding protein [66]. 

However, the putative cellular protein interacting with L1 remains to be determined. The binding of 

EVs was not diminished by proteinase treatment of cells and the attachment molecules have not been 

identified [50]. 
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Table 1. VACV MV attachment and entry proteins. 

Protein kDa TM a Expr b Cons c Properties 

Attachment 

A26 58 - L - Binds laminin; assoc. with A27 

A27 13 - I - Binds heparan; assoc with A17; N d  

D8 35 N I - Binds chondroitin; N  

H3 38 C I P Binds heparan; N 

Entry 

A16 43 C I P EFC e; paralog G9, J5; binds G9; C-C f 

A21 14 N L P EFC; C-C 

A28 16 N L P EFC; N; binds H2; C-C 

F9 24 C L P EFC associated; C-C 

G3 13 N L P EFC; binds L5 

G9 39 C L P EFC; paralog A16, J5; binds A16; C-C 

H2 22 N L P EFC; binds A28; C-C 

I2 8 C L C EFC? 

J5 15 C L P EFC; paralog A16, G9; C-C 

L1 27 C L P EFC associated; N; C-C; Myr g 

L5 15 C L P EFC; binds G3; C-C 

O3 4 N I C EFC 
a TM, N- or C-terminal transmembrane domain; b Expr, expressed at I (intermediate) or L (late) 
times of replication; c Cons, conserved in all poxviruses (P) or all chordopoxviruses (C); d N, target 
of neutralizing antibody; e EFC, component of entry-fusion complex; f C-C, intramolecular 
disulfide bond(s); g Myr, myristoylated. 

5. Identification of Viral Proteins that Mediate Core Entry 

Although many enveloped viruses encode one or two proteins that are sufficient to mediate 

attachment and entry, VACV is exceptional. Thus far, 11 to 12 proteins have been implicated in a  

post-attachment entry step (Table 1). These proteins are conserved in all poxviruses with the possible 

exception of O3; although the small size of the latter protein makes it difficult to detect statistically 

significant homology, all chordopoxviruses encode a protein with similar features at the same genome 

location as O3 [67]. Entry proteins were originally discovered by identifying genes predicted to encode 

transmembrane proteins that are conserved in all poxviruses, constructing inducible mutants, and 

determining their phenotypes [68–70]. MVs that formed in the absence of inducer, and therefore 

lacking the specific target protein, could bind to cells but had low infectivity and the cores did not 

enter the cytoplasm as determined by microscopy. Furthermore, cells infected with the mutant viruses 

were unable to form syncytia following a low pH pulse. Additional entry proteins conserved in all 

poxviruses were identified by mass spectroscopy of complexes captured with antibodies to the above 

entry proteins [71] and subsequently confirmed by constructing conditional lethal mutants. Presently, 

nine proteins (A16 [72], A21 [69], A28 [68,73], G3 [71,74,75], G9 [76], H2 [77,78], J5 [79], L5 [70] 

and O3 [67,80]) are considered to be integral components of the entry fusion complex (EFC) and two 

more, F9 [81] and L1 [82], have been designated EFC-associated. The phenotypes resulting from 

failure to express the integral or associated EFC proteins are similar and the distinction is based mainly 
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on their contribution to the stability of the complex, which may depend on their relative locations and 

subunit interactions. The EFC proteins are synthesized following viral DNA replication and are 

dedicated to entry, since in their absence normal looking virions that are competent to synthesize 

mRNA in vitro but are unable to initiate an infection, are assembled. 

The involvement of several additional VACV proteins in entry has been proposed. The phenotype 

of a conditional lethal I2L mutant is similar to that of EFC mutants and the I2 protein is listed in  

Table 1 [83]. However, the repression of I2 expression results in diminished amounts of EFC proteins 

in the viral membrane, raising the possibility of an indirect effect on entry [83] and association of I2 

with the EFC has not been demonstrated. The heterologous expression of A17 was reported to cause 

fusion of transfected cells suggesting a similar role during entry [84]. A17 is a major component of the 

virion membrane and conditional lethal A17 mutants are blocked in viral membrane formation [85,86], 

where fusion may have a role, making it difficult to confirm an additional entry function. 

6. Organization of the EFC and Structure of Subunit Proteins 

The EFC has been isolated by immunoaffinity capture from non-ionic detergent-treated cytoplasmic 

extracts and membrane fractions of VACV-infected cells, probably representing immature virions [71]. 

The EFC fails to form when formation of the viral membrane is inhibited [71], thus preventing its 

synthesis in heterologous systems and hindering its physical characterization. The proteins are tightly 

bound to the membrane of the MV, making it difficult to extract as a complex even with non-ionic 

detergents, explaining why the infectivity of detergent extracted MVs can be partially reconstituted 

with lipids [47]. The EFC is destabilized when synthesis of any one of the nine integral component 

proteins is prevented, suggesting that it is held together by multiple subunit interactions. However, 

under destabilizing conditions, some subunit interactions are retained; these include interactions of 

A28 to H2 [78], A16 to G9 [87] and G3 to L5 [88] (Table 1). As will be detailed in a subsequent 

section, A16:G9 can also bind to the A56:K2 heterodimer of fusion regulatory proteins [87] and the 

A26 protein [119].  

The entry proteins vary in size from 4- to 43-kDa, are non-glycosylated, and resemble neither type 

1- nor type 2-fusion proteins of other viruses (Table 1). The combined mass of the EFC and  

EFC-associated proteins is 232 kDa, assuming each component is represented once. Five of the 

proteins, comprising A21, A28, G3, H2 and O3 have a N-terminal transmembrane domain; the others 

consisting of A16, F9, G9, J5, L1 and L5 have a C-terminal transmembrane domain. Interestingly, 

A16, G9, and J5 are related in sequence and apparently the progenitor was duplicated and diverged 

early in poxvirus evolution. Similarly, L1 and F9 are structurally related. Nevertheless each paralog is 

encoded by all poxviruses and is individually required for entry. With the exceptions of O3, G3 and I2, 

the entry proteins contain conserved intramolecular disulfide bonds that are formed by a novel 

cytoplasmic redox system that is encoded by all poxviruses [89]. No other viral proteins are known 

substrates of the poxvirus redox system, suggesting co-development with the EFC proteins perhaps 

because of their cytoplasmic domains. The cellular redox system, in contrast to the poxvirus system, is 

localized in the endoplasmic reticulum. The possibility that disulfide interchange has a role in 

activation of the EFC to initiate fusion is an intriguing thought, as this has been suggested for some 

other viruses [90–93]. 
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Remarkably, O3 consists of only 35 amino acids, making it the smallest protein encoded by  

VACV [80]. The homologs in other poxviruses range from 29 to 48 amino acids in length and have a 

low degree of amino acid identity yet can complement an O3 deletion mutant [67]. The characteristic 

feature of the O3 homologs is the N-terminal transmembrane domain, which is essential and sufficient 

for its association with other EFC proteins [67].  

Mutagenesis of the H2 protein defined a highly conserved region that is important for interaction 

with the A28 protein [78]. The A28 protein is a target of neutralizing antibodies [94] indicating an 

exposed location on the surface and its immunogenicity is specifically enhanced by association with 

H2 [95]. 

The EFC-associated L1 protein has been subjected to detailed analysis. L1 is a target of potent 

neutralizing antibodies indicating that it is exposed on the MV surface [96,97]. The protein is 

myristoylated at the N-terminal glycine residue [98,99] and contains three intramolecular disulfide 

bonds [89,100]. Mutation of the N-terminal glycine prevents the complementation of VACV 

infectivity [101], alters the intracellular localization of L1 as determined by confocal microscopy and 

reduces intramolecular disulfide bond formation [102], although the protein still associates with the 

EFC and MVs [103]. The crystal structure reveals a fold composed of a bundle of -helices packed 

against a pair of two-stranded -sheets [104]. The 7D11 neutralizing monoclonal antibody binds to a 

discontinuous epitope containing two loops that are held together by a disulfide bond [105]. 

Interestingly, there is a large hydrophobic cavity that could accommodate the N-terminal myristate 

moiety [104] and recent studies indicate that mutations within the cavity inhibit infectivity without 

affecting myristoylation [103]. Taken together, these results suggest a “myristate switch” model in 

which the acyl chain is released from the cavity during entry. 

7. Membrane Fusion 

Entry of the nucleoprotein or core of enveloped viruses is usually divided into three steps: close 

apposition of the viral and cellular membrane, lipid-mixing of the outer membrane leaflets leading to 

the formation of a hemifusion intermediate, and formation and expansion of a pore [22]. The lipid-

mixing step can be studied by loading the virion membrane with a self-quenching lipophilic dye such 

as R18 and measuring an increase in fluorescence. Fusion of VACV MVs and EVs with cells was 

demonstrated in that way [106]. By using recombinant VACV expressing firefly luciferase regulated 

by an early promoter, it has been possible to distinguish lipid-mixing and later steps dependent on core 

entry (Figure 4).  
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Figure 4. Membrane fusion and core entry. R18-loaded MVs that express firefly luciferase 

were incubated with HeLa cells at 4 °C to permit binding. Washed cells were then placed 

in a cuvette containing pre-warmed media at 37 °C and fluorescence was monitored over 

time (red line; left y-axis). In parallel, unlabeled MVs were bound to cells in the cold and 

then shifted to 37 °C. Cell lysates were prepared at indicated times and assayed for 

luciferase (LUC) activity (purple line; right y-axis). Modified from ref [107]. 

 

The roles of individual EFC and EFC-associated proteins were investigated using MVs deficient in 

a single component, derived from a panel consisting of 10 conditional lethal inducible mutants [107]. 

The mutant virions were all able to attach to cells but most were unable to carry out even the initial 

lipid-mixing step. However, lipid-mixing occurred with the A28, L1 and L5 mutants but further steps 

did not. Two possibilities were considered: one is that the latter proteins are specifically required for 

pore formation or expansion; the other is that traces of A28, L1 and L5 remain in the MVs (though 

undetectable by Western blotting) and that this is sufficient for lipid mixing but not pore formation. 

Interestingly, neutralizing 7D11 monoclonal antibody to L1 also allows lipid mixing but not core  

entry [107]. Regardless of which hypothesis is correct, the data support a two-step model in which 

lipid mixing of the outer leaflets of the viral and cellular membranes occurs followed by merging of 

the inner leaflets and expansion of the pore to permit core entry.  

Although low pH accelerates entry of MVs as measured by the luciferase assay [25,29], lipid 

mixing is not enhanced by low pH [106,107]. Inhibitors of tyrosine protein kinases, dynamin GTPase 

and actin dynamics have little effect on binding of virions to cells but impair membrane fusion 

measured with R18, whereas partial cholesterol depletion and inhibitors of endosomal acidification and 

membrane blebbing have a more severe effect at the later stage of core entry [107]. Extensive actin 

remodeling and mobilization occur during MV binding to cell surfaces [37,38,108] suggesting that 

actin-enriched projections enhance the intimacy of membrane contact allowing virus-cell membrane 
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fusion. Actin remodeling has been proposed to facilitate fusion by forcing membranes together and 

enlarging pores in a variety of systems [109–111] including viral protein-induced cell-cell fusion and 

virus entry [112–117]. In HIV entry, actin remodeling has a more important role in pore expansion and 

content mixing than hemifusion [118,119]. Cytochalasin D and latrunculin have a greater inhibitory 

effect on VACV core entry than hemifusion, suggesting that actin dynamics may be required for both 

hemifusion and pore formation [107]. 

8. Cell-Cell Fusion 

Infection with certain VACV mutants causes cells to form syncytia. The mutations are in the  

A56R [120] and K2L [121–123] genes. Although referred to as fusion from within, syncytia formation 

is dependent on the formation and externalization of virions and on components of the EFC suggesting 

that the phenomenon has features related to virus entry [124]. A56 and K2 form a complex on the 

plasma membrane and the EV membrane [125]. This complex can interact with the A16 and G9 

subunits of the EFC to prevent spontaneous activation of the fusion apparatus by progeny virions [87]. 

Uninfected cells expressing A56 and K2 but neither alone are resistant to forming syncytia when 

mixed with cells infected with an A56R deletion mutant [126]. Therefore, the A56-K2 complex acts as 

a fusion suppressor. 

Wild type VACV-infected cells can also form syncytia if they are briefly exposed to low  

pH [106,127], similar to that occurring at neutral pH with A56R and K2L mutants. This process has 

also been called fusion from within, although again it is dependent on virions on the cell surface [128] 

and the EFC [68–70]. The low pH may assist in removing the outer EV membrane [129] and 

synchronizing the fusion process [3]. Low pH can also induce syncytium formation immediately after 

infection with a high multiplicity of MVs and this has been called fusion from without [127]. A recent 

report demonstrates that the A26 protein, like A56-K2, binds to the A16 and G9 components of the 

EFC, that this association is weakened by low pH, and that A26 deletion mutants can induce fusion 

from without at neutral pH [130].  

9. Inhibition of Superinfection 

VACV employs mechanisms to prevent superinfection of previously infected cells by MVs [131–133]. 

Superinfection exclusion operates between virus adsorption and early gene expression and is nearly 

complete by 6 h. Recent studies show that this early exclusion phenomenon occurs at the lipid-mixing 

step and is not dependent on expression of A56 (Laliberte, J. and Moss, B., unpublished). The association 

of the A16 and G9 components of the EFC with the A56-K2 complex, however, suggests that the latter 

represents a second mechanism of preventing superinfection as well as syncytia formation. A56 and 

K2 expressed by infected cells reduces the entry of superinfecting virus at late times, apparently on top 

of the already reduced superinfecton exclusion [134]. Moreover, uninfected cells stably expressing 

A56 and K2 are resistant to infection indicating that these proteins are sufficient for superinfection 

exclusion [126]. 

Superinfection exclusion also operates at the level of EVs [135]. Incorporation of VACV early 

proteins A33 and A36 into the plasma membrane leads to repulsion of superinfecting EVs providing a 

mechanism for the rapid spread of infection. 
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10. Final Thoughts 

VACV has the remarkable ability to infect a wide variety of cells including those of insects, birds 

and mammals, although in some cases the infection is aborted following early gene expression. 

Perhaps the ability to infect diverse cells is a benefit of the complex poxvirus fusion apparatus and the 

use of alternative entry pathways. A subject that has been largely absent from this review is the 

existence of specific cell receptors that directly activate the viral fusion apparatus. The wide variety of 

permissive cells could suggest multiple or ubiquitous receptors, which would make it difficult to 

identify them, or alternatively the absence of such receptors. It would not be the first situation in which 

poxviruses demonstrate reliance on their own proteins e.g., they encode their own enzymes for gene 

expression, DNA replication, and disulfide bond formation. At least 11 VACV proteins are dedicated 

to post-attachment steps in MV entry. Although conserved in all poxviruses, these proteins have no 

non-poxvirus homologs nor do they resemble fusion proteins of other viruses. The combined mass of 

the EFC and EFC-associated proteins is 232 kDa and it is possible that several of the small proteins 

together form a non-linear hydrophobic face that comprises a fusion domain. A high-resolution 

structure of the EFC is sorely needed. The mechanism used by cell-associated EVs to enter neighboring 

cells is another area requiring further research. This process could be investigated using live cell 

imaging. Hopefully, the next review of poxvirus entry will address why so many proteins are needed 

rather than how many. 

Addendum 

After completion of this manuscript, a related review that emphasizes poxvirus cell entry pathways 

was published [136]. 
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