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Abstract: West Nile virus (WNV) has become the principal cause of viral encephalitis in 
North America since its introduction in New York in 1999. This emerging virus is 
transmitted to humans via the bite of an infected mosquito. While there have been several 
candidates in clinical trials, there are no approved vaccines or WNV-specific therapies for 
the treatment of WNV disease in humans. From studies with small animal models and 
convalescent human patients, a great deal has been learned concerning the immune 
response to infection with WNV. Here, we provide an overview of a subset of that 
information regarding the humoral and antibody response generated during WNV infection.  
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1. Introduction 

West Nile virus (WNV) is a neurotropic flavivirus that has seen an emergence into new geographical 
regions in the last decade. Originally isolated from a patient in Uganda in 1937 [1], WNV was 
introduced into New York in 1999 and has since spread to the Pacific coast and through the Americas 
to Argentina. Since its introduction, WNV has become the leading cause of mosquito-borne 
encephalitis in the USA [2]. WNV now poses a risk to human health in North America, Europe, 
Africa, and the Middle East.  
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A member of the Flaviviradae family, WNV is classified within the Japanese Encephalitis virus 
serocomplex. WNV exists in an enzootic cycle between mosquitos and birds, but humans and horses 
can become infected when bitten by an infected mosquito. While ~80% of infections are 
asymptomatic, WNV infection can cause a range of symptoms from a mild febrile disease to flaccid 
paralysis to lethal encephalitis. While the most severe symptoms generally manifest in the elderly and 
immunocompromised, healthy individuals can also experience severe disease.  

2. Virology and Pathogenesis 

WNV has a positive, single-stranded ~11-kilobase RNA genome. The genome is encapsidated 
within multiple copies of the capsid (C) structural protein and enveloped in a lipid bilayer decorated by 
the two other structural proteins, membrane (M) and envelope (E). The infectious mature WNV 
particle is approximately 50 nm in diameter and has 180 copies of the E glycoprotein arranged in a  
T = 3 quasi-icosahedral symmetry [3]. The viral lifecycle begins with attachment of the virus to a  
yet-to-be-identified cellular receptor. Several cellular proteins have been shown to interact with surface  
E proteins, including integrin αvβ3 [4,5], DC-SIGN/ DC-SIGNR [6,7], and others [8], but none of these 
candidates were shown to be both necessary and sufficient for infection. The virus enters via  
clathrin-mediated endocytosis and traverses the lysosomal pathway [9]. As the endocytic vesicle 
containing the virus acidifies, structural rearrangement of E proteins occurs, allowing for the formation 
of E homotrimers and insertion of the fusion loop into the vesicular membrane [10–12]. The 
nucleocapsid is released into the cytoplasm of the cell, completing the first stage of infection. The 
WNV genome is translated as a polyprotein and subsequently cleaved by both viral and host proteases. 
The polyprotein encodes the three structural proteins (C; pre-membrane (prM); and E) and seven  
non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5), the latter of which are 
involved in the replication complex.  

Animal models have aided our understanding of WNV pathogenesis in the absence of data for 
human pathogenesis. From these studies, WNV pathogenesis has been classified into three stages: 
initial infection and spread, peripheral viral spread, and neuroinvasion. Upon transmission of WNV 
from the bite of an infected mosquito, the virus is believed to infect and replicate within keratinocytes 
and skin-resident dendritic cells. It is thought that DC migration to the draining lymph node leads to 
the next phase of infection as the virus replicates and is disseminated into peripheral organs. It is 
currently unclear what the major cellular reservoir of viral infection and replication WNV uses, but 
subsets of DCs, macrophages, and neutrophils have been suggested. The final stage of WNV 
pathogenesis involves neuroinvasion and infection of the brain and spinal cord. The mechanism(s) by 
which WNV gains entry into the CNS is incompletely understood, but it is the translocation of the 
virus into the CNS that leads to lethal disease.  

3. WNV Structural Biology 

The E glycoprotein is the major flavivirus structural protein present on the viral surface, as well as 
the dominant target of neutralizing antibodies. The E glycoprotein is responsible for binding the host 
cellular receptor as well as endosomal fusion. The crystallographic structure of the E protein 
ectodomain of multiple flaviviruses has been determined [13–21]. Despite sharing only ~37% 
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sequence identity, flavivirus E ectodomains share a generic structure of three subdomains stabilized by 
six conserved disulfide bonds (Figure 1A). The centrally located domain I (DI) is an eight-stranded  
β-barrel. Flanking DI is domain II (DII) that consists of two elongated loops, containing the conserved 
fusion loop (residues 98–110). Domain III (DIII) is an immunoglobulin-like fold linked to DI on the 
opposing side from DII. Glycosylation of the E glycoprotein is variable among flaviviruses. WNV E 
has a single N-linked glycosylation site at position 154, while dengue virus (DENV) and Tick-borne 
encephalitis virus have an additional N-linked glycan in E DII. The two α-helices following DIII are 
designated as the stem region, which is followed by two more α-helices in the transmembrane region. 
While there are no crystallographic models of these helices, we have been informed of their locations 
and functions from atomic modeling of cryo EM structures of flaviviruses [22,23]. Both sets of helices 
are found in anti-parallel arrangements; those of the stem region are amphipathic, interacting with both 
the phospholipid heads of the lipid bilayer and the viral structural proteins, while the hydrophobic 
transmembrane helices are inserted into the outer leaflet of the bilayer.  

Figure 1. West Nile virus (WNV) structure. (A) Ribbon diagram of the crystal structure of 
WNV E ectodomain residues 1–400 (PDB 2HG0) [20] colored by domain: DI (red), DII 
(yellow), and DIII (blue). The fusion loop (residues 98–110) is shown in green, the six 
disulfides in orange, and the N-linked glycan at position Asn 154 is colored by atomicity; 
(B) Pseudoatomic cryo EM reconstruction model of the mature WNV virion (PDB 3J0B) [22]; 
(C) Pseudoatomic cryo EM reconstruction model of the immature WNV virion (PDB 
2OF6) [24]. Each E monomer in the cryo EM models is colored according to its 
icosahedral symmetry location: 2-fold (yellow), 3-fold (blue), and 5-fold (red). Ribbon 
diagram rendered in PyMOL [25]. All cryo EM models were rendered in the program 
Chimera [26].  
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The mature WNV virion is ~50 nm in diameter with 180 copies of the E glycoprotein smoothly 
arranged in a head-to-tail homodimeric fashion [3]. The homodimeric arrangement of the E protein 
shields exposure of the DII fusion loop at neutral pH. The symmetry of the E proteins creates three unique 
chemical environments according to the orientation into 2-, 3-, or 5-fold symmetry axes (Figure 1B). 
Immature WNV virions have a distinct structural composition relative to the mature virion. Unlike the 
mature virion, the immature virus maintains 180 copies of uncleaved prM protein, non-covalently 
associated with each E protein. These prM/E heterodimers form 60 trimeric spikes (a trimer of 
heterodimers) arranged with icosahedral symmetry ([27] and Figure 1C), with the DII fusion loop 
radiating outward from the virus center. prM is thought to cap the E fusion loop and prevent premature 
viral fusion as the newly assembled particle transverses the slightly acidic environment of the  
trans-Golgi network (TGN). The low pH environment of the TGN induces structural rearrangements of 
E proteins that expose a cleavage site within prM. After the prM protein is cleaved in the TGN by a 
host furin-like protease, the cleaved pr peptide remains associated with E by electrostatic forces, 
continuing to shield the viral fusion loop from premature fusion, until the virus is released into the 
extracellular environment [28]. In the neutral pH of the extracellular environment, the pr peptide 
dissociates from the mature particle, and the E protein assumes the homodimeric T = 3 symmetry 
discussed above. Although cleavage of prM is required for the production of infectious particles [29], 
this cleavage event is not 100% efficient, resulting in the release of a heterogeneous mixture of mature, 
immature, and partially mature virions that retain varying levels of uncleaved prM [30–32]. At least a 
subset of partially mature WNV is infectious, indicating that an unknown threshold of prM cleavage is 
required for the transition from non-infectious (fully immature) to infectious virus [7]. The variability 
of this population has limited the use of traditional structural methodologies. Application of single 
particle reconstruction provided by cryo-electron tomography or an alternative method may yield some 
insight into the architecture of such particles.  

As the endosomal compartment matures during WNV entry, an acid-induced dissociation of the  
E homodimers occurs, facilitating the irreversible formation of a fusogenic E trimer. While the exact 
structural arrangements on the surface of the virion are unknown, crystallographic structures inform us 
that the formation of the trimer requires a considerable movement at the DI-III linker as DIII rotates 
~36 degrees relative to DI/II [16,18,19]. These fusogenic spikes are oriented radially from the virus, 
with DIII and DI forming the base and the DII fusion loop clustering towards the host membrane. It 
has been proposed that an interaction between the stem region and transmembrane region stabilizes the 
trimer for eventual fusion of viral and cellular lipid and release of the nucleocapsid into the cytosol [33]. 

Structural Flexibility of WNV  

The structural flexibility of the E protein during maturation and fusion has been well established. 
However, studies over the last few years have revealed that the conformation of the virus, relative to 
antibody epitope exposure, is influenced by increasing the incubation time and temperature (discussed 
in Section 5.2.2). Indeed, recent cryo EM reconstructions of DENV after incubation at higher 
temperatures resulted in the transition to a “bumpy” virus, on which the E proteins are present in an 
expanded form as compared to the smooth virion stucture [34,35]. While incubation of WNV did not 
show these same structural transitions, the authors proposed that the higher body temperature of bird 



Viruses 2014, 6              
 

 

1019 

reservoirs at 43 °C may provide optimal conditions for a similar transition compared to that of the 
human body temperature. While epitopes that have limited exposure show a more drastic response to 
neutralization when both time and temperature is increased, readily available epitopes also show some 
increase in neutralization efficacy under the same conditions for both DENV [36,37] and WNV [38]. 
The full scope of the conformational ensemble for WNV is unknown.  

4. Humoral Immune Response to WNV 

The humoral immune response plays a key role in the pathogenesis of West Nile virus infection. 
WNV-infected mice lacking B cells (μMT mice) show higher viral titers in the CNS and 100% 
mortality [39], presumably due to an inability to clear virus from the periphery. Administration of 
neutralizing monoclonal or polyclonal IgG immune serum to naïve WT mice provides complete 
protection from death while a subset of μMT mice experience delayed mortality. Furthermore, WNV 
infection of sIgM−/− mice, which lack secreted IgM, but express cell surface IgM and can secrete other 
antibody isotypes, resulted in complete mortality [40]. Passive transfer of anti-WNV IgM from a 
mouse day four post-infection or anti-WNV IgG was able to blunt the dissemination of the virus in 
wild-type mice and mice lacking secreted IgM. These results demonstrated that the early anti-WNV 
IgM response (a) limits virus spread in the periphery and CNS and (b) the IgM titer on day four can 
predict survival outcome. However, passive antibody alone, while able to delay complete mortality, 
was not sufficient to protect RAG1−/− mice, which lack both B and T cells, suggesting a role in viral 
clearance for T cell mediated immunity in WNV infection [41]. Beyond survival studies, the events 
that result in innate immune activation of B cells are incompletely understood. Sustained signaling 
through the type I interferon α/β-receptor has been shown to be required for initial activation of B cells 
in the lymph node, but not the spleen [42]. This study also showed that the activation of CD19+ B cells 
in the draining lymph nodes was polyclonal in nature, as the response was BCR-independent. A recent 
study involving a WNV vaccine model showed that mice lacking MyD88 had deficiencies in B cell 
activation, germinal center activation, and the generation of a B cell memory response [43].  

While anti-WNV IgG clearly protects mice from rechallenge, the role of IgG in primary WNV 
infection is unknown. Based on the known kinetics of production of anti-WNV IgG isotypes (appearing 
between days 6–8), the virus enters the CNS (day 3) and is mostly cleared in the periphery [39]. In 
evaluating the possibility of antibody therapeutics, administration of immune human gamma globulin 
in the μMT mouse model of infection resulted in an increase in survival time, when given before day 
two post-infection [41]. WNV infection did show an increase of plasma cells in the brain of infected 
mice [44], perhaps suggesting a role for IgG in the CNS. Finally, multiple genetic deficiencies that 
affect anti-viral antibody priming, production, or trafficking (C3, C4, CD40, absence of CD4+ T cells, 
level of MHC class II expression, CD22) result in a concomitant decrease in antibody titers and 
survival during WNV infection [45–49]. 

4.1. Humoral Memory Response  

Flavivirus infection has been shown to induce life-long humoral protection from future infection 
with the homologous virus [50]. The anti-WNV IgG response is essential in providing this protection 
during WNV infection [39,51–53] and vaccination [54–56]. However, limited data exists examining 
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the memory recall response in WNV infection. Memory B cells (MBC) and long-lived plasma cells 
(LLPC) persist upon resolution of infection, and have been assigned non-redundant mechanisms of 
protection upon WNV challenge in immune mice [57]. Upon resolution of WNV infection, LLPCs, 
found primarily in the bone marrow, continue to secrete high-affinity antibody specific for a single 
immunodominant epitope found in the initial viral E protein. However, the majority of antibodies from 
MBCs were able to recognize both the immunizing immunodominant epitope, as well as a mutant 
epitope these mice had not been exposed to. These results suggest that the antibodies produced by 
MBCs serve to neutralize a potential future challenge by variant WNV that might escape neutralization 
by the high affinity LLPC antibody. Indeed, a recent study shows that mice given a vaccine for the 
related Japanese Encephalitis virus are protected from WNV lethality in a MBC adoptive transfer 
model [58], demonstrating a cross-protective role for MBCs in flavivirus infection. It was 
demonstrated in a WNV vaccine model in mice lacking TLR3 that while the development of MBCs 
was not affected, the maintenance of germinal centers and LLPCs were negatively impacted [43]. 

4.2. Epitopes Targeted by WNV-Specific Antibodies  

The E protein, which comprises the majority of the virion surface, represents the major target of 
neutralizing antibodies to WNV infection. Antibody epitopes have been identified on all three domains 
(DI-DIII) [24,52,53,59–64], with the most potent neutralizing antibodies focused on a discontinuous 
epitope on the lateral ridge of DIII (DIII-LR) [52,64,65]. E16, an extensively studied DIII-LR mAb, is 
capable of neutralizing WNV infection at picomolar concentrations [66]. Locations within the  
E protein and specific residues involved in binding by various WNV neutralizing antibodies are shown 
in Figure 2. Epitope mapping of WNV-specific mAbs has been performed by numerous methods 
including structural analysis, identification of neutralization escape mutants, and binding assays 
utilizing various forms of the E protein (i.e., linear peptides, soluble or yeast displayed forms of the  
E ectodomain or truncated E subdomains, intact virions or sub-viral particles) [67]. While individual 
epitopes have generally mapped to residues located spatially proximal to each other within specific  
E domains, evidence of more complex epitopes has been observed. For example, a subset of human 
WNV immune sera found to react with recombinant, full length E, but not polypeptides representing 
linear, 30 amino acid segments of the E protein, highlights the presence of antibodies that bind 
complex epitopes within a single E protein [51]. In a separate study, two mAbs isolated from B-cells of 
WNV-infected humans, CR4348 and CR4354, were found to bind intact sub-viral particles and virions 
but not to recombinant E or DIII alone, suggesting these antibodies bind epitopes that include residues 
from neighboring E proteins [53,62]. Indeed, the epitope for CR4348 maps to two amino acids (T208, 
H246) that are distal from one another on a single E protein, but are located within close proximity 
along the DII dimer interface of two antiparallel E proteins. Similarly, structural studies confirmed that 
CR4354 binds a discontinuous epitope that includes amino acids from neighboring E proteins from 
distinct dimers, and that this antibody acts by crosslinking the six E proteins located within a raft 
(Figure 2F,G) [68]. Both of these antibodies neutralize at a post-attachment step, indicating a 
mechanism by which the binding across multiple E proteins inhibits pH-mediated structural changes 
required for viral fusion [62]. 
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Figure 2. Antigenic structure of WNV. (A) Cartoon diagram of WNV E, colored by 
domain, labeling the location of neutralizing epitopes within E and associated residues;  
(B) Cartoon diagram of WNV E16 Fab engagement of DIII; (C) Cryo EM reconstruction 
of E16 Fabs bound to mature WNV virion (EMD_1234) [69]; (D) Cartoon diagram of 
WNV E53 Fab engagement of DII and fusion loop; (E) Cryo EM reconstruction of E53 
Fabs bound to immature WNV virion (EMD_5103) [61]; (F) Cartoon diagram of CR4354 
Fab engagement of a complex epitope between adjacent E monomers; (G) Cryo EM 
reconstruction of CR4354 Fabs bound to mature WNV virion (EMD_5190) [68]. Cartoon Fabs 
shown in purple, and WNV E colored as in Panel A. Cryo EM images colored according to 
distance from center of virus particle from lighter colors to darker. Black shapes on cryo EM 
figures identify axis symmetry: pentagon, 5-fold; triangle, 3-fold; ellipse, 2-fold.  

 

Antibodies against WNV proteins other than E have been identified. As introduced above, a subset 
of infectious WNV virions retain varying levels of uncleaved prM. Antibodies that bind to prM have 
been identified in WNV immune sera [51,70], and prM antibodies have been isolated from both mice 
and humans [71,72]. As reported for other flaviviruses, WNV antibodies specific for prM generally 
display weak neutralizing activity and limited protection in vivo [71]. This likely stems from the 
limited number of prM molecules present on the surface of partially mature virions, the effects of 
which will be discussed in detail below. Antibodies specific for the non-structural protein NS1 that 
demonstrate protective activity from WNV infection in vivo have been described [73]. Prophylactic 
treatment with some NS1 mAbs protected mice against lethal WNV infection, despite the fact that NS1 
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is not associated with the virion itself. NS1 antibodies are hypothesized to bind cell-surface expressed 
NS1 on infected cells and result in phagocytosis of infected cells through interactions with Fc-γ receptors 
(FcγR) expressed on macrophages [74]. Finally, antibody responses directed at NS3 and NS5 [70,75], 
as well as capsid [51] have been observed, but little is known regarding their importance in protecting 
against WNV infection.  

5. Mechanisms of WNV Neutralization 

Studies with WNV indicate that neutralization is governed by a stoichiometric threshold [31,66,76,77]. 
This requirement is consistent with a “multiple-hit” model of neutralization and implies that binding 
by a threshold number of antibody molecules is sufficient to disrupt critical steps during the infection 
process such as attachment or fusion with a target cell [78,79]. Based on studies with E DIII-LR 
specific mAbs, including E16, the stoichiometric threshold for WNV neutralization was estimated to 
require binding by ~30 antibody molecules per virion [66]. It remains to be determined whether a 
similar threshold of 30 antibodies applies to neutralization involving epitopes located elsewhere on the 
E protein. E16 neutralizes infection primarily by blocking viral fusion [64,80,81]; different stoichiometric 
thresholds may govern neutralization by antibodies that block infection by distinct mechanisms, such 
as blocking attachment. The stoichiometric threshold may also differ for antibodies that are capable of 
bivalent binding, which has been reported for a recently characterized DENV DIII-specific mAb [82]. 
Regardless, studies with diverse WNV-specific antibodies indicate that all act within the framework of 
a multiple-hit model of neutralization.  

5.1. Antibody Affinity and Epitope Accessibility Govern WNV Neutralization  

Two critical factors determine whether the required threshold for antibody binding is met. Antibody 
affinity controls the fraction of epitopes occupied by antibody at a given concentration [83]. 
Differences in neutralization by two antibodies that bind a similar epitope can often be explained by 
differences in binding affinity. Similarly, mutating the virus in such a way that reduces the binding 
affinity of a mAb has the same effect. For example, mutation at E residue T330I results in >80% 
reduction in binding by E16 [52], which translates into a requirement for higher concentrations of 
antibody to neutralize infection [76,84]. Cryo EM and crystallography models indicate that E16 binds 
to 120 of 180 total E proteins on the mature virion; binding is precluded from the 60 epitopes  
located proximal to the 5-fold symmetry axes due to steric constraints with neighboring E proteins  
(Figure 2B,C) [64,69]. In the context of antibody affinity, neutralization of WNV therefore occurs 
when E16 is docked on the virus at a relatively low occupancy (30 of 120 possible epitopes); 25% of 
available epitopes must be bound by E16 for neutralization to occur. However, occupancy requirements for 
neutralization can significantly increase for epitopes that are exposed fewer times on the surface of the 
virion. For example, some DIII-specific antibodies that bind outside of the LR must occupy essentially 
100% of available epitopes to reach the neutralization threshold [66]. In fact, many weakly 
neutralizing WNV-specific antibodies may behave so not because they bind with low affinity, but 
because their cognate epitope is not readily available for binding. Limited epitope accessibility likely 
explains why the majority of antibodies that bind epitopes within the DII fusion loop (DII-FL) are 
characterized by weak neutralizing potency [24,53]. The DII-FL specific mAb E53 binds WNV with 
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similar affinity as E16, yet is significantly less neutralizing [31]. The crystal structure of the E53 Fab 
fragment bound to immature WNV illustrated a preferential ability of E53 to bind to E trimers found in 
the immature virus; the DII-FL epitope is not solvent accessible in the context of the E dimers present 
on mature WNV (Figure 2D,E) [61].  

5.2. Factors That Modulate WNV Epitope Accessibility  

Epitope accessibility has emerged as a critical factor that governs WNV neutralization. Mechanisms 
by which the virus can increase the number of epitopes docked by antibody increase the chances that 
neutralization requirements are met. Characteristics of WNV that modulate epitope accessibility, and 
their effects on neutralization potency will be discussed in detail below, using the mAbs E16 and E53 
as examples. In the context of this review, an “inaccessible” epitope is one that cannot be engaged by 
antibody; this applies to cryptic epitopes that are not displayed on the surface of the virion, as well as 
those that are solvent accessible but precluded from binding by steric constraints. 

5.2.1. Structural Heterogeneity of WNV due to Inefficient Maturation 

Mapping studies identified a subset of WNV-specific antibodies with the potential to neutralize 
infection that bound epitopes not predicted to be accessible on the mature form of the virus [24]. One 
explanation for this inconsistency is the structural heterogeneity of WNV virions released from 
infected cells with respect to maturation, as introduced in Section 3. Partially mature WNV provide a 
heterogeneous landscape for antibody binding, as these viruses display E proteins that resemble the 
homodimers associated with the mature form of the virus and the prM-associated trimers found on the 
immature form. Because of differences in epitope accessibility between these E protein arrangements, 
the neutralizing potency of certain classes of antibodies is modulated by the extent of maturation [31,32]. 
While the extent of maturation can be artificially modified in vitro [7,31,38,85], there is evidence of 
natural variation in prM cleavage when using different cell types to generate WNV [32]. Using 
populations of infectious WNV representing the far ends of the maturation spectrum, E53 is relatively 
incapable of neutralizing mature WNV due to the cryptic nature of the DII-FL epitope, but becomes 
more potent as the levels of uncleaved prM retained on the virus increase (Figure 3). As described in 
Section 5.1, this occurs because E trimers associated with the immature form of the virus display the 
DII-FL epitope in a surface accessible position allowing E53 binding [61]. A hallmark of most 
maturation state-sensitive antibodies is the presence of a “resistant fraction” of infectious virus 
observed in neutralization assays even in the presence of saturating concentrations of antibody. In the 
case of E53, these particular viruses have lower levels of uncleaved prM (are more mature), and thus 
the DII-FL epitope is displayed an insufficient number of times to meet the required threshold for 
neutralization [31]. Interestingly, the pattern of epitope accessibility that governs all maturation 
sensitive WNV antibodies identified to date is such that maturation is only associated with decreases in 
epitope exposure. Antibodies specific for epitopes that become more accessible as maturation proceeds 
to completion have not been identified; the basis for this is unknown. Not all antibodies are sensitive to 
the maturation state of the virus. The E16 DIII-LR epitope is equally solvent accessible on both the 
mature and immature forms of the virus, resulting in identical neutralization potency regardless of the 
maturation status of the virus population (Figure 3) [31,85]. Unexpectedly, the neutralization potency 
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of the DIII-LR specific mAb E33, which has a similar binding footprint as E16, was found to be 
maturation-state sensitive. It was discovered that steric constraints arising from the positioning of the 
Fc-portion of antibody molecules bound to the mature, but not the immature form of the virus were 
responsible for the maturation state dependence of E33. These steric constraints resulted in a 
preferential decrease in neutralization potency of E33 against mature WNV, and could be alleviated by 
using Fab fragments [86]. Thus, at least two mechanisms exist by which the extent of maturation 
modulates WNV antibody neutralization.  

Figure 3. Epitope accessibility affects WNV neutralization. (A) Model of how the extent 
of maturation and virus breathing affect neutralization potency of the mAbs E16 and E53 
against WNV; (B) Neutralization dose-response curves supporting the model presented in 
panel (a). Left panels show neutralization curves of E16 or E53 against WNV produced 
under conditions that either promote or reduce the extent of maturation (“Mature” WNV 
generated in the presence of an overexpression of furin to promote prM cleavage (purple 
curves), versus “Partially mature” WNV generated in the presence of the weak base NH4Cl 
to inhibit the structural rearrangements required for prM cleavage (orange curves), 
respectively). Right panels show neutralization curves of mature WNV incubated either for 
1 h at room temperature (grey curves), or an additional ~24 h at 37 °C (teal curves) before 
infection of cells.  

 

5.2.2. Virus Breathing Increases Epitope Accessibility 

As introduced in Section 3.1, flavivirus virions explore an ensemble of conformations at 
equilibrium, with the potential to increase epitope exposure. Current cryo EM structures of virions 
likely represent only the average or preferred conformation sampled in this process, referred to as 
structural dynamics or virus “breathing”. Studies with WNV and a panel of mAbs specific for all three 
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E domains indicated that structural dynamics affects neutralization of all antibodies; kinetic increases 
in neutralization were observed when virus and antibody were incubated for increased lengths of time, 
or at increased temperature [38]. That the rate of structural dynamics increases at elevated temperatures 
suggests a mechanism by which the induction of a fever in response to infection can result in increased 
neutralization potency, and has implications regarding the transmission of WNV from insect to human 
hosts that maintain distinct body temperatures. The effect of structural dynamics on neutralization of 
mature WNV by E16 and E53 are shown in Figure 3. Initially E53 is incapable of neutralizing mature 
WNV, however large increases in potency are observed with increased incubation time. Since the  
DII-FL epitope is buried on the surface of the cryo EM structure of the mature virion, these increases 
provide direct evidence of dynamics-mediated epitope exposure. E16, although already capable of 
potently neutralizing WNV in a standard assay, still displays modest dynamics-mediated increases in 
neutralization. As discussed in Section 5.1, although the DIII-LR epitope is surface accessible, in the 
context of the mature virion, E16 is predicted to bind only 120 of 180 total sites due to steric 
constraints. By sampling structural conformations that alleviate steric constraints and allow for at least 
some of these remaining epitopes to be docked by antibody, dynamics-mediated increases in 
neutralization can occur for even the most potent WNV antibodies. 

Ongoing studies indicate a correlation between flavivirus structural dynamics and the intrinsic 
stability of virus in solution. Some pathways of virus breathing may result in a virus that is “stuck” in a 
non-infectious state, which manifests as a loss of infectivity. Interestingly, the extent of WNV 
maturation impacts the intrinsic decay rate of the virus; fully mature virus decays (loses infectivity) at 
a slower rate than populations of WNV that retain high levels of prM [87]. WNV virions that display 
distinct conformations of E proteins likely have separate “breathing” pathways, adding yet more 
complexity to our understanding of how epitope accessibility affects WNV neutralization.  

6. Antibody Fc-Region Effector Functions  

While engagement of the virion by a sufficient number of WNV-specific antibody molecules can 
directly neutralize infection by blocking binding or fusion, the non-antigen binding Fc-portion of an 
antibody is capable of modulating infection by interacting with additional proteins present in vivo. 
Through the classical pathway of complement activation, C1q molecules that consist of six globular 
heads form multivalent interactions with the Fc-portions of either single pentameric IgM or multiple 
IgG antibodies docked on the surface of a virus. C1q opsonization triggers a cascade of cleavage 
events that result in the formation of the membrane attack complex (MAC) capable of viral lysis [88]. 
However, while the presence of complement proteins in serum has been shown to increase 
neutralization potency against WNV infection in vitro, this does not seem to be dependent on MAC 
induced viral lysis. Neutralization assays performed in the presence of serum from mice deficient in 
various complement components demonstrated that C1q, but not C3 or C5 (which act downstream 
from C1q in the complement cascade), was necessary for the increase in neutralization [77]. Addition 
of exogenous C1q to neutralization assays performed in vitro results in increased neutralization 
potency. Mechanistically, binding of C1q to antibody-virus complexes effectively lowers the 
stoichiometric threshold required for neutralization, and involves the ability of C1q to crosslink 
antibodies docked on the virion surface. Mannose binding lectin (MBL), a component of the  
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non-classical lectin pathway of complement activation, has also been implicated in WNV neutralization. 
Similar to the mechanism of C1q, this inhibition does not require downstream activation of the complement 
cascade. However, the activity of MBL in limiting WNV infection is antibody independent; MBL binding 
to the virion surface may directly neutralize infection by inhibiting fusion [89,90]. 

A recent study demonstrated that Fc effector functions may enhance the in vivo protective effects of 
antibodies that are poorly neutralizing in vitro [32]. The ability of the DII-FL mAb E28 to modestly 
protect mice from lethal WNV infection when administered one day prior to infection was found to be 
dependent on antibody Fc interactions with both FcγR and C1q, as a larger proportion of mice lacking 
either or both of these molecules succumbed to infection. Additionally, the protective effect of E28 in 
WT animals was diminished when an aglycosyl version of the antibody was substituted that could no 
longer engage FcγR or C1q. While the in vivo protective effects of DII-FL specific antibodies were 
greatly inferior to DIII-LR specific antibodies, which resulted in survival of even the FcγR/C1q 
deficient mice, this study highlights a mechanism by which poorly neutralizing antibodies may be 
protective in vivo. This is of particular importance based on the finding that the human antibody response is 
overwhelmingly directed at epitopes within the DII-FL, as discussed in Section 7 [53,60,63]. 

The Fc-region of antibody molecules has also been implicated in antibody-dependent enhancement 
of infection (ADE), a phenomenon that describes an increase in virus infection in the presence of  
sub-neutralizing antibody concentrations. In this process, antibody-virus complexes infect cells 
through uptake by Fc receptor interactions [91]. A presumed role for ADE in enhancing DENV 
infection and disease severity in vivo, primarily during secondary infections, is a constant concern in 
the development of a much-needed vaccine [92]. While ADE can be observed for WNV in vitro, 
clinical manifestations in human infections are not readily apparent [76,93,94]. Regardless, in vitro 
studies with WNV indicate that ADE and neutralization are related to one another by the number of 
antibodies bound to the virus. ADE is governed on the lower end by the number of antibody molecules 
required to mediate cell attachment, and on the upper end by the neutralization threshold. For DIII-LR 
antibodies, ADE is estimated to occur when between 15 and 30 antibody molecules are bound to the 
virus [66]. Since C1q effectively reduces the stoichiometric threshold required for neutralization, the 
presence of C1q can abolish the potential for ADE by some antibodies, and may in part explain the 
lack of enhancement observed in vivo [46]. Antibodies that bind epitopes exposed few times per virion 
would presumably be good candidates for initiating ADE. Studies have suggested that fully immature 
WNV and DENV can be rendered infectious by Fc-receptor mediated uptake of virus-antibody 
complexes [95–97]. However, whether furin cleavage acts to cleave prM on entering WNV virions is 
unclear [85]. Regardless, partially mature flaviviruses remain candidates for ADE by weakly 
neutralizing antibodies, such as those that bind prM. 

7. Understanding the Human Polyclonal Response to WNV 

Most data concerning the antibody response to WNV are from mouse studies, which indicated that 
a large portion of the humoral response was directed at epitopes within the DIII-LR [52,65,98–100]. 
However, there appears to be differences in the composition of the mouse antibody epitope repertoire 
relative to that of humans [53,60,63]. Using E protein variants, one study calculated that while the 
DIII-LR was the major target of neutralizing antibodies produced in mice, these antibodies were rare in 
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serum from WNV-infected convalescent patients. Indeed, in this study, the major human target was  
the region containing the DII-FL [63]. Yet other studies have identified potently neutralizing antibodies 
from humans binding complex epitopes in the DI-DII linker region, such as those described in  
Section 4.2 [53,62]. Furthermore, studies with WNV and DENV human sera suggest that antibodies 
targeting the DIII-LR are functionally inconsequential [31,63,101,102]. Further studies using large 
panels of human samples are needed to both identify the immunodominant target(s) of the human 
antibody response, as well as the role of DIII-specific antibodies. 

8. Progress of WNV Vaccine and Therapeutics 

There are no approved human vaccines against WNV. Both subunit and attenuated vaccine 
candidates have entered into phase I and phase II clinical trials [103], yet none have progressed to 
phase III trials. Some data evaluating the targets of potently neutralizing human antibody responses in 
flaviviruses suggest these targets are complex epitopes formed by viral symmetry [62,68,102]. In light 
of this data, vaccines that include or will encode the genes necessary to form the full viral particle 
should be examined. 

As there is currently not an approved vaccine for the prevention of WNV, one possible treatment is 
passive administration of neutralizing antibody to patients affected by WNV disease. In studies with 
mice and hamsters, the E16 antibody was capable of protecting the majority of these animals up to five 
days post-infection with WNV [52]. Indeed, several studies have shown that human immune serum 
and intravenous immunoglobulin (IGIV) can protect mice from lethal WNV challenge [104–106]. 
Protection after the onset of clinical symptoms and WNV encephalitis is likely a requisite of passive 
antibody immunotherapy for a possible treatment of infection. There are a growing number of 
examples of solid organ transplant related WNV infections [107–112]. In one example, a patient 
receiving a liver from a WNV-infected donor did not develop anti-WNV IgM until 26 days after the 
transplant, and failed to develop an IgG response >4 months after seroconversion [110]. While it is 
inconclusive that the IGIV protected this patient from fatal WNV infection, this population is generally 
receiving immunosuppressant drugs to prevent organ rejection, and at high-risk for severe WNV 
disease. Additional studies are needed beyond the non-controlled case studies described by the 
literature. Currently, immunotherapeutics have progressed to phase II clinical trials for the IVIG  
Omr-IgG-am consisting of high anti-WNV titers of convalescent Israeli blood donors and that of the 
monotherapy of MGAWN1, the humanized equivalent of the mouse E16 antibody [113,114].  

9. Conclusions  

The need for WNV therapeutics and vaccines remains a high priority, as WNV continues to pose a 
significant public health threat in various regions of the world. The critical role of the WNV-specific 
humoral response and antibodies in controlling infection underscores the need for a greater 
understanding of this arm of the immune response. Considerable progress has been made towards 
mapping WNV epitopes within the E protein, and has led to the identification of potent neutralizing 
antibodies that have been adapted into candidates for therapeutic use. However, many questions 
remain unanswered and new questions have arisen from recent discoveries, including: (i) what is the 
role, if any, of IgG in primary infection; (ii) what is the role of anti-prM antibodies in infection;  
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(iii) how does the structural heterogeneity of WNV (due to maturation and structural dynamics) impact 
neutralization in vivo; (iv) why does the human response preferentially target non-DIII-LR epitopes 
and what are the immunodominant epitopes; and (v) what are the early activating signals for B cells. 
The ability to understand WNV neutralization in quantitative terms and apply this knowledge towards 
dissecting the polyclonal response to WNV will aid in the design of future vaccine candidates. 
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