Next Issue
Volume 7, April
Previous Issue
Volume 7, February
 
 

Viruses, Volume 7, Issue 3 (March 2015) – 34 articles , Pages 857-1557

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
409 KiB  
Review
Viral Interference with Functions of the Cellular Receptor Tyrosine Phosphatase CD45
by Nadine Thiel, Jasmin Zischke, Endrit Elbasani, Penelope Kay-Fedorov and Martin Messerle
Viruses 2015, 7(3), 1540-1557; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031540 - 23 Mar 2015
Cited by 12 | Viewed by 9237
Abstract
The receptor tyrosine phosphatase CD45 is expressed on the surface of almost all cells of hematopoietic origin. CD45 functions are central to the development of T cells and determine the threshold at which T and B lymphocytes can become activated. Given this pivotal [...] Read more.
The receptor tyrosine phosphatase CD45 is expressed on the surface of almost all cells of hematopoietic origin. CD45 functions are central to the development of T cells and determine the threshold at which T and B lymphocytes can become activated. Given this pivotal role of CD45 in the immune system, it is probably not surprising that viruses interfere with the activity of CD45 in lymphocytes to dampen the immune response and that they also utilize this molecule to accomplish their replication cycle. Here we report what is known about the interaction of viral proteins with CD45. Moreover, we debate putative interactions of viruses with CD45 in myeloid cells and the resulting consequences—subjects that remain to be investigated. Finally, we summarize the evidence that pathogens were the driving force for the evolution of CD45. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

1092 KiB  
Review
Molecular Genetic Analysis of Orf Virus: A Poxvirus That Has Adapted to Skin
by Stephen B. Fleming, Lyn M. Wise and Andrew A. Mercer
Viruses 2015, 7(3), 1505-1539; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031505 - 23 Mar 2015
Cited by 105 | Viewed by 13346
Abstract
Orf virus is the type species of the Parapoxvirus genus of the family Poxviridae. It induces acute pustular skin lesions in sheep and goats and is transmissible to humans. The genome is G+C rich, 138 kbp and encodes 132 genes. It shares [...] Read more.
Orf virus is the type species of the Parapoxvirus genus of the family Poxviridae. It induces acute pustular skin lesions in sheep and goats and is transmissible to humans. The genome is G+C rich, 138 kbp and encodes 132 genes. It shares many essential genes with vaccinia virus that are required for survival but encodes a number of unique factors that allow it to replicate in the highly specific immune environment of skin. Phylogenetic analysis suggests that both viral interleukin-10 and vascular endothelial growth factor genes have been “captured” from their host during the evolution of the parapoxviruses. Genes such as a chemokine binding protein and a protein that binds granulocyte-macrophage colony-stimulating factor and interleukin-2 appear to have evolved from a common poxvirus ancestral gene while three parapoxvirus nuclear factor (NF)-κB signalling pathway inhibitors have no homology to other known NF-κB inhibitors. A homologue of an anaphase-promoting complex subunit that is believed to manipulate the cell cycle and enhance viral DNA synthesis appears to be a specific adaptation for viral-replication in keratinocytes. The review focuses on the unique genes of orf virus, discusses their evolutionary origins and their role in allowing viral-replication in the skin epidermis. Full article
(This article belongs to the Special Issue Poxvirus Evolution)
Show Figures

Figure 1

596 KiB  
Article
Facilitation of Rice Stripe Virus Accumulation in the Insect Vector by Himetobi P Virus VP1
by Shuo Li, Shangshu Ge, Xi Wang, Lijuan Sun, Zewen Liu and Yijun Zhou
Viruses 2015, 7(3), 1492-1504; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031492 - 23 Mar 2015
Cited by 12 | Viewed by 7814
Abstract
The small brown planthopper (SBPH) is the main vector for rice stripe virus (RSV), which causes serious rice stripe disease in East Asia. To characterize the virus-vector interactions, the SBPH cDNA library was screened with RSV ribonucleoprotein (RNP) as bait using a GAL4-based [...] Read more.
The small brown planthopper (SBPH) is the main vector for rice stripe virus (RSV), which causes serious rice stripe disease in East Asia. To characterize the virus-vector interactions, the SBPH cDNA library was screened with RSV ribonucleoprotein (RNP) as bait using a GAL4-based yeast two-hybrid system. The interaction between RSV-RNP and the Himetobi P virus (HiPV, an insect picorna-like virus) VP1 protein was identified. The relationships between HiPV and RSV in SBPH were further investigated, and the results showed that the titer of RSV was commonly higher in single insect that exhibited more VP1 expression. After the VP1 gene was repressed by RNA silencing, the accumulation of RSV decreased significantly in the insect, whereas the virus acquisition ability of SBPH was unaffected, which suggests that HiPV VP1 potentially facilitates the accumulation of RSV in SBPH. Full article
(This article belongs to the Special Issue Impact of the Insect Microbiome on Arbovirus Transmission)
Show Figures

Figure 1

1100 KiB  
Article
Chondroitin Sulfate N-acetylgalactosaminyltransferase-2 Contributes to the Replication of Infectious Bursal Disease Virus via Interaction with the Capsid Protein VP2
by Lizhou Zhang, Xiangang Ren, Yuming Chen, Yulong Gao, Nian Wang, Zhen Lu, Li Gao, Liting Qin, Yongqiang Wang, Honglei Gao, Kai Li, Lili Jiang, Hongyu Cui, Changjun Liu, Yanping Zhang, Xiaole Qi and Xiaomei Wang
Viruses 2015, 7(3), 1474-1491; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031474 - 23 Mar 2015
Cited by 8 | Viewed by 6248
Abstract
Infectious bursal disease virus (IBDV) is a birnavirus that causes a highly contagious immunosuppressive disease in young chickens. The capsid protein VP2 of IBDV plays multiple roles in its life cycle. To more comprehensively understand the functions of VP2 involved in the communication [...] Read more.
Infectious bursal disease virus (IBDV) is a birnavirus that causes a highly contagious immunosuppressive disease in young chickens. The capsid protein VP2 of IBDV plays multiple roles in its life cycle. To more comprehensively understand the functions of VP2 involved in the communication between virus and host, we used yeast two-hybrid screening to identify the cellular factors that interact with this protein. We found that chondroitin sulfate N-acetylgalactosaminyltransferase-2 (CSGalNAcT2), a typical type II transmembrane protein located in Golgi apparatus, could interact with VP2, and we confirmed this interaction by co-immunoprecipitation and confocal laser scanning microscopy assays. Additionally, up-regulation of CSGalNAcT2 during IBDV infection was observed. Overexpression and siRNA-mediated knockdown of CSGalNAcT2 assays suggested that CSGalNAcT2 promoted IBDV replication. Moreover, this enhancing effect of CSGalNAcT2 could be inhibited by Brefeldin A, which is a Golgi-disturbing agent. This indicated that the integrity of Golgi apparatus structure was involved in the function of CSGalNAcT2. Taken together, we concluded that CSGalNAcT2, located in the Golgi apparatus, contributed to the replication of IBDV via interaction with VP2. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

1715 KiB  
Article
Interaction Research on the Antiviral Molecule Dufulin Targeting on Southern Rice Black Streaked Dwarf Virus P9-1 Nonstructural Protein
by Zhenchao Wang, Xiangyang Li, Wenli Wang, Weiying Zhang, Lu Yu, Deyu Hu and Baoan Song
Viruses 2015, 7(3), 1454-1473; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031454 - 23 Mar 2015
Cited by 23 | Viewed by 6090
Abstract
ern rice black streaked dwarf virus (SRBSDV) causes severe harm to rice production. Unfortunately, studies on effective antiviral drugs against SRBSDV and interaction mechanism of antiviral molecule targeting on SRBSDV have not been reported. This study found dufulin (DFL), an ideal anti-SRBSDV molecule, [...] Read more.
ern rice black streaked dwarf virus (SRBSDV) causes severe harm to rice production. Unfortunately, studies on effective antiviral drugs against SRBSDV and interaction mechanism of antiviral molecule targeting on SRBSDV have not been reported. This study found dufulin (DFL), an ideal anti-SRBSDV molecule, and investigated the interactions of DFL targeting on the nonstructural protein P9-1. The biological sequence information and bonding characterization of DFL to four kinds of P9-1 protein were described with fluorescence titration (FT) and microscale thermophoresis (MST) assays. The sequence analysis indicated that P9-1 had highly-conserved C- and N-terminal amino acid residues and a hypervariable region that differed from 131 aa to 160 aa. Consequently, wild-type (WT-His-P9-1), 23 C-terminal residues truncated (TR-ΔC23-His-P9-1), 6 N-terminal residues truncated (TR-ΔN6-His-P9-1), and Ser138 site-directed (MU-138-His-P9-1) mutant proteins were expressed. The FT and MST assay results indicated that DFL bounded to WT-His-P9-1 with micromole affinity and the 23 C-terminal amino acids were the potential targeting site. This system, which combines a complete sequence analysis, mutant protein expression, and binding action evaluating system, could further advance the understanding of the interaction abilities between antiviral drugs and their targets. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

891 KiB  
Article
Modulation of SIV and HIV DNA Vaccine Immunity by Fas-FasL Signaling
by Jiabin Yan, Juan Carlos Zapata, Charles David Pauza and Maria S. Salvato
Viruses 2015, 7(3), 1429-1453; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031429 - 23 Mar 2015
Cited by 4 | Viewed by 6697
Abstract
Signaling through the Fas/Apo-1/CD95 death receptor is known to affect virus-specific cell-mediated immune (CMI) responses. We tested whether modulating the Fas-apoptotic pathway can enhance immune responses to DNA vaccination or lymphocytic choriomeningitis virus (LCMV) infection. Mice were electroporated with plasmids expressing a variety [...] Read more.
Signaling through the Fas/Apo-1/CD95 death receptor is known to affect virus-specific cell-mediated immune (CMI) responses. We tested whether modulating the Fas-apoptotic pathway can enhance immune responses to DNA vaccination or lymphocytic choriomeningitis virus (LCMV) infection. Mice were electroporated with plasmids expressing a variety of pro- or anti-apoptotic molecules related to Fas signaling and then either LCMV-infected or injected with plasmid DNA expressing SIV or HIV antigens. Whereas Fas or FasL knockout mice had improved CMI, down-regulation of Fas or FasL by shRNA or antibody failed to improve CMI and was accompanied by increases in regulatory T cells (Treg). Two “adjuvant” plasmids were discovered that significantly enhanced plasmid immunizations. The adjuvant effects of Fas-associated death domain (FADD) and of cellular FLICE-inhibitory protein (cFLIP) were consistently accompanied by increased effector memory T lymphocytes and increased T cell proliferation. This adjuvant effect was also observed when comparing murine infections with LCMV-Armstrong and its persisting variant LCMV-Clone 13. LCMV-Armstrong was cleared in 100% of mice nine days after infection, while LCMV-Clone 13 persisted in all mice. However, half of the mice pre-electroporated with FADD or cFLIP plasmids were able to clear LCMV-Clone 13 by day nine, and, in the case of cFLIP, increased viral clearance was accompanied by higher CMI. Our studies imply that molecules in the Fas pathway are likely to affect a number of events in addition to the apoptosis of cells involved in immunity. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

789 KiB  
Article
Valganciclovir Inhibits Human Adenovirus Replication and Pathology in Permissive Immunosuppressed Female and Male Syrian Hamsters
by Karoly Toth, Baoling Ying, Ann E. Tollefson, Jacqueline F. Spencer, Lata Balakrishnan, John E. Sagartz, Robert Mark L. Buller and William S. M. Wold
Viruses 2015, 7(3), 1409-1428; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031409 - 23 Mar 2015
Cited by 20 | Viewed by 5777
Abstract
Adenovirus infections of immunocompromised pediatric hematopoietic stem cell transplant patients can develop into serious and often deadly multi-organ disease. There are no drugs approved for adenovirus infections. Cidofovir (an analog of 2-deoxycytidine monophosphate) is used at times but it can be nephrotoxic and [...] Read more.
Adenovirus infections of immunocompromised pediatric hematopoietic stem cell transplant patients can develop into serious and often deadly multi-organ disease. There are no drugs approved for adenovirus infections. Cidofovir (an analog of 2-deoxycytidine monophosphate) is used at times but it can be nephrotoxic and its efficacy has not been proven in clinical trials. Brincidofovir, a promising lipid-linked derivative of cidofovir, is in clinical trials. Ganciclovir, an analog of 2-deoxyguanosine, has been employed occasionally but with unknown efficacy in the clinic. In this study, we evaluated valganciclovir against disseminated adenovirus type 5 (Ad5) infection in our permissive immunosuppressed Syrian hamster model. We administered valganciclovir prophylactically, beginning 12 h pre-infection or therapeutically starting at Day 1, 2, 3, or 4 post-infection. Valganciclovir significantly increased survival, reduced viral replication in the liver, and mitigated the pathology associated with Ad5 infection. In cultured cells, valganciclovir inhibited Ad5 DNA replication and blocked the transition from early to late stage of infection. Valganciclovir directly inhibited Ad5 DNA polymerase in vitro, which may explain, at least in part, its mechanism of action. Ganciclovir and valganciclovir are approved to treat infections by certain herpesviruses. Our results support the use of valganciclovir to treat disseminated adenovirus infections in immunosuppressed patients. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

852 KiB  
Article
Anti-CMV-IgG Positivity of Donors Is Beneficial for alloHSCT Recipients with Respect to the Better Short-Term Immunological Recovery and High Level of CD4+CD25high Lymphocytes
by Emilia Jaskula, Dorota Dlubek, Agnieszka Tarnowska, Janusz Lange, Monika Mordak-Domagala, Krzysztof Suchnicki, Mariola Sedzimirska, Agata Borowik, Sylwia Mizia and Andrzej Lange
Viruses 2015, 7(3), 1391-1408; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031391 - 23 Mar 2015
Cited by 7 | Viewed by 5774
Abstract
Hematopoietic stem cell transplantation from anti-cytomegalovirus immunoglobulin G (anti-CMV-IgG) positive donors facilitated immunological recovery post-transplant, which may indicate that chronic CMV infection has an effect on the immune system. This can be seen in the recipients after reconstitution with donor lymphocytes. We evaluated [...] Read more.
Hematopoietic stem cell transplantation from anti-cytomegalovirus immunoglobulin G (anti-CMV-IgG) positive donors facilitated immunological recovery post-transplant, which may indicate that chronic CMV infection has an effect on the immune system. This can be seen in the recipients after reconstitution with donor lymphocytes. We evaluated the composition of lymphocytes at hematologic recovery in 99 patients with hematologic malignancies post hematopoietic stem cell transplantation (HSCT). Anti-CMV-IgG seropositivity of the donor was associated with higher proportions of CD4+ (227.963 ± 304.858 × 106 vs. 102.050 ± 17.247 × 106 cells/L, p = 0.009) and CD4+CD25high (3.456 ± 0.436 × 106 vs. 1.589 ± 0.218 × 106 cells/L, p = 0.003) lymphocytes in the blood at hematologic recovery. The latter parameter exerted a diverse influence on the risk of acute graft-versus-host disease (GvHD) if low (1.483 ± 0.360 × 106 vs. 3.778 ± 0.484 × 106 cells/L, p < 0.001) and de novo chronic GvHD (cGvHD) if high (3.778 ± 0.780 × 106 vs. 2.042 ± 0.261 × 106 cells/L, p = 0.041). Higher values of CD4+ lymphocytes in patients who received transplants from anti-CMV-IgG-positive donors translated into a reduced demand for IgG support (23/63 vs. 19/33, p = 0.048), and these patients also exhibited reduced susceptibility to cytomegalovirus (CMV), Epstein–Barr virus (EBV) and/or human herpes 6 virus (HHV6) infection/reactivation (12/50 vs. 21/47, p = 0.032). Finally, high levels (³0.4%) of CD4+CD25high lymphocytes were significantly associated with better post-transplant survival (56% vs. 38%, four-year survival, p = 0.040). Donors who experience CMV infection/reactivation provide the recipients with lymphocytes, which readily reinforce the recovery of the transplanted patients’ immune system. Full article
Show Figures

Figure 1

823 KiB  
Review
Impacts of Humanized Mouse Models on the Investigation of HIV-1 Infection: Illuminating the Roles of Viral Accessory Proteins in Vivo
by Eri Yamada, Rokusuke Yoshikawa, Yusuke Nakano, Naoko Misawa, Yoshio Koyanagi and Kei Sato
Viruses 2015, 7(3), 1373-1390; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031373 - 23 Mar 2015
Cited by 17 | Viewed by 8145
Abstract
Human immunodeficiency virus type 1 (HIV-1) encodes four accessory genes: vif, vpu, vpr, and nef. Recent investigations using in vitro cell culture systems have shed light on the roles of these HIV-1 accessory proteins, Vif, Vpr, Vpu, and Nef, [...] Read more.
Human immunodeficiency virus type 1 (HIV-1) encodes four accessory genes: vif, vpu, vpr, and nef. Recent investigations using in vitro cell culture systems have shed light on the roles of these HIV-1 accessory proteins, Vif, Vpr, Vpu, and Nef, in counteracting, modulating, and evading various cellular factors that are responsible for anti-HIV-1 intrinsic immunity. However, since humans are the exclusive target for HIV-1 infection, conventional animal models are incapable of mimicking the dynamics of HIV-1 infection in vivo. Moreover, the effects of HIV-1 accessory proteins on viral infection in vivo remain unclear. To elucidate the roles of HIV-1 accessory proteins in the dynamics of viral infection in vivo, humanized mouse models, in which the mice are xenotransplanted with human hematopoietic stem cells, has been utilized. This review describes the current knowledge of the roles of HIV-1 accessory proteins in viral infection, replication, and pathogenicity in vivo, which are revealed by the studies using humanized mouse models. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

1023 KiB  
Article
Changes of CD4+CD25+ Cells Ratio in Immune Organs from Chickens Challenged with Infectious Bursal Disease Virus Strains with Varying Virulences
by Xiaoxue Yu, Lei Rui, Qiang Shao, Haiwen Liu, Yanan Lu, Yongchao Zhang and Zandong Li
Viruses 2015, 7(3), 1357-1372; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031357 - 20 Mar 2015
Cited by 26 | Viewed by 6088
Abstract
In the current study, we investigate changes in CD4+CD25+ cells in chickens during infectious bursal disease virus (IBDV) infection. The percentage of CD4+CD25+ cells in lymph organs, e.g., the thymus, spleen, bursa of Fabricius and peripheral blood, during the first 1–5 days post [...] Read more.
In the current study, we investigate changes in CD4+CD25+ cells in chickens during infectious bursal disease virus (IBDV) infection. The percentage of CD4+CD25+ cells in lymph organs, e.g., the thymus, spleen, bursa of Fabricius and peripheral blood, during the first 1–5 days post infection (dpi) was assessed by flow cytometry. The data revealed a remarkable decrease in the percentage of CD4+CD25+ cells in the thymus from 1 to 5 dpi and in the spleen during early infection. An increase of the percentage of CD4+CD25+ cells among peripheral blood lymphocytes was observed during the first two days of IBDV infection. Additionally, CD4+CD25+ cells infiltrated the bursa along with CD4+ cells after IBDV infection. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to measure the mRNA levels of immune-related cytokines in IBDV-infected thymus and bursa of Fabricius tissues. The data revealed that IBDV caused a significant increase in interleukin (IL)-10 mRNA levels, with the Harbin-1 strain (vvIBDV) inducing higher IL-10 expression than the Ts strain. Taken together, our data suggest that chicken CD4+CD25+ cells may participate in IBDV pathogenicity by migrating from their sites of origin and storage, the thymus and spleen, to the virally targeted bursa of Fabricius during IBDV infection. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

1084 KiB  
Article
Both ERK1 and ERK2 Are Required for Enterovirus 71 (EV71) Efficient Replication
by Meng Zhu, Hao Duan, Meng Gao, Hao Zhang and Yihong Peng
Viruses 2015, 7(3), 1344-1356; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031344 - 20 Mar 2015
Cited by 20 | Viewed by 6221
Abstract
It has been demonstrated that MEK1, one of the two MEK isoforms in Raf-MEK-ERK1/2 pathway, is essential for successful EV71 propagation. However, the distinct function of ERK1 and ERK2 isoforms, the downstream kinases of MEKs, remains unclear in EV71 replication. In this study, [...] Read more.
It has been demonstrated that MEK1, one of the two MEK isoforms in Raf-MEK-ERK1/2 pathway, is essential for successful EV71 propagation. However, the distinct function of ERK1 and ERK2 isoforms, the downstream kinases of MEKs, remains unclear in EV71 replication. In this study, specific ERK siRNAs and selective inhibitor U0126 were applied. Silencing specific ERK did not significantly impact on the EV71-caused biphasic activation of the other ERK isoform, suggesting the EV71-induced activations of ERK1 and ERK2 were non-discriminative and independent to one another. Knockdown of either ERK1 or ERK2 markedly impaired progeny EV71 propagation (both by more than 90%), progeny viral RNA amplification (either by about 30% to 40%) and protein synthesis (both by around 70%), indicating both ERK1 and ERK2 were critical and not interchangeable to EV71 propagation. Moreover, suppression of EV71 replication by inhibiting both early and late phases of ERK1/2 activation showed no significant difference from that of only blocking the late phase, supporting the late phase activation was more importantly responsible for EV71 life cycle. Taken together, this study for the first time identified both ERK1 and ERK2 were required for EV71 efficient replication and further verified the important role of MEK1-ERK1/2 in EV71 replication. Full article
Show Figures

Figure 1

628 KiB  
Review
Human Papillomavirus and Tonsillar and Base of Tongue Cancer
by Torbjörn Ramqvist, Nathalie Grün and Tina Dalianis
Viruses 2015, 7(3), 1332-1343; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031332 - 20 Mar 2015
Cited by 52 | Viewed by 8754
Abstract
In 2007, human papillomavirus (HPV) type 16 was recognized as a risk factor by the International Agency for Research on Cancer, for oropharyngeal squamous cell carcinoma (OSCC), where tonsillar and base of tongue cancer (TSCC and BOTSCC) dominate. Furthermore, patients with HPV-positive TSCC [...] Read more.
In 2007, human papillomavirus (HPV) type 16 was recognized as a risk factor by the International Agency for Research on Cancer, for oropharyngeal squamous cell carcinoma (OSCC), where tonsillar and base of tongue cancer (TSCC and BOTSCC) dominate. Furthermore, patients with HPV-positive TSCC and BOTSCC, had a much better clinical outcome than those with corresponding HPV-negative cancer and other head and neck cancer. More specifically, survival was around 80% for HPV-positive TSCC and BOTSCC vs. 40% five-year disease free survival, for the corresponding HPV-negative tumors with conventional radiotherapy and surgery, while this could not be observed for HPV-positive OSCC at other sites. In addition, the past 20–40 years in many Western Countries, the incidence of HPV-positive TSCC and BOTSCC has risen, and >70% are men. This has resulted in a relative increase of patients with HPV-positive TSCC and BOTSCC that may not need the intensified chemo-radiotherapy (with many more severe debilitating side effects) often given today to patients with head and neck cancer. However, before tapering therapy, one needs to enable selection of patients for such treatment, by identifying clinical and molecular markers that together with HPV-positive status will better predict patient prognosis and response to therapy. To conclude, there is a new increasing group of patients with HPV-positive TSCC and BOTSCC with good clinical outcome, where options for better-tailored therapy are needed. For prevention, it would be of benefit to vaccinate both girls and boys against HPV16 infection. For potential future screening the ways to do so need optimizing. Full article
(This article belongs to the Special Issue Tumour Viruses)
433 KiB  
Article
Selection Pressure in CD8+ T-cell Epitopes in the pol Gene of HIV-1 Infected Individuals in Colombia. A Bioinformatic Approach
by Liliana Acevedo-Sáenz, Rodrigo Ochoa, Maria Teresa Rugeles, Patricia Olaya-García, Paula Andrea Velilla-Hernández and Francisco J. Diaz
Viruses 2015, 7(3), 1313-1331; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031313 - 20 Mar 2015
Cited by 7 | Viewed by 5628
Abstract
One of the main characteristics of the human immunodeficiency virus is its genetic variability and rapid adaptation to changing environmental conditions. This variability, resulting from the lack of proofreading activity of the viral reverse transcriptase, generates mutations that could be fixed either by [...] Read more.
One of the main characteristics of the human immunodeficiency virus is its genetic variability and rapid adaptation to changing environmental conditions. This variability, resulting from the lack of proofreading activity of the viral reverse transcriptase, generates mutations that could be fixed either by random genetic drift or by positive selection. Among the forces driving positive selection are antiretroviral therapy and CD8+ T-cells, the most important immune mechanism involved in viral control. Here, we describe mutations induced by these selective forces acting on the pol gene of HIV in a group of infected individuals. We used Maximum Likelihood analyses of the ratio of non-synonymous to synonymous mutations per site (dN/dS) to study the extent of positive selection in the protease and the reverse transcriptase, using 614 viral sequences from Colombian patients. We also performed computational approaches, docking and algorithmic analyses, to assess whether the positively selected mutations affected binding to the HLA molecules. We found 19 positively-selected codons in drug resistance-associated sites and 22 located within CD8+ T-cell epitopes. A high percentage of mutations in these epitopes has not been previously reported. According to the docking analyses only one of those mutations affected HLA binding. However, algorithmic methods predicted a decrease in the affinity for the HLA molecule in seven mutated peptides. The bioinformatics strategies described here are useful to identify putative positively selected mutations associated with immune escape but should be complemented with an experimental approach to define the impact of these mutations on the functional profile of the CD8+ T-cells. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

1546 KiB  
Article
The Cryptophlebia Leucotreta Granulovirus—10 Years of Commercial Field Use
by Sean D. Moore, Wayne Kirkman, Garth I. Richards and Peter R. Stephen
Viruses 2015, 7(3), 1284-1312; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031284 - 19 Mar 2015
Cited by 40 | Viewed by 6357
Abstract
In the last 15 years, extensive work on the Cryptophlebia leucotreta granulovirus (CrleGV) has been conducted in South Africa, initially in the laboratory, but subsequently also in the field. This culminated in the registration of the first CrleGV-based biopesticide in 2004 (hence, the [...] Read more.
In the last 15 years, extensive work on the Cryptophlebia leucotreta granulovirus (CrleGV) has been conducted in South Africa, initially in the laboratory, but subsequently also in the field. This culminated in the registration of the first CrleGV-based biopesticide in 2004 (hence, the 10 years of commercial use in the field) and the second one three years later. Since 2000, more than 50 field trials have been conducted with CrleGV against the false codling moth, Thaumatotibia leucotreta, on citrus in South Africa. In a representative sample of 13 field trials reported over this period, efficacy (measured by reduction in larval infestation of fruit) ranged between 30% and 92%. Efficacy was shown to persist at a level of 70% for up to 17 weeks after application of CrleGV. This only occurred where the virus was applied in blocks rather than to single trees. The addition of molasses substantially and sometimes significantly enhanced efficacy. It was also established that CrleGV should not be applied at less than ~2 × 1013 OBs per ha in order to avoid compromised efficacy. As CrleGV-based products were shown to be at least as effective as chemical alternatives, persistent and compatible with natural enemies, their use is recommended within an integrated program for control of T. leucotreta on citrus and other crops. Full article
(This article belongs to the Special Issue Insect Viruses and Their Use for Microbial Pest Control)
Show Figures

Figure 1

706 KiB  
Article
Field Efficacy and Transmission of Fast- and Slow-Killing Nucleopolyhedroviruses that Are Infectious to Adoxophyes honmai (Lepidoptera: Tortricidae)
by Maho Takahashi, Madoka Nakai, Yasumasa Saito, Yasushi Sato, Chikara Ishijima and Yasuhisa Kunimi
Viruses 2015, 7(3), 1271-1283; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031271 - 18 Mar 2015
Cited by 13 | Viewed by 6177
Abstract
The smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae), is an economically important pest of tea in Japan. Previous work showed that a fast-killing nucleopolyhedrovirus (NPV) isolated from A. orana (AdorNPV) and a slow-killing NPV isolated from A. honmai (AdhoNPV) are both infectious to [...] Read more.
The smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae), is an economically important pest of tea in Japan. Previous work showed that a fast-killing nucleopolyhedrovirus (NPV) isolated from A. orana (AdorNPV) and a slow-killing NPV isolated from A. honmai (AdhoNPV) are both infectious to A. honmai larvae. Field application of these different NPVs was conducted against an A. honmai larval population in tea plants, and the control efficacy and transmission rate of the two NPVs were compared. The slow-killing AdhoNPV showed lower field efficacy, in terms of preventing damage caused by A. honmai larvae against the tea plants, than the fast-killing AdorNPV. However, AdhoNPV had a significantly higher horizontal transmission rate than AdorNPV. These results show that AdorNPV is suitable as an inundative agent, while AdhoNPV is an appropriate inoculative agent. Full article
(This article belongs to the Special Issue Insect Viruses and Their Use for Microbial Pest Control)
Show Figures

Graphical abstract

916 KiB  
Article
Genetic Diversity of Koala Retroviral Envelopes
by Wenqin Xu, Kristen Gorman, Jan Clement Santiago, Kristen Kluska and Maribeth V. Eiden
Viruses 2015, 7(3), 1258-1270; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031258 - 17 Mar 2015
Cited by 31 | Viewed by 7413
Abstract
Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this [...] Read more.
Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A) were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process. Full article
(This article belongs to the Special Issue Endogenous Viruses)
Show Figures

Figure 1

1117 KiB  
Article
Human Endogenous Retrovirus Group E and Its Involvement in Diseases
by Christelle Le Dantec, Sophie Vallet, Wesley H. Brooks and Yves Renaudineau
Viruses 2015, 7(3), 1238-1257; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031238 - 16 Mar 2015
Cited by 28 | Viewed by 7631
Abstract
Human endogenous retrovirus group E (HERV-E) elements are stably integrated into the human genome, transmitted vertically in a Mendelian manner, and are endowed with transcriptional activity as alternative promoters or enhancers. Such effects are under the control of the proviral long terminal repeats [...] Read more.
Human endogenous retrovirus group E (HERV-E) elements are stably integrated into the human genome, transmitted vertically in a Mendelian manner, and are endowed with transcriptional activity as alternative promoters or enhancers. Such effects are under the control of the proviral long terminal repeats (LTR) that are organized into three HERV-E phylogenetic subgroups, namely LTR2, LTR2B, and LTR2C. Moreover, HERV-E expression is tissue-specific, and silenced by epigenetic constraints that may be disrupted in cancer, autoimmunity, and human placentation. Interest in HERV-E with regard to these conditions has been stimulated further by concerns regarding the capacity of HERV-E elements to modify the expression of neighboring genes and/or to produce retroviral proteins, including immunosuppressive env peptides, which in turn may induce (auto)-antibody (Ab) production. Finally, better understanding of HERV-E elements may have clinical applications for prevention, diagnosis, prognosis, and therapy. Full article
(This article belongs to the Special Issue Endogenous Viruses)
Show Figures

Figure 1

3532 KiB  
Article
From Lesions to Viral Clones: Biological and Molecular Diversity amongst Autochthonous Brazilian Vaccinia Virus
by Graziele Oliveira, Felipe Assis, Gabriel Almeida, Jonas Albarnaz, Maurício Lima, Ana Cláudia Andrade, Rafael Calixto, Cairo Oliveira, José Diomedes Neto, Giliane Trindade, Paulo César Ferreira, Erna Geessien Kroon and Jônatas Abrahão
Viruses 2015, 7(3), 1218-1237; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031218 - 16 Mar 2015
Cited by 13 | Viewed by 6296
Abstract
Vaccinia virus (VACV) has had an important role for humanity because of its use during the smallpox eradication campaign. VACV is the etiologic agent of the bovine vaccinia (BV), an emerging zoonosis that has been associated with economic, social, veterinary and public health [...] Read more.
Vaccinia virus (VACV) has had an important role for humanity because of its use during the smallpox eradication campaign. VACV is the etiologic agent of the bovine vaccinia (BV), an emerging zoonosis that has been associated with economic, social, veterinary and public health problems, mainly in Brazil and India. Despite the current and historical VACV importance, there is little information about its circulation, prevalence, origins and maintenance in the environment, natural reservoirs and diversity. Brazilian VACV (VACV-BR) are grouped into at least two groups based on genetic and biological diversity: group 1 (G1) and group 2 (G2). In this study, we went to the field and investigated VACV clonal diversity directly from exanthemous lesions, during BV outbreaks. Our results demonstrate that the G1 VACV-BR were more frequently isolated. Furthermore, we were able to co-detect the two variants (G1 and G2) in the same sample. Molecular and biological analysis corroborated previous reports and confirmed the co-circulation of two VACV-BR lineages. The detected G2 clones presented exclusive genetic and biological markers, distinct to reference isolates, including VACV-Western Reserve. Two clones presented a mosaic profile, with both G1 and G2 features based on the molecular analysis of A56R, A26L and C23L genes. Indeed, some SNPs and INDELs in A56R nucleotide sequences were observed among clones of the same virus population, maybe as a result of an increased mutation rate in a mixed population. These results provide information about the diversity profile in VACV populations, highlighting its importance to VACV evolution and maintenance in the environment. Full article
(This article belongs to the Special Issue Poxvirus Evolution)
Show Figures

Figure 1

983 KiB  
Article
Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics
by Cecilia Noecker, Krista Schaefer, Kelly Zaccheo, Yiding Yang, Judy Day and Vitaly V. Ganusov
Viruses 2015, 7(3), 1189-1217; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031189 - 13 Mar 2015
Cited by 18 | Viewed by 8055
Abstract
Upon infection of a new host, human immunodeficiency virus (HIV) replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. [...] Read more.
Upon infection of a new host, human immunodeficiency virus (HIV) replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV). First, we found that the mode of virus production by infected cells (budding vs. bursting) has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral dose. These results suggest that, in order to appropriately model early HIV/SIV dynamics, additional factors must be considered in the model development. These may include variability in monkey susceptibility to infection, within-host competition between different viruses for target cells at the initial site of virus replication in the mucosa, innate immune response, and possibly the inclusion of several different tissue compartments. The sobering news is that while an increase in model complexity is needed to explain the available experimental data, testing and rejection of more complex models may require more quantitative data than is currently available. Full article
(This article belongs to the Special Issue Bioinformatics and Computational Biology of Viruses)
Show Figures

Figure 1

2576 KiB  
Review
Advanced Molecular Surveillance of Hepatitis C Virus
by Livia Maria Gonçalves Rossi, Alejandro Escobar-Gutierrez and Paula Rahal
Viruses 2015, 7(3), 1153-1188; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031153 - 13 Mar 2015
Cited by 10 | Viewed by 12740
Abstract
Hepatitis C virus (HCV) infection is an important public health problem worldwide. HCV exploits complex molecular mechanisms, which result in a high degree of intrahost genetic heterogeneity. This high degree of variability represents a challenge for the accurate establishment of genetic relatedness between [...] Read more.
Hepatitis C virus (HCV) infection is an important public health problem worldwide. HCV exploits complex molecular mechanisms, which result in a high degree of intrahost genetic heterogeneity. This high degree of variability represents a challenge for the accurate establishment of genetic relatedness between cases and complicates the identification of sources of infection. Tracking HCV infections is crucial for the elucidation of routes of transmission in a variety of settings. Therefore, implementation of HCV advanced molecular surveillance (AMS) is essential for disease control. Accounting for virulence is also important for HCV AMS and both viral and host factors contribute to the disease outcome. Therefore, HCV AMS requires the incorporation of host factors as an integral component of the algorithms used to monitor disease occurrence. Importantly, implementation of comprehensive global databases and data mining are also needed for the proper study of the mechanisms responsible for HCV transmission. Here, we review molecular aspects associated with HCV transmission, as well as the most recent technological advances used for virus and host characterization. Additionally, the cornerstone discoveries that have defined the pathway for viral characterization are presented and the importance of implementing advanced HCV molecular surveillance is highlighted. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

1208 KiB  
Article
Chimeric Rabies Virus-Like Particles Containing Membrane-Anchored GM-CSF Enhances the Immune Response against Rabies Virus
by Hongtao Kang, Yinglin Qi, Hualei Wang, Xuexing Zheng, Yuwei Gao, Nan Li, Songtao Yang and Xianzhu Xia
Viruses 2015, 7(3), 1134-1152; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031134 - 11 Mar 2015
Cited by 22 | Viewed by 7132
Abstract
Rabies remains an important public health threat in most developing countries. To develop a more effective and safe vaccine against rabies, we have constructed a chimeric rabies virus-like particle (VLP), which containing glycoprotein (G) and matrix protein (M) of rabies virus (RABV) Evelyn-Rokitnicki-Abelseth [...] Read more.
Rabies remains an important public health threat in most developing countries. To develop a more effective and safe vaccine against rabies, we have constructed a chimeric rabies virus-like particle (VLP), which containing glycoprotein (G) and matrix protein (M) of rabies virus (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, and membrane-anchored granulocyte-macrophage colony-stimulating factor (GM-CSF), and it was named of EVLP-G. The immunogenicity and protective efficacy of EVLP-G against RABV were evaluated by intramuscular administration in a mouse model. The EVLP-G was successfully produced in insect cells by coinfection with three recombinant baculoviruses expressing G, M, and GM-CSF, respectively. The membrane-anchored GM-CSF possesses a strong adjuvant activity. More B cells and dendritic cells (DCs) were recruited and/or activated in inguinal lymph nodes in mice immunized with EVLP-G. EVLP-G was found to induce a significantly increased RABV-specific virus-neutralizing antibody and elicit a larger and broader antibody subclass responses compared with the standard rabies VLP (sRVLP, consisting of G and M). The EVLP-G also elicited significantly more IFN-γ- or IL-4-secreting CD4+ and CD8+ T cells than the sRVLP. Moreover, the immune responses induced by EVLP-G protect all vaccinated mice from lethal challenge with RABV. These results suggest that EVLP-G has the potential to be developed as a novel vaccine candidate for the prevention and control of animal rabies. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

989 KiB  
Article
Profiling of Measles-Specific Humoral Immunity in Individuals Following Two Doses of MMR Vaccine Using Proteome Microarrays
by Iana H. Haralambieva, Whitney L. Simon, Richard B. Kennedy, Inna G. Ovsyannikova, Nathaniel D. Warner, Diane E. Grill and Gregory A. Poland
Viruses 2015, 7(3), 1113-1133; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031113 - 10 Mar 2015
Cited by 12 | Viewed by 6113
Abstract
Introduction: Comprehensive evaluation of measles-specific humoral immunity after vaccination is important for determining new and/or additional correlates of vaccine immunogenicity and efficacy. Methods: We used a novel proteome microarray technology and statistical modeling to identify factors and models associated with measles-specific functional protective [...] Read more.
Introduction: Comprehensive evaluation of measles-specific humoral immunity after vaccination is important for determining new and/or additional correlates of vaccine immunogenicity and efficacy. Methods: We used a novel proteome microarray technology and statistical modeling to identify factors and models associated with measles-specific functional protective immunity in 150 measles vaccine recipients representing the extremes of neutralizing antibody response after two vaccine doses. Results: Our findings demonstrate a high seroprevalence of antibodies directed to the measles virus (MV) phosphoprotein (P), nucleoprotein (N), as well as antibodies to the large polymerase (L) protein (fragment 1234 to 1900 AA). Antibodies to these proteins, in addition to anti-F antibodies (and, to a lesser extent, anti-H antibodies), were correlated with neutralizing antibody titer and/or were associated with and predictive of neutralizing antibody response. Conclusion: Our results identify antibodies to specific measles virus proteins and statistical models for monitoring and assessment of measles-specific functional protective immunity in vaccinated individuals. Full article
(This article belongs to the Special Issue Morbillivirus Infections)
Show Figures

Figure 1

810 KiB  
Review
The Origin of the Variola Virus
by Igor V. Babkin and Irina N. Babkina
Viruses 2015, 7(3), 1100-1112; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031100 - 10 Mar 2015
Cited by 64 | Viewed by 16866
Abstract
The question of the origin of smallpox, one of the major menaces to humankind, is a constant concern for the scientific community. Smallpox is caused by the agent referred to as the variola virus (VARV), which belongs to the genus Orthopoxvirus. In [...] Read more.
The question of the origin of smallpox, one of the major menaces to humankind, is a constant concern for the scientific community. Smallpox is caused by the agent referred to as the variola virus (VARV), which belongs to the genus Orthopoxvirus. In the last century, smallpox was declared eradicated from the human community; however, the mechanisms responsible for the emergence of new dangerous pathogens have yet to be unraveled. Evolutionary analyses of the molecular biological genomic data of various orthopoxviruses, involving a wide range of epidemiological and historical information about smallpox, have made it possible to date the emergence of VARV. Comparisons of the VARV genome to the genomes of the most closely related orthopoxviruses and the examination of the distribution their natural hosts’ ranges suggest that VARV emerged 3000 to 4000 years ago in the east of the African continent. The VARV evolution rate has been estimated to be approximately 2 × 10−6 substitutions/site/year for the central conserved genomic region and 4 × 10−6 substitutions/site/year for the synonymous substitutions in the genome. Presumably, the introduction of camels to Africa and the concurrent changes to the climate were the particular factors that triggered the divergent evolution of a cowpox-like ancestral virus and thereby led to the emergence of VARV. Full article
(This article belongs to the Special Issue Poxvirus Evolution)
Show Figures

Figure 1

2100 KiB  
Article
HPV-E7 Delivered by Engineered Exosomes Elicits a Protective CD8+ T Cell-Mediated Immune Response
by Paola Di Bonito, Barbara Ridolfi, Sandra Columba-Cabezas, Andrea Giovannelli, Chiara Chiozzini, Francesco Manfredi, Simona Anticoli, Claudia Arenaccio and Maurizio Federico
Viruses 2015, 7(3), 1079-1099; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031079 - 09 Mar 2015
Cited by 43 | Viewed by 7250
Abstract
We developed an innovative strategy to induce a cytotoxic T cell (CTL) immune response against protein antigens of choice. It relies on the production of exosomes, i.e., nanovesicles spontaneously released by all cell types. We engineered the upload of huge amounts of [...] Read more.
We developed an innovative strategy to induce a cytotoxic T cell (CTL) immune response against protein antigens of choice. It relies on the production of exosomes, i.e., nanovesicles spontaneously released by all cell types. We engineered the upload of huge amounts of protein antigens upon fusion with an anchoring protein (i.e., HIV-1 Nefmut), which is an inactive protein incorporating in exosomes at high levels also when fused with foreign proteins. We compared the immunogenicity of engineered exosomes uploading human papillomavirus (HPV)-E7 with that of lentiviral virus-like particles (VLPs) incorporating equivalent amounts of the same antigen. These exosomes, whose limiting membrane was decorated with VSV-G, i.e., an envelope protein inducing pH-dependent endosomal fusion, proved to be as immunogenic as the cognate VLPs. It is noteworthy that the immunogenicity of the engineered exosomes remained unaltered in the absence of VSV-G. Most important, we provide evidence that the inoculation in mouse of exosomes uploading HPV-E7 induces production of anti-HPV E7 CTLs, blocks the growth of syngeneic tumor cells inoculated after immunization, and controls the development of tumor cells inoculated before the exosome challenge. These results represent the proof-of-concept about both feasibility and efficacy of the Nefmut-based exosome platform for the induction of CD8+ T cell immunity. Full article
(This article belongs to the Special Issue Viruses and Exosomes)
Show Figures

Figure 1

852 KiB  
Article
Two Year Field Study to Evaluate the Efficacy of Mamestra brassicae Nucleopolyhedrovirus Combined with Proteins Derived from Xestia c-nigrum Granulovirus
by Chie Goto, Shigeyuki Mukawa and Takayuki Mitsunaga
Viruses 2015, 7(3), 1062-1078; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031062 - 09 Mar 2015
Cited by 8 | Viewed by 5272
Abstract
Japan has only three registered baculovirus biopesticides despite its long history of studies on insect viruses. High production cost is one of the main hindrances for practical use of baculoviruses. Enhancement of insecticidal effect is one possible way to overcome this problem, so [...] Read more.
Japan has only three registered baculovirus biopesticides despite its long history of studies on insect viruses. High production cost is one of the main hindrances for practical use of baculoviruses. Enhancement of insecticidal effect is one possible way to overcome this problem, so there have been many attempts to develop additives for baculoviruses. We found that alkaline soluble proteins of capsules (GVPs) of Xestia c-nigrum granulovirus can increase infectivity of some viruses including Mamestra brassicae nucleopolyhedrovirus (MabrNPV), and previously reported that MabrNPV mixed with GVPs was highly infectious to three important noctuid pests of vegetables in the following order, Helicoverpa armigera, M. brassicae, and Autographa nigrisigna. In this study, small-plot experiments were performed to assess concentrations of MabrNPV and GVPs at three cabbage fields and a broccoli field for the control of M. brassicae. In the first experiment, addition of GVPs (10 µg/mL) to MabrNPV at 106 OBs/mL resulted in a significant increase in NPV infection (from 53% to 66%). In the second experiment, the enhancing effect of GVP on NPV infection was confirmed at 10-times lower concentrations of MabrNPV. In the third and fourth experiments, a 50% reduction in GVPs (from 10 µg/mL to 5 µg/mL) did not result in a lowering of infectivity of the formulations containing MabrNPV at 105 OBs/mL. These results indicate that GVPs are promising additives for virus insecticides. Full article
(This article belongs to the Special Issue Insect Viruses and Their Use for Microbial Pest Control)
Show Figures

Figure 1

1114 KiB  
Review
Myxoma Virus and the Leporipoxviruses: An Evolutionary Paradigm
by Peter J. Kerr, June Liu, Isabella Cattadori, Elodie Ghedin, Andrew F. Read and Edward C. Holmes
Viruses 2015, 7(3), 1020-1061; https://0-doi-org.brum.beds.ac.uk/10.3390/v7031020 - 06 Mar 2015
Cited by 71 | Viewed by 12937
Abstract
Myxoma virus (MYXV) is the type species of the Leporipoxviruses, a genus of Chordopoxvirinae, double stranded DNA viruses, whose members infect leporids and squirrels, inducing cutaneous fibromas from which virus is mechanically transmitted by biting arthropods. However, in the European rabbit [...] Read more.
Myxoma virus (MYXV) is the type species of the Leporipoxviruses, a genus of Chordopoxvirinae, double stranded DNA viruses, whose members infect leporids and squirrels, inducing cutaneous fibromas from which virus is mechanically transmitted by biting arthropods. However, in the European rabbit (Oryctolagus cuniculus), MYXV causes the lethal disease myxomatosis. The release of MYXV as a biological control for the wild European rabbit population in Australia, initiated one of the great experiments in evolution. The subsequent coevolution of MYXV and rabbits is a classic example of natural selection acting on virulence as a pathogen adapts to a novel host species. Slightly attenuated mutants of the progenitor virus were more readily transmitted by the mosquito vector because the infected rabbit survived longer, while highly attenuated viruses could be controlled by the rabbit immune response. As a consequence, moderately attenuated viruses came to dominate. This evolution of the virus was accompanied by selection for genetic resistance in the wild rabbit population, which may have created an ongoing co-evolutionary dynamic between resistance and virulence for efficient transmission. This natural experiment was repeated on a continental scale with the release of a separate strain of MYXV in France and its subsequent spread throughout Europe. The selection of attenuated strains of virus and resistant rabbits mirrored the experience in Australia in a very different environment, albeit with somewhat different rates. Genome sequencing of the progenitor virus and the early radiation, as well as those from the 1990s in Australia and Europe, has shown that although MYXV evolved at high rates there was no conserved route to attenuation or back to virulence. In contrast, it seems that these relatively large viral genomes have the flexibility for multiple pathways that converge on a similar phenotype. Full article
(This article belongs to the Special Issue Poxvirus Evolution)
Show Figures

Figure 1

660 KiB  
Review
Identification of New Respiratory Viruses in the New Millennium
by Michael Berry, Junaid Gamieldien and Burtram C. Fielding
Viruses 2015, 7(3), 996-1019; https://0-doi-org.brum.beds.ac.uk/10.3390/v7030996 - 06 Mar 2015
Cited by 109 | Viewed by 14373
Abstract
The rapid advancement of molecular tools in the past 15 years has allowed for the retrospective discovery of several new respiratory viruses as well as the characterization of novel emergent strains. The inability to characterize the etiological origins of respiratory conditions, particularly in [...] Read more.
The rapid advancement of molecular tools in the past 15 years has allowed for the retrospective discovery of several new respiratory viruses as well as the characterization of novel emergent strains. The inability to characterize the etiological origins of respiratory conditions, particularly in children, led several researchers to pursue the discovery of the underlying etiology of disease. In 2001, this led to the discovery of human metapneumovirus (hMPV) and soon following that the outbreak of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) promoted an increased interest in coronavirology and the latter discovery of human coronavirus (HCoV) NL63 and HCoV-HKU1. Human bocavirus, with its four separate lineages, discovered in 2005, has been linked to acute respiratory tract infections and gastrointestinal complications. Middle East Respiratory Syndrome coronavirus (MERS-CoV) represents the most recent outbreak of a completely novel respiratory virus, which occurred in Saudi Arabia in 2012 and presents a significant threat to human health. This review will detail the most current clinical and epidemiological findings to all respiratory viruses discovered since 2001. Full article
(This article belongs to the Section Animal Viruses)
1888 KiB  
Article
Analysis of Pineapple Mealybug Wilt Associated Virus -1 and -2 for Potential RNA Silencing Suppressors and Pathogenicity Factors
by Kishore K. Dey, Wayne B. Borth, Michael J. Melzer, Ming-Li Wang and John S. Hu
Viruses 2015, 7(3), 969-995; https://0-doi-org.brum.beds.ac.uk/10.3390/v7030969 - 05 Mar 2015
Cited by 13 | Viewed by 7568
Abstract
Higher plants use RNA silencing to defend against viral infections. As a counter defense, plant viruses have evolved proteins that suppress RNA silencing. Mealybug wilt of pineapple (MWP), an important disease of pineapple, has been associated with at least three distinct viruses, Pineapple [...] Read more.
Higher plants use RNA silencing to defend against viral infections. As a counter defense, plant viruses have evolved proteins that suppress RNA silencing. Mealybug wilt of pineapple (MWP), an important disease of pineapple, has been associated with at least three distinct viruses, Pineapple mealybug wilt associated virus -1, -2, and -3 (PMWaV-1, -2, and -3). Selected open reading frames (ORFs) of PMWaV-1 and PMWaV-2 were screened for their local and systemic suppressor activities in Agrobacterium-mediated transient assays using green fluorescent protein (GFP) in Nicotiana benthamiana. Results indicate that PMWaV-2 utilizes a multiple-component RNA silencing suppression mechanism. Two proteins, p20 and CP, target both local and systemic silencing in N. benthamiana, while the p22 and CPd proteins target only systemic silencing. In the related virus PMWaV-1, we found that only one of the encoded proteins, p61, had only systemic suppressor activity. Of all the proteins tested from both viruses, only the PMWaV-2 p20 protein suppressed local silencing induced by double-stranded RNA (dsRNA), but only when low levels of inducing dsRNA were used. None of the proteins analyzed could interfere with the short distance spread of silencing. We examined the mechanism of systemic suppression activity by investigating the effect of PMWaV-2-encoded p20 and CP proteins on secondary siRNAs. Our results suggest that the PMWaV-2 p20 and CP proteins block the systemic silencing signal by repressing production of secondary siRNAs. We also demonstrate that the PMWaV-2 p20 and p22 proteins enhanced the pathogenicity of Potato virus X in N. benthamiana. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

1923 KiB  
Article
Differential Expression of HERV-K (HML-2) Proviruses in Cells and Virions of the Teratocarcinoma Cell Line Tera-1
by Neeru Bhardwaj, Meagan Montesion, Farrah Roy and John M. Coffin
Viruses 2015, 7(3), 939-968; https://0-doi-org.brum.beds.ac.uk/10.3390/v7030939 - 04 Mar 2015
Cited by 49 | Viewed by 8627
Abstract
Human endogenous retrovirus (HERV-K (HML-2)) proviruses are among the few endogenous retroviral elements in the human genome that retain coding sequence. HML-2 expression has been widely associated with human disease states, including different types of cancers as well as with HIV-1 infection. Understanding [...] Read more.
Human endogenous retrovirus (HERV-K (HML-2)) proviruses are among the few endogenous retroviral elements in the human genome that retain coding sequence. HML-2 expression has been widely associated with human disease states, including different types of cancers as well as with HIV-1 infection. Understanding of the potential impact of this expression requires that it be annotated at the proviral level. Here, we utilized the high throughput capabilities of next-generation sequencing to profile HML-2 expression at the level of individual proviruses and secreted virions in the teratocarcinoma cell line Tera-1. We identified well-defined expression patterns, with transcripts emanating primarily from two proviruses located on chromosome 22, only one of which was efficiently packaged. Interestingly, there was a preference for transcripts of recently integrated proviruses, over those from other highly expressed but older elements, to be packaged into virions. We also assessed the promoter competence of the 5’ long terminal repeats (LTRs) of expressed proviruses via a luciferase assay following transfection of Tera-1 cells. Consistent with the RNASeq results, we found that the activity of most LTRs corresponded to their transcript levels. Full article
(This article belongs to the Special Issue Endogenous Viruses)
Show Figures

Figure 1

2279 KiB  
Article
HSV-1 gM and the gK/pUL20 Complex Are Important for the Localization of gD and gH/L to Viral Assembly Sites
by Sheung-Yee Kathy Lau and Colin M. Crump
Viruses 2015, 7(3), 915-938; https://0-doi-org.brum.beds.ac.uk/10.3390/v7030915 - 04 Mar 2015
Cited by 31 | Viewed by 7983
Abstract
Herpes simplex virus-1 (HSV-1), like all herpesviruses, is a large complex DNA virus containing up to 16 different viral membrane proteins in its envelope. The assembly of HSV-1 particles occurs by budding/wrapping at intracellular membranes producing infectious virions contained within the lumen of [...] Read more.
Herpes simplex virus-1 (HSV-1), like all herpesviruses, is a large complex DNA virus containing up to 16 different viral membrane proteins in its envelope. The assembly of HSV-1 particles occurs by budding/wrapping at intracellular membranes producing infectious virions contained within the lumen of cytoplasmic membrane-bound compartments that are then released by secretion. To ensure incorporation of all viral membrane proteins into the envelope, they need to be localized to the appropriate intracellular membranes either via the endocytic pathway or by direct targeting to assembly sites from the biosynthetic secretory pathway. Many HSV-1 envelope proteins encode targeting motifs that direct their endocytosis and targeting, while others do not, including the essential entry proteins gD and the gH/gL complex, and so it has been unclear how these envelope proteins reach the appropriate assembly compartments. We now show that efficient endocytosis of gD and gH/gL and their incorporation into mature virions relies upon the presence of the HSV-1 envelope proteins gM and the gK/pUL20 complex. Our data demonstrate both redundant and synergistic roles for gM and gK/pUL20 in controlling the targeting of gD and gH/L to the appropriate intracellular virus assembly compartments. Full article
(This article belongs to the Special Issue Viral Glycoprotein Incorporation)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop