Viruses 2015, 7, 3204-3225; doi:10.3390/v7062770

VIiruses

ISSN 1999-4915
www.mdpi.com/journal/viruses

Review

Exosomes and Their Role in the Life Cycle and Pathogenesis of
RNA Viruses

Harendra Singh Chahar !, Xiaoyong Bao 1’2 and Antonella Casola 1-2*

! Departments of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX 77555,
USA; E-Mails: hachahar@utmb.edu (H.S.C.); xibao@utmb.edu (X.B.)

2 Sealy Center for Vaccine Development, University of Texas Medical Branch at Galveston, Galveston,
TX 77555, USA

* Author to whom correspondence should be addressed; E-Mail: ancasola@utmb.edu;
Tel.: +1-409-747-0581; Fax: +1-409-772-1761.

Academic Editor: Yorgo Modis

Received: 15 April 2015 / Accepted: 5 June 2015 / Published: 19 June 2015

Abstract: Exosomes are membrane-enclosed vesicles actively released into the extracellular
space, whose content reflect the physiological/pathological state of the cells they originate
from. These vesicles participate in cell-to-cell communication and transfer of biologically
active proteins, lipids, and RNAs. Their role in viral infections is just beginning to be
appreciated. RNA viruses are an important class of pathogens and affect millions of
people worldwide. Recent studies on Human Immunodeficiency Virus (HIV), Hepatitis
C Virus (HCV), human T-cell lymphotropic virus (HTLV), and Dengue Virus (DENV)
have demonstrated that exosomes released from infected cells harbor and deliver many
regulatory factors including viral RNA and proteins, viral and cellular miRNA, and other host
functional genetic elements to neighboring cells, helping to establish productive infections
and modulating cellular responses. Exosomes can either spread or limit an infection
depending on the type of pathogen and target cells, and can be exploited as candidates for
development of antiviral or vaccine treatments. This review summarizes recent progress
made in understanding the role of exosomes in RNA virus infections with an emphasis on

their potential contribution to pathogenesis.
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1. Introduction

Exosomes are lipid bilayer membrane-enclosed nano-sized (30-100 nm) vesicles with a density of
1.13-1.19 g/mL, secreted by virtually all cell types, and formed during the maturation of endosomes
upon invagination and budding of the limiting membrane of late endosomes as intraluminal vesicles
(ILVs) of multivesicular bodies (MVBs). Exosomes were first observed in the early 1980s in the
culture media of reticulocytes [1-3]. In their study, Harding et al. (1983) reported that clathrin-coated,
pit-mediated endocytosis led to enrichment of gold-labeled transferrin on vesicles inside non-lysosomal
multivesicular endosomes [1]. They observed that these endosomes, commonly known as MVBs, fused
with the plasma membrane and released their inner vesicles by exocytosis. Johnstone, in 1987, coined
the term “exosomes” for such vesicles, which are released from cells by exocytosis [1]. Exosomes are
released by almost all cell types and have also been confirmed in all bodily fluids such as blood, urine,
saliva, breast milk, bronchial lavage, cerebral spinal fluid, and amniotic fluid [4—-19]. In order to best
adapt to the surrounding microcosm and execute their functions and duties, continuous communication,
achieved through methods like direct cell—cell contact or transfer of secreted molecules, is essential for
cells and tissues. Although initially it was proposed that secretion of exosomes was a mechanism of
discarding cellular waste [16,20,21], in recent years exosomes have emerged as an important tool for
intercellular communication through the transfer of biologically active proteins, lipids, and RNAs [22].
Exosomes have been implicated in normal as well as pathophysiological conditions, such as lactation,
immune response, neuronal function, development and progression of liver disease, neurodegenerative
diseases, cancer, and viral infections [16,22-27]. Exosome-mediated extracellular delivery of nucleic
acids and proteins among virally infected and uninfected bystander cells have been shown to play an
important role in viral pathogenesis and control of host immune responses to infection [28-31]. This
certainly suggests a crucial role for exosomes in the viral life cycle and this review focuses on the
important role exosomes play in the life cycle of RNA viruses with an emphasis on their potential

contributions to pathogenesis.
2. Molecular Composition of Exosomes

Exosomes are essentially cytoplasm enclosed in a lipid bilayer with exposed external domains of
transmembrane proteins. Exosomes may contain all types of biomolecules like proteins, carbohydrates,
lipids, and also a nucleic acid signature of source of origin. New purification methods providing
highly pure preparations of exosomes have allowed the use of proteomic and molecular techniques
to understand the molecular composition of exosomes. The presence of cellular proteins in exosome
preparations from various cellular sources has been analyzed by various methods like western blot,
fluorescence-activated cell sorting (FACS), ELISA, and mass spectrometry [11,32-39]. Extensive
analyses involving quantitative RT-PCR and RNA deep sequencing to identify RNA species that are
present in exosomes have also been carried out [40—46]. These extensive and in-depth analyses revealed
that a defined subset of cellular proteins, probably involved in exosome biogenesis and maybe in
some common exosome functions, is targeted specifically to exosomes. This may include cytoskeletal
components such as actin and actin-binding proteins, tubulin, and proteins involved in intracellular
membrane fusions and transport such as Annexins and Rab (Ras (rat sarcoma) genes from the rat
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brain) proteins [47,48]. Molecules involved in signal transduction such as protein kinases (14-3-3) and
heterotrimeric G proteins, heat shock proteins (HSPs), such as HSP70 and HSP90, and MHC class
I and II molecules are also part of this defined but common set of exosome proteins. Tetraspanins
including CD9, CD63, CDS81, and CD82, as well as cytoskeletal components such as actin, are among
the most abundant proteins in exosomes from virtually any cell type. Since exosomes are generated
through invagination of late endosomes, a variety of host proteins that participate in vesicle formation and
trafficking such as apoptosis linked gene (ALG), 2 interacting protein X (ALIX), and tumor susceptibility
gene 101 (TSGI101) are also incorporated into the exosomes [49]. All of these proteins have been
considered as consensus markers for exosomes [50-52].

Exosomal lipid composition has also been characterized and exosomes are rich in sphingomyelin,
gangliosides, phosphatidylserine, and cholesterol [53]. Nucleic acid signature is the other important
component of exosomes and recent studies have focused on exosomal nucleic acid content. It has
been demonstrated that exosomes carry biologically active mRNA, miRNA, other non-coding RNA,
and a limited amount of DNA coding for ribosomal RNA [54-58]. However, the RNA and protein
composition of exosomes varies in both quantity and type of molecules, depending on the origin
and physiological/pathological state of the cells, suggesting that recruitment of RNA and protein into
exosomes 1s a regulated process [55,59]. The exosome structure is graphically represented in Figure 1.
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Figure 1. Structure and composition of exosomes. Exosomes contain a plasma
membrane-derived phospholipid bilayer membrane. The composition depends on the cell
type of origin, state of health of the host, and extracellular stimuli. Exosome contents
include mRNA, miRNA, DNA, and proteins like annexins, tetraspanins, Alix, TSG101,
MHC molecules, Rab proteins, cytoskeletal proteins, enzymes, and signal transduction
proteins. GAPDH: Glyceraldehyde 3-phosphate dehydrogenase PGK: 3-phosphoglycerate
kinase, PK: pyruvate kinase, EGFR: epidermal growth factor receptor, CDC42: cell division
control protein 42, PI3k: phosphatidylinositide 3-kinases, ARF1: ADP-ribosylation factor
1, MUCI1: Mucin 1, vRNA: viral RNA, vmiRNA: viral miRNA.
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2.1. Biogenesis of Exosomes

Exosome biogenesis starts with the endocytosis and formation of early endosomes. The early
endosome develops into the late endosome upon maturation, which is characterized by the formation
of intraluminal vesicles (ILV) inside the lumen of the endosome. The ILVs, 30—100 nm in diameter,
are formed by inward budding of the endosomal membrane, randomly engulfing portions of the cytosol
and incorporating transmembrane and peripheral proteins into the invaginating membrane; this leads to
formation of multivesicular bodies (MVBs) [5,60,61]. Although endocytosis and trafficking of plasma
membrane receptors into MVBs is responsible for their degradation upon fusion with lysosomes [62],
the fate of the MVBs may vary and not all MVBs are degraded in lysosomes, with a subset fusing with
plasma membrane and resulting in generation of exosomes. The process of exosome biogenesis and
cargo sorting is still not well understood and many studies suggest that the mechanisms of exosome
biogenesis can be cell specific [63]. Exosomes are mainly secreted by two different mechanisms,
constitutive release via the Trans-Golgi network and inducible release [64,65].

In the vesicle generation process, the endosomal sorting complexes required for transport O (ESCRTO)
ubiquitinate proteins for MVB delivery and also recruit ESCRTI to endosomal membrane, which in
turn recruits ESCRTII and ESCRTIII [66,67]. ESCRTIII mediates formation of polymeric filaments,
which leads to membrane invaginations and eventually results in ILV formation [68]. The presence
of ESCRT components in exosomes was identified using high throughput protein analysis methods,
and downregulation of key components of ESCRT system abrogates ILV formation and release of
exosomes [69]. Various studies also suggest ESCRT-independent mechanisms of exosome biogenesis
and release. For example, in oligodendroglial cells exosome generation is regulated by the production
of a lipid ceramide [70]. Recently, a CD63 tetraspanin-mediated mechanism of cargo sorting and
ILV formation was reported, which is independent of ESCRT and ceramide [71]. Once the MVBs
are formed, the soluble N-ethylmaleimide sensitive factor attachment receptor (SNARE) proteins and
GTPases mediate their fusion with plasma membrane. Rab 35 has been recently shown to be part of the
MVB docking to the membrane and depletion of Rab35 significantly decreased exosome release [72].
Although exosomes and ILVs are similar and generated through common mechanisms, cells have
different populations of vesicles [47,73,74] and the mechanisms that contribute to exosome formation
and cargo sorting within these vesicles is still not well understood. The process of exosome biogenesis
is summarized in Figure 2.
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Figure 2. Schematic representation of exosome biogenesis and release. Exosome generation
starts with early endosome formation during endocytosis. The membrane proteins are
internalized through clathrin-coated vesicles and delivered to early endosomes. This leads
to intraluminal vesicles (ILVs) formation by inward budding of the limiting membrane
and multi vesicular bodies (MVBs) are formed. Upon maturation the exosome-filled
MVBs are either sent to lysosomes for degradation or fused with the plasma membrane
to release exosomes to the extracellular milieu. RER: Rough Endoplasmic Reticulum, GC:
Golgi complex.

2.2. Exosome Characterization

Various viruses like paramyxoviruses, HBV, HCV, rhabdoviruses, herpersviruses, filoviruses, and
arenaviruses utilize or need the ESCRT pathway for their release [75-77]. Characterization and
investigation of exosomes derived from virus-infected cells is a tough task as these vesicles often
are of similar density and fall in the same size range as many of these viruses, making it necessary
and at the same time challenging to separate the two populations. Conventionally, the exosomes are
isolated from culture media or bodily fluids using a sequential sucrose-gradient ultracentrifugation
procedure [78]. Other methods of exosome isolation/purification include microfiltration technologies,
microfluidic devices [79-82], exosome precipitation reagents like ExoQuick™ (System Biosciences,
Mountain View, CA, USA), and Total Exosome Isolation reagent (Life Technologies Grand Island, NY,
USA), as well as antibody-coated magnetic bead-based immunopurification [38,83]. Similar sequential
centrifugation and ultracentrifugation methods are used to purify many enveloped or non-enveloped
viruses [84—87]. For instance, exosomes derived from HIV or HCV-infected cells cannot be readily
distinguished or separated from infectious viral particles by conventional biophysical techniques as
they share similar buoyant densities and sedimentation velocities [22,88—90]. Hence, when isolating
exosomes from virus-infected cells, it becomes critically important to make sure that the pelleted material

is exosomes and not virus particles. To address this, various exosome characterization methods have
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been developed including measurement and analysis of size distribution using NanoSight nanoparticle
tracking analysis system, visualization of exosomes using electron microscopy, and immunoblot analysis
of universal exosome protein markers like CD63, CD81, TSG101, Annexin5, ICAMI, FLOT1, and Alix
(Figure 3).
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Figure 3. Schematic representation of exosome isolation strategies. Graphical representation

of exosome isolation by both ultracentrifugation- and precipitation reagent-based isolation

procedures, and analytical tools for exosome identification.

When using immunoblot analysis, the exosome marker chosen for characterization should be selected
with caution, as some viruses have been shown to incorporate exosome proteins. For example,
proteomic studies utilizing liquid chromatography and tandem mass spectrometry (LC-MS/MS) found
that influenza virus incorporates exosome markers ICAM1, Annexin A3, CD81, and CD9, while CD63
and ALIX were not present [91]. Similarly, exosomes and retroviruses share a variety of molecules like
MHC-II [92,93], integrins (CD11a, CD18), co-stimulatory molecules (CD28, CD54), and complement
neutralizing molecules (CD55, CD59) [5,35,94,95]. Various other host molecules/proteins acquired
by enveloped viruses are reviewed in Cantin et al. [95]. Hence, the enriched exosomes isolated by
ultracentrifugation or precipitation reagent should be further subjected to immunopurification methods
like CD63 immunomagnetic bead isolation or other efficient virus purification strategies to obtain

contamination-free populations of exosomes (Figure 4).
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Figure 4. Schematic representation of exosome immune-isolation. To obtain exosomes free
of contaminants, exosomes can be subjected to immunomagnetic selection using anti-CD63
antibody conjugated beads and then characterized by immunoblot, electron microscopy, and
size determination.

3. Transfer of Viral and Cellular Components by Exosomes and Their Role in Virus Replication
and Transmission

Although the field of exosomes and their contribution to replication and pathogenesis of RNA viruses
remain largely unexplored, a few RNA viruses have been investigated, such as HIV-1, HTLV-1, HCV, and
Dengue virus. Findings from these studies have demonstrated that exosomes released from virus-infected
cells contain a variety of viral and host cellular factors that are able to modulate recipient host cell

responses and lead to the establishment of productive infection.
3.1. Exosomes as Carriers of Virus and Host RNA Species

It has been reported that exosomes carry various cellular regulatory RNAs, including miRNAs,
sncRNAs, and siRNAs [96]. Exosomes derived from virus-infected cells have been shown to carry viral
components including viral mRNA, miRNA, and genomic RNA, as well as genetic regulatory elements.
Among the RNA viruses, HIV-1 was the first one to be studied somewhat in detail in the context of
modulation of exosome formation. Exosomes derived from HIV-1 infected cells or patients with HIV
infection incorporate the viral transactivating response (TAR) element transcribed from the integrated
provirus, which has been suggested to enhance HIV replication in the recipient cells via downregulation

of apoptotis [42]. Unspliced HIV-1 RNA species are recruited to exosomes and the presence of a stretch
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of sequences within the 5’ end of the Gag p17 open reading frame is sufficient for this recruitment,
while single- or double-spliced HIV-1 RNA is not incorporated into exosomes. The incorporation of
genomic HIV-1 RNA in exosomes is further increased if the producer cells express HIV-1 defective for
viral genome packaging [97].

Exosome-like microvesicles isolated from serum during infection with human Pegivirus (an RNA
virus within the Pegivirus genus of the Flaviviridae previously known as Hepatitis G virus) have been
shown to carry viral RNA and to be able to transmit viral RNA to peripheral blood mononuclear
cells in vitro, resulting in productive infection [98]. Exosomes released from HCV-infected cells
contain HCV RNA, which can be successfully transferred to dendritic cells to establish productive
infection [99]. Two subsequent studies confirmed that exosomes derived from HCV-infected hepatocytes
contain the complete HCV genome and they have the ability to mediate transfer of replication-competent
subgenomic HCV RNA to permissive naive cells, leading to viral RNA replication and productive
infection [100,101]. Exosomes derived from HCV-infected patients have also been found to contain
negative sense HCV RNA (replication competent viral RNA), in association with Ago2, HSP90, and
miR-122 [102].

A recent study reported that exosomes derived from Human T-lymphotropic virus type 1
(HTLV-1)-infected cells contain the Tax, HBZ, and Env gene mRNA transcripts, suggesting that
exosomes can serve as vehicles to deliver functional HTLV-1 mRNA to recipient cells [103].

Exosomes secreted from HIV-1-infected primary alveolar macrophages carry viral microRNAs
vmiR88, vmiR99, and vmiR-TAR; these miRNAs have also been detected in exosomes purified
from the sera of HIV-infected individuals. Viral microRNAs vmiR88 and vmiR99 were shown to
stimulate signaling in macrophages, resulting in robust release of TNFa through macrophage endosomal
TLRS8 [104]. Expression of HIV Nef protein in macrophage-like cells results in selective recruitment of
47 miRNAs into exosomes, with two miRNAs selectively retained in the same cells [105], suggesting that
modulation of exosomal RNA composition during a viral infection is a regulated process and that specific
mechanisms exist to recruit or retain specific miRNAs/RNAs. Astrocytes exposed to a combination of
HIV protein Tat and opiate drugs secreted exosomes with elevated levels of miR-29b. In human neurons
exposed to miR-29b-enriched exosomes, platelet-derived growth factor-B expression was repressed and
neuron viability was correspondingly decreased [106]. The presence of Ago2, an essential protein of
RNA-induced silencing complex (RISC) for mediating miRNA-targeted gene suppression, and cellular
miRNAs in exosomes secreted from HTLV-1-infected cells suggested that HTLV-1 could manipulate
mRNA translation in recipient cells [107].

3.2. Exosomes as Viral Protein Carriers

Exosomal protein composition varies depending on cell type and disease state. Several RNA viruses
have been shown to modulate not only host cell protein composition of exosomes but also to recruit
their own proteins into exosomes. Exosomes from HIV-1-infected cells have been shown to incorporate
both Gag [108] and Nef proteins [109,110]. The latter is incorporated into exosomes upon anchoring
into lipid raft microdomains through its N-terminal myristoylation and a stretch of basic amino acids
residing in its alpha-helix-1 [111], as well as upon interaction with the host cell protein Mortalin [112].
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Similar to HIV, the HTLV-1 transactivator protein Tax, a critical factor for proliferation and
transformation of T cells, is incorporated in exosomes secreted from virally-infected cells [103]. Several
cellular proteins also seem to be recruited to exosomes in a Tax-dependent manner, many of them
involved in protein synthesis and antigen presentation [103]. Exosomes derived from HCV-infected
cells have been shown to carry HCV core protein, in addition to apolipoproteins ApoE and ApoB [101].
In HCV-positive patients, the cellular membrane protein CD81 has been shown to associate with the
envelope glycoprotein E2. Extracellular release of E2-CD81 within microvesicles is associated with
increased virus fusing ability and infectivity of naive cells [113]. Table 1 enlists the protein and RNA
species of RNA viruses recruited to exosomes.

Table 1. Viral protein and RNA species present in exosomes derived from RNA
virus-infected cells.

Protein and RNA Species of RNA Viruses Present in Exosomes

HIV: Nef and Gag proteins
Viral Proteins HCYV: HCV core protein
HTLV-1: Transactivator protein Tax
HIV: HIV-1 transactivating response (TAR) element RNA, microRNAs
vmiR88, vmiR99 and vmiR-TAR, unspliced HIV-1 RNA species,
HCV: HCV genomic RNA
HTLV-1: HTLV-1 Tax, HBZ, and Env gene mRNA transcripts

Viral RNA and microRNA

3.3. Role of Exosomes in Pathogenesis

Immature dendritic cells capture HIV-1 and can transfer these captured HIV-1 particles to T cells.
Wiley and Gummuluru, back in 2006, reported that exosomes derived from HIV-1 containing immature
dendritic cells can transfer HIV-1 to T cells without de novo infection. Exosomes isolated with
HLA-DR-1-conjugated magnetic beads from the supernatant of DCs exposed to HIV-luc reporter
viruses incubated with Jurkat T cells resulted in productive infection of cells. They also reported that
endocytosed virus particles were the main contributors to exocytosed virus fraction, as treatment of
virus-exposed DCs with trypsin had no or a negligible effect on the amount of virus particles precipitated
by HLA-DR-1-conjugated magnetic beads [114].

Although the role of exosomes in HIV infection has not yet been fully understood, increasing
evidence suggests that exosomes facilitate both enhancement and inhibition of infection and replication,
depending upon the cells of origin. For instance, exosomes derived from HIV-infected cells have been
shown to contain the HIV coreceptors CCRS5 and CXCR4, and transfer of these coreceptors to uninfected,
non-permissive cells may enhance susceptibility to HIV infection [115,116]. In a recent study, Kadiu
et al. reported that a portion of HIV virions shed from monocyte-derived macrophages is associated
with exosomal aggregates and these entrapped virions demonstrate improved infectivity toward CD4™"
target cells, compared to purified HIV-1 virus particles [117]. HIV-infected and viremic individuals
exhibit elevated levels of plasma cytokines. Many cytokines have been found to be markedly enriched

in exosomes from HIV-positive individuals relative to negative controls and exposure of naive peripheral
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blood mononuclear cells to exosomes purified from HIV-positive patients induces CD38 expression on
naive and central memory CD4" and CD8* T cells, probably contributing to inflammation and viral
propagation via bystander cell activation [118].

HIV accessory protein negative factor (Nef) is one of the earliest and most abundantly expressed
viral proteins. Nef is also released in exosomes. Lenassi et al. (2010) reported that Nef not only
stimulates its own export through exosomes, but these Nef exosomes also facilitate the depletion of
CD4* T cells that is a hallmark of acquired immunodeficiency syndrome (AIDS) [109]. In fact HIV
Nef, through exosomes, induces the activation of resting CD4* T lymphocytes, rendering these quiescent
CD4" T lymphocytes permissive to HIV-1 replication and thus stimulating viral spread [119]. HIV-1 Nef
promotes viral replication and pathogenesis by mediating depletion of CD4 and MHC-I molecules. Nef
binds to the cytosolic tail (CT) of CD4 and MHC-I and disrupts the intracellular trafficking of these
proteins targeting them to multivesicular bodies (MVBs), and ultimately to lysosomes for degradation.
In a recent study Carvalho er al. (2014) reported that exosomes secreted by CD41 T cells, but not
CD4™ T cells, efficiently inhibit HIV-1 infection in vitro, suggesting that exosomal CD4 can bind to
envelope proteins of HIV-1, hindering virus interaction with target cells and eventually reducing the
infection [110]. They also showed that this effect could be reversed by depleting CD4 exosomes released
by CD4" T cells expressing Nef. The remaining exosomes have a reduced capacity to inhibit HV-1
infection in vitro [110]. HIV Nef also modulates exosomal miRNA composition, further suggesting a
role for exosomes in HIV pathogenesis and viral replication [110].

Exosomes play an important role in HTLV-1 infection as well, probably by delivering functional
HTLV-1 Tax protein, proinflammatory mediators, and viral mRNA transcripts of Tax, HBZ, and Env
proteins. Along with other host proteins, major histocompatibility complex (MHC) class I A and class
I E precursor were also identified in exosomes derived from HTLV-1 infected cells. The addition of
C81 cell-derived exosomes (containing Tax protein) to myeloid dendritic cells resulted in a significant
increase in the levels of IL-2, IL-5, and IL-6 cytokines. In fact, cell-free Tax could induce IL-10, IL-12,
IL-17A, IFN-y, and G-CSF secretion from dendritic cells. The findings of Jaworski et al. (2014) suggest
that exosomes play a crucial role in signal transduction and may contribute to pathogenesis of HTLV-1
infection [103].

Human cytidine deaminase APOBEC3G (A3G) is part of a cellular defense system against HIV-1
as well as other retroviruses. In a recent study, Khatua et al. (2009) found that APOBEC3G secreted
by cells in exosomes can confer resistance to both defective and wild-type HIV-1 infection in exosome
recipient cells [120]. Esser et al. demonstrated that CD45, CD86, and MHC Class II molecules present
in exosomes derived from HIV-infected cells may help in silencing immune response, therefore favoring
virus replication [121]. Exosomes derived from HIV-1 infected CD8" T cells suppressed replication of
both CCRS5- and CXCR4-tropic HIV-1 strains in vitro by inhibiting HIV-1 transcription in both acute
and chronic models of infection [122]. Exosomes can not only transmit HCV to naive cells but also
offer some degree of protection from HCV neutralizing antibodies. By making use of transmission
electron microscopic imaging, Liu ef al. demonstrated that HCV was present in both exosome-free and
exosome-associated forms and the association with exosomes conferred the ability to resist anti-HCV
antibody mediated neutralization, suggesting that HCV may utilize transmission via exosomes as an
immune evasion mechanism [101,123].
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Recently a new set of proteins called IFN inducible transmembrane proteins 1, 2, and 3 (IFITM1, 2,
and 3) have been shown to display antiviral activities induced by IFN, conferring host cells resistance
to various viral pathogens [124]. In their study Zhu et al. (2015) found that the IFITM3 protein level
in host cells inversely correlates with their susceptibility to Dengue Virus-2 (DENV-2) infection [124].
Exosomes derived from HUVEC or HepG2 cells contain IFITM3 protein and can transfer this protein to
neighboring cells. Investigating the functional aspect of this exosome-mediated transfer of IFITM3, they
found that in recipient cells DENV-2 infection was effectively suppressed by the IFITM3-containing
exosomes in a dose-dependent manner. The authors suggested that the IFITM3-containing exosomes
did not affect the binding or post-entry steps during DENV-2 infection, but reduced the penetration of
DENV-2 into cells, demonstrating an important role for exosomes in DENV-2 infection [124]. There is
also evidence that some viruses harness exosomes to avoid immune recognition in the bloodstream or as
reservoirs of virus latency. Hepatitis A virus (HAV), a non-enveloped virus, was found to be encapsulated
into vesicles derived from endosomal membranes [47]. These enveloped HAV particles were fully
infectious. They resembled exosomes and their biogenesis was dependent on ESCRTs and ESCRT
effectors [47]. Their membrane cloak protected them from antibody neutralization and virus-specific
antibodies appear only after 3—4 weeks of infection.

4. Potential Applications in Viral Infections

Exosomes appear to be an important tool of intercellular communication, as discussed above.
However, their further use in various other processes is also being evaluated. The exosomes can
be used as a diagnostic marker, as vaccines, and as a drug delivery vehicle for targeted or systemic
delivery. Since exosomes have been detected in all bodily fluids, can be easily purified, and have a
composition that varies in normal and diseased conditions, they can be exploited as diagnostic markers
of diseases. However, the use of exosomes as a diagnostic marker for viral infection has not yet been
explored adequately.

Targeted delivery is another area where the potential of exosomes to carry therapeutic cargo to specific
organs or tissues is being evaluated. Expression of receptor-specific ligand molecules on the exosome
surface through genetic engineering can transform exosomes into potent delivery vehicles that can deliver
a drug/siRNA/miRNA based therapeutic moiety to cells or tissues of choice. In fact, the ability of
exosomes to deliver therapeutic moiety or genetic material can be further improved by incorporating
selected viral proteins into exosomes as virus-encoded envelope proteins exhibiting superior binding and
entry specificity (reviewed in [125]). For instance, exosomes engineered to express a 29-mer peptide
derived from the rabies virus glycoprotein (RVG), which specifically binds to acetylcholine receptors
expressed on the brain cells, were exploited by Alvarez-Erviti et al. (2011) to transport small interfering
RNAs to the brain [126]. The immature dendritic cells (DCs) were transfected with plasmids encoding
exosomal protein Lamp2b, fused with the 29-mer RVG peptide. Exosomes were purified from DC
cultures, loaded with GAPDH or BACE-1 siRNA, and injected intravenously through tail vein injection.
The targeted delivery resulted in specific knockdown of GAPDH and BACE-1 in the mouse brain [127].
In other studies, DCs were transduced with adenoviral vector to express Interleukin (IL)-10, IL-4, or
FasL, and the engineered exosomes were used to treat autoimmune disorders and inflammatory diseases
(reviewed in [128]). Similar methods can be utilized to engineer exosomes to deliver siRNAs to control
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viral infections such as West Nile Virus or other viral infections of the brain or other organs like the
liver or lungs. Exosomes are also being evaluated as vaccines in the field of infectious diseases. Aline
et al. (2004), investigated the efficacy of DC2.4 cell line-derived exosomes to mount a protective
immune response against toxoplasmosis [129]. They found that Toxoplasma gondii-pulsed DC-derived
exosomes transferred to the spleen, elicited a strong systemic Thl-modulated Toxoplasma-specific
immune response in vivo, and were able to protect the animals against Toxoplasma infection [129].
This suggests that exosomes can also be used for immunoprophylaxis against viral pathogens; however,
systemic studies need to be conducted to evaluate the therapeutic or protective role engineered exosomes
can play in the field of infectious diseases. Exosomes offer many advantages, including but not limited
to being natural transport body vehicles of antigens and signals between cells, providing a stable
environment for nucleic acids and proteins by protecting them from DNase, RNase, and proteinases,
efficient association/interaction with antigen-presenting cells, and offering better molecular distribution
capabilities as are present in all bodily fluids [125,130].

5. Conclusions

Various studies have demonstrated that exosomes are crucial intercellular communication channels
and highlighted their potential role in viral transmission and modulation of immune responses, as viruses
exploit the exosomal pathway for their assembly/budding, transfer of viral RNAs, and suppression of
immune activation. In addition, exosomes could be utilized as diagnostic markers in viral infections
and for targeted drug delivery. Since exosome research related to viral infections is still in an early
stage, more studies are required to decipher the interplay between exosome biology and viruses, as a
comprehensive understanding of exosome biology and its involvement in viral infections would permit

the development of new strategies to interfere with viral replication and disease development.
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