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Positivity and boundness. We first establish the positivity and boundness of model
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d t
= rTT
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d I

d t
= rII

(
1− T + I

K

)
+ β(1− η)V T − δI,

dV

d t
= (1− ε)pI − cV.

(1)

subject to initial conditions

T (0) = T0 > 0, I(0) = I0 > 0, V (0) = V0 > 0, T (0) + I(0) ≤ K. (2)

Proposition 1. The solutions of (1) subject to (2) are positive on [0, b) for some b > 0.

Proof. Note that (1) is locally Lipschitz at t = 0. Therefore, a solution exists and is unique on
[0, b) for some b > 0. Assume that there exists t1 ∈ (0, b) such that V (t1) = 0 and all variables are
positive on [0, t1). For all t ∈ [0, t1]

dV

d t
= (1− ε)pI − cV ≥ −cV,

and so

V (t1) ≥ V0e−ct1 > 0,

a contradiction. Therefore V (t) > 0 for all t ∈ [0, t1].

Proposition 2. If max{rT , rI} > min{dT , δ}, then any solution (T (t), I(t)) of (1) subject to (2)
remains bounded on [0, b) for some b > 0.

Proof. Let F = T + I, rmax = max{rT , rI} and dmin = min{dT , δ}. Then

dF

dt
≤ s+ rmaxF
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)
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K
F 2

= −rmax

K
(F −X)(F − Y ),

where
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,
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.

Then
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(
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K
t

)
.

and, since rmax > dmin,

F (t) ≤
X − Y exp

(
− (X−Y )rmax

K t
)

1− exp
(
− (X−Y )rmax

K t
) .

Note that X − Y > 0, and so F (t) is bounded. Therefore T (t) and I(t) are bounded.

Proposition 3. Any solution (T (t), I(t)) of (1) subject to (2) is positive on [0, b) for some b > 0.

Proof. We first show positivity for F . Assume that there exists t1 ∈ (0, b) such that F (t1) = 0 and
all variables are positive on [0, t1). Assume also that T and I are bounded on [0, t1), i.e., there
exist M1 and M2 such that T (t) ≤M1 and I(t) ≤M2 for all t ∈ [0, t1). Then for all t ∈ [0, t1]

dF

d t
≥ rminF

(
1− F

K

)
− dmaxF

≥ rminF

(
−M1 +M2

K

)
− dmaxF

= −c̃F, c̃ > 0

and so

F (t1) ≥ F0e
−c̃t1 > 0

a contradiction. Then F (t) > 0 for all t ∈ [0, t1]. Since we assume all the variables positive on
[0, t1), this implies that both T (t) and I(t) are positive for all t ∈ [0, t1].
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Proposition 4. If max{rT , rI} > min{dT , δ}, then any solution V (t) of (1) subject to (2) remains
bounded on [0, b) for some b > 0.

Proof. If I(t) is bounded on [0, b), then there exists a number M > 0 such that

M ≥ (1− ε)p sup
t∈[0,b)

I(t).

Then for any t ∈ [0, b) we have

dV

d t
= (1− ε)p− cV ≤M − cV,

and so

V (t) ≤ max

{
V0,

M

c

}
.

Stability analysis. We study the local asymptotic stability of system (1)’s equilibria for ε = η =
0. The system has four equilibria: a liver death equilibria E∗ = (0, 0, 0), a disease-free equilibrium

E0 = (K, 0, 0),

a chronic infection equilibrium with total liver infection

Etot.liv =

(
0,
K(rI − δ)

rI
,
pK(rI − δ)

crI

)
,

and a chronic equilibrium with partial liver infection

E =

(
cδ(R0(δ − rI) + rT )

βp(R0δ + rT − rI)
,

cδrT (R0 − 1)

βp(R0δ + rT − rI)
,

δrT (R0 − 1)

β(R0δ + rT − rI)

)
,

where

R0 =
βpK

cδ
(3)

is the basic reproduction number, representing the number of secondary infections induced by an
infected cell in a naive population.

Proposition 5. The liver death equilibrium is unstable.

Proof. The Jacobian matrix for the system is

J =

 rT
(
1− 2T+I

K

)
− βV −rT T

K −βT
−rI IK + βV rI

(
1− T+2I

K

)
− δ βT

0 p −c

 . (4)

When evaluated at E∗, J becomes:

J =

 rT 0 0

0 rI − δ 0

0 p −c

 ,

whose eigenvalues λ1 = rT > 0 and λ2 = rI − δ > 0. Therefore E∗ is unstable.
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Proposition 6. The free disease equilibrium is locally asymptotically stable if R0 < 1.

Proof. The Jacobian matrix for the system evaluated at E0 becomes:

J =

 −rT −rT −βK
0 −δ βK

0 p −c

 ,

whose eigenvalues are negative when R0 < 1.

Proposition 7. The equilibrium Etot.liv exists when rI > δ, is locally asymptotically stable when

R0
rI − δ
rT

> 1,

and is unstable otherwise.

Proof. Etot.liv exists when rI > δ. It can be shown that the characteristic equation for Etot.liv is
given by

(λ− rT δ

rI
+
βpK(rI − δ)

rIc
)(λ+ c)(λ+ rI − δ) = 0,

with eigenvalue λ1 = rT δ
rI
− βpK(rI−δ)

rIc
< 0 when R0

rI−δ
rT

> 1. Since the other two eigenvalues are

always negative, this condition is enough to ensure local asymptotic stability of equilibrium Etot.liv

.

Proposition 8. The equilibrium E is locally asymptotically stable if rI > δ and

1 < R0 and R0
rI − δ
rT

< 1.

The proof is messy and it will not be presented here.
When the treatment is initiated, we assume that the chronic equilibrium E is stable, i.e. 1 <

R0 <
rT
rI−δ . A successful combination drug therapy 0 < ε ≤ 1 and 0 < η ≤ 1 will lead to virus

clearance if the clearance equilibrium in the presence of therapy, Ed0 = (K, 0, 0) (same as E0 in the
absence of therapy), becomes the locally asymptotically stable steady state. This occurs when

R = (1− ε)(1− η)R0 < 1. (5)
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Figure S1: Samples for bi-phasic (dark blue dots) and tri-phasic (red to light blue dots) V (t)
dynamics for: (A) fixed rT/rI = 2.5; (B) fixed rT/rI = 1; (C) fixed ε = 0.9; and (D) fixed
ε = 0.99; (E) fixed δ = 0.01. The other parameters are as in Table 2.
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(A) (B)

Figure S2: Division of the samples for bi-phasic and tri-phasic virus pattern based on the
number of years to virus clearance for: (A) fixed ε = 0.9; (B) fixed ε = 0.99. The other
parameters are as in Table 2.
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Figure S3: Density of bi-phasic (blue) and tri-phasic (pink) V (t) samples versus: (A) Liver
turnover; (B) Net liver gain, for ε = 0.99, rT/rI = 2.5, 0.01 ≤ δ ≤ 0.1 d−1 and τ = 100 days.
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