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Abstract: The adaptive immune response is necessary for the development of protective immunity 
against infectious diseases. Porcine reproductive and respiratory syndrome virus (PRRSV), a 
genetically heterogeneous and rapidly evolving RNA virus, is the most burdensome pathogen of 
swine health and wellbeing worldwide. Viral infection induces antigen-specific immunity that 
ultimately clears the infection. However, the resulting immune memory, induced by virulent or 
attenuated vaccine viruses, is inconsistently protective against diverse viral strains. The 
immunological mechanisms by which primary and memory protection are generated and used are 
not well understood. Here, we summarize current knowledge regarding cellular and humoral 
components of the adaptive immune response to PRRSV infection that mediate primary and 
memory immune protection against viruses. 
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1. Introduction 

Porcine reproductive and respiratory syndrome virus (PRRSV) is the most severe enemy of 
porcine health and wellbeing. The highly mutable, enveloped, RNA virus was discovered nearly 30 
years ago but, while extensive research has been carried out and many vaccines have been developed, 
there is still no reproducible immunological intervention that develops a broadly protective immune 
response against virulent PRRSV.  

PRRS disease was first described on farms in North Carolina in the USA at the end of the 1980s. 
Outbreaks were marked by reproductive losses, post-weaning pneumonia, and increased mortality 
in growing pigs. Initial efforts to identify an etiological agent responsible for the new disease 
syndrome were unsuccessful, leading to the disease being temporarily designated mystery swine 
disease (MSD) in North America. Koch’s postulates for MSD were fulfilled in 1991 with a previously 
unidentified RNA virus discovered in Europe, named Lelystad virus [1,2]. The discovery was quickly 
followed by isolation of the virus, initially referred to as swine infertility and respiratory syndrome 
virus or SIRS virus, in North America [3].  

The name PRRSV was introduced in 1992 and encompasses PRRSV-1 (genotypes first isolated 
in Europe) and PRRSV-2 (genotypes first isolated in North America) [4,5]. Today, both virus types 
are globally distributed, with PRRSV-1 viruses predominantly in Europe and PRRSV-2 viruses 
largely in North America, Asia and South America [6]. Recent discovery of multiple arteriviral 
nucleotide sequences in nonhuman primates has led to a reclassification of PRRSV as two distinct 
viruses, PRRSV-1 and PRRSV-2 [7]. Here, we use the generic PRRSV to refer broadly to both viruses 
when evidence indicates that are equivalent, and the specific PRRSV-1 and PRRSV-2 is used when a 
distinction is desired. The reasoning is based on the many similarities of the two viruses in fine details 
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of genome structure and organization, transcriptional strategy, host preference, clinical signs of 
disease, and anti-viral immunity [7–11]. In particular, chimeric PRRSV consisting of PRRSV-1 open 
reading frames (ORFs) 2–5 in a background of PRRSV-2 are fully viable, showing as well that the 
molecular signals for transcription and translation are preserved [12]. 

PRRSV has a positive-sense, single-stranded RNA genome of approximately 15 kb designated 
to the Arteriviridae family. The virus encodes at least 10 functional ORFs. ORF1a and 1b encode two 
large polyproteins which are cleaved into 14 non-structural proteins [13]. There are eight known 
structural proteins encoded by ORF2a, ORF2b, ORF3–7 and ORF5a [14–16]. PRRSV is one of the most 
rapidly mutating RNA viruses known, with considerable genetic variation within both PRRSV-1 and 
PRRSV-2, based on ORF5 phylogenetic analysis [10,17]. This impressive genetic diversity makes the 
development of a broadly protective immune response to vaccination difficult to achieve. After 
infection, the virus can endure and replicate in the host, depending on immune status and PRRSV 
strain, for a period of at least 150 days [18]. Therefore, contrary to being labeled repeatedly as a 
persistent pathogen, animals are capable of eventually clearing PRRSV. However, the components of 
the immune system responsible for the development of sterilizing immunity are not completely 
understood or have yet to be discovered. Here, we will discuss several aspects of PRRSV antigen-
specific and protective immunity which have yet to be elucidated while focusing on potential areas 
of further investigation. Readers interested in additional reviews of PRRSV literature related to 
immunity are directed to the following articles [11,19].  

2. The Targets of Infection 

PRRSV infects cells of the macrophage/monocyte lineage, including dendritic cells [20–23]. 
Permissive cells express Cluster of Differentiation (CD)163, a hemoglobin-haptoglobin scavenger, 
which is the necessary receptor for PRRSV infection and replication [24–26]. Macrophages and 
dendritic cells are common members of the mononuclear phagocyte system that plays a varied, and 
important, role in many aspects of tissue remodeling, development, immunity and 
immunopathology [27]. Classically designated as part of the innate immune system, these leukocytes 
are critical for the development of a productive adaptive immune response. Macrophages and, 
particularly, dendritic cells take up and present antigen to T cells and B cells, thus initiating an 
adaptive immune response against the presented antigen [28,29]. If a pathogen is able to infect and 
destroy, manipulate, or maintain itself within macrophages or dendritic cells, it then has the potential 
to modulate the immune response into a favorable situation for its own replication and survival.  

Therefore, many pathogens employ strategies for macrophage infection as a way to make the 
host more amenable to infection. Recent research into Mycobacterium tuberculosis (Mtb) has shown 
that, after phagocytosis, the bacterium arrests phagosome maturation and intra-phagosome lipolysis 
resulting in Mtb survival and an increased supply of nutrients for growth [30,31]. Human 
immunodeficiency virus (HIV) infects macrophages to establish reservoirs within the host for the 
chronic stage of the disease when CD4+ T cells are largely depleted and neutralizing antibodies may 
be present [32–34]. Leishmania major is a protozoan which infects phagocytes to subvert the immune 
system. The parasite expresses glycoprotein (gp)63, a multifaceted surface-expressed pathogenicity 
factor that is responsible for preventing antigen presentation and killing by natural killer (NK) cells 
[35–37]. Indeed, there are many more examples of burdensome pathogens which target phagocytic 
cells, especially macrophages and dendritic cells, in an attempt to gain a foothold within the immune 
system and allow for unchecked survival and replication [38–40]. PRRSV is one of these pathogens. 

The ability of PRRSV to subvert the immune system has not been investigated as extensively as 
more prominent pathogens of humans, such as HIV. PRRSV has been shown to inhibit the 
production, or the downstream effects, of type 1 interferons, particularly interferon (IFN)-α, on 
intracellular signaling [41–48]. Interestingly, multiple PRRSV proteins (nonstructural protein (nsp) 1, 
nsp2, nsp4, nsp5, nsp11 and nucleocapsid) have been reported to possess interferon inhibiting 
abilities.  

In addition, a number of in vivo experiments have reproduced earlier in vitro findings showing 
that interferon-α is inhibited during the early stages of PRRSV infection [47,49,50]. While the impact 
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of type 1 interferon suppression is likely to create a favorable environment for the virus to replicate 
and survive in phagocytic cells, it is still unclear what effect, if any, suppression of type 1 interferon 
activity has on the adaptive immune response to infection [51]. Future investigations could clarify 
the relative contributions of viral proteins on modulation of interferon production and their impacts 
on viral growth, survival, and the subsequent development of the adaptive immune response.  

Apart from interfering with interferon expression, PRRSV has also displayed the in vitro ability 
to subvert the immune system by spreading from cell to cell. Recent work has uncovered the ability 
of the virus to spread infectious viral RNA, several replicases, and certain structural proteins between 
cells via intercellular nanotubules [52,53]. While this activity theoretically allows for PRRSV to avoid 
neutralizing antibodies, the presence and significance of this mechanism in PRRSV pathogenesis has 
yet to be fully elucidated. Future studies are needed to determine if this process operates in naturally 
permissive macrophages and dendritic cells, if it can be interrupted, for example by intracellular 
antibodies, and what effect it might have on viral propagation [54,55]. 

Vaccines depend upon innate immune stimulation to promote effective adaptive immune 
response to antigen, resulting in production of antibodies and cytotoxic T cell responses. The ability 
of a pathogen to successfully infect and replicate within innate immune cells makes the development 
of a protective immune response more difficult. As a result, the generation of effective vaccines 
against pathogens that target immune cells is fraught with challenges. Extensive variation in viral 
genetics, primary immune responses, and cross-protection indicates that much remains to be learned 
about cellular pathogenesis in order to arrive at better immunological solutions.  

3. Immunosuppression 

Immunosuppression refers to suppression of the immune system and its ability to fight infection. 
HIV and infectious bursal disease virus are examples of viral infections that destroy entire lymphoid 
cell populations that ablate or disable adaptive immune responses. Lymphoproliferative cancers 
block cellular differentiation and deprive the body of mature, effector lymphocytes, thus causing 
immunosuppression in a different manner. PRRSV does neither; infection does not lead to severe 
lymphoid depletion or ablation, and it does not interfere profoundly with lymphocyte differentiation 
or maturation. Leukocyte perturbations in lymphoid tissues are associated with PRRSV infection, 
suggesting that adaptive immunity might be weakened, though not destroyed [56–61].  

The immune system also maintains peripheral tolerance to self and commensal bacteria through 
immunosuppressive mechanisms that include regulatory T cells (Tregs), characterized as 
CD4+CD25+Forkhead box p3 (Foxp3)+ T lymphocytes [62]. Treg suppressive properties were 
discovered when thymectomized or Treg-depleted mice succumbed to autoimmune reactions [63,64]. 
Tregs suppress effector and effector memory T cell proliferation by cytokine deprivation leading to 
polyclonal apoptosis, and by suppression of antigen presenting cells by cytotoxic T lymphocyte-
associated antigen-4 (CTLA-4) and other mechanisms [62]. Studies in PRRSV infections give an 
ambiguous picture about the role of Tregs. PRRSV-2 strains are reported to induce a strong Treg 
response which included transforming growth factor (TGF)β-1 secretion in vitro as well as in vivo 
[65,66]. Other studies did not show Treg responses to infection with either PRRSV-1 or PRRSV-2 
[67,68]. Interleukin-10 (IL-10), an immunosuppressive cytokine expressed by various cell types 
including Tregs, was induced by PRRSV-2 vaccination in weaned pigs in one study, but was not 
induced in weaned or adult pigs in another study [69]. Additional in vitro and in vivo studies 
reported IL-10 mRNA transcription and cytokine production after PRRSV infection [70–72]. 
However, kinetic analysis in serum of viremic pigs of various ages showed that elevated IL-10 levels 
were primarily a function of age and were not associated with infection status [69]. The only 
exception was in weaned pigs infected with a virulent virus, in which a transient increase was 
associated with viral pathogenesis [69].  

On balance, the immunological evidence for PRRSV inducing a state of immunosuppression 
does not appear to be compelling. Secondary infections following PRRS disease outbreak in swine 
herds, suggesting a reduced ability to fight infection, is an alternative indicator of 
immunosuppression. An early study showed concurrent pulmonary bacterial infections in 58% of 
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221 PRRS cases [73]. However, the study did not determine if bacterial infections were present before 
the PRRS outbreaks. The immunosuppression question also was addressed in more controlled 
settings using dual infection models with PRRSV and various bacterial species. A summary of 
published literature in 2003 showed no predisposition to bacterial disease in 8 of 15 coinfection 
models, three ambiguous outcomes, and four cases in which severity of disease was increased [74]. 
More recent studies found a positive association between PRRSV infection and replication of porcine 
circovirus 2 (PCV2) or swine influenza virus [75,76]. 

It is possible that bacterial infections in swine herds increase following PRRS outbreaks due an 
increased burden of viral infection on host resilience to pathogen burden. Subclinical viral and 
bacterial infections are common, with PCV2, Salmonella enterica, Haemophilus parasuis, various 
Mycoplasma species, Leptospira, and Escherichia coli being examples. Control of infection is maintained 
by a combination of immune resistance to microbial replication and tissue tolerance to damage. In a 
coinfection model of influenza virus and Legionella pneumophila, it was clearly demonstrated that L. 
pneumophila infection was subclinical in healthy mice, but was lethal in the presence of influenza virus 
[77]. Overwhelming disease was due to loss of tissue resilience, since the bacterial load was 
unchanged [77]. This model might account for mortalities observed in experimental swine following 
PRRSV exposure [78]. Given the variable results of PRRSV coinfection models in swine and an 
alternative mechanism for increased disease in PRRSV-infected herds, generalized 
immunosuppression does not appear to be a key feature of PRRSV pathogenesis. 

PRRSV, like many viruses, has developed countermeasures to host immune responses that 
enable it to survive and replicate for extended periods of time before the infection is resolved. PRRSV 
modulation of intracellular antiviral defense mechanisms has been reviewed extensively [79]. The 
effects of PRRSV infection on adaptive immune response, i.e., antigen-specific T cell, B cell, and 
antibody responses, are less well characterized. The antiviral response of T cells to PRRSV, examined 
primarily by the IFNγ enzyme-linked immunospot (ELISPOT), appears to develop slowly over a 
period of weeks, and is not associated with changes in viral loads in blood or in infected lung and 
lymphoid tissues [80,81]. Peripheral blood mononuclear cells (PBMC) from young, weaned pigs show 
limited IFNγ responses even when stimulated by phytohemagluttinin, which might account for the 
low anti-PRRSV responsiveness after re-stimulation in vitro [69]. However, PBMC from growing pigs 
and mature sows, which showed higher levels of IFNγ sensitivity, still showed limited 
responsiveness [69]. These findings indicate that PRRSV may interfere with specific cell-mediated 
immunity, but more direct evidence is needed for a fuller understanding. 

By contrast, the interaction of PRRSV with pigs does not appear to retard or attenuate the 
development of humoral immunity or B cell differentiation. Induction of antibody responses to 
PRRSV proteins, both structural and non-structural, occurred in the same time frame as antibody 
responses to keyhole limpet hemocyanin (KLH), an irrelevant protein antigen [51]. The antibody 
response to KLH was also the same in the presence or absence of PRRSV infection [51]. Similarly, 
PRRSV infection did not inhibit cellular or humoral immune protection in response to pseudorabies 
virus vaccination [82]. Thus, the adaptive B cell response is not delayed or suppressed by PRRSV.  

An extended viremia and prolonged survival in lymphoid tissues is characteristic of PRRSV 
infection. These features show that PRRSV has mechanisms of immune avoidance that are not present 
in viruses such as influenza virus and foot and mouth disease virus, in which sterilizing immunity is 
achieved within 10–14 days. It appears from the findings of field observations and experimental 
investigations that some type of PRRSV-specific T cell interference is present, whereas specific B cell 
inhibition or a generalized state of immunosuppression are not immunological hallmarks of PRRSV 
infection. 

4. Antibody Response 

4.1. Neutralizing Antibody Response 

The antibody response to PRRSV typically dominates discussions of PRRSV immunity, as 
neutralizing antibodies are the crucial component of immune-mediated protection against most viral 
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infections [83,84]. As a result, shortly after the identification of PRRSV as the causative agent of 
Mystery Swine Disease, there was a strong push to identify the presence and dynamic response of 
neutralizing antibodies against PRRSV and then to characterize their specificity for PRRSV variants. 
Early work suggested that neutralizing antibodies against homologous PRRSV could be found as 
early as 9–11 days after inoculation [85]. However, this was likely the non-affinity matured 
immunoglobulin (Ig)M response, as anti-swine IgM ablated the previously observed neutralizing 
activity. Subsequent research showed that the high affinity neutralizing IgG response, detected at 
around 28–42 days post-inoculation, is specific for the inoculating virus with partial neutralizing 
activity against heterologous viruses [86–90].  

Following the identification of PRRSV neutralizing antibodies, the effectiveness of 
immunoglobulins in protecting against infection was evaluated with passive transfer studies. These 
experiments displayed the effectiveness of neutralizing antibodies at preventing clinical infection and 
disease against homologous challenge [91,92]. However, these studies also showed that immune 
protection can be quite limited, especially between PRRSV-1 and PRRSV-2 [93]. Within PRRSV-1 or 
PRRSV-2, protection against homologous inoculation is consistently solid, whereas protection against 
heterologous challenge is variable for unclear reasons [93–95]. However, genetic similarity, based 
primarily on ORF5 sequence comparisons, shows no relationship with degree of protection [96]. 
These results appeared to explain the potential field problem, in which vaccinated or live virus 
inoculated animals become infected with a variant PRRSV genetically different enough from the 
inoculating strain to evade the immune system, propagate, and then cause disease. Hence, ever since 
the mutability, antigenic variability, and resultant immunological elusiveness of PRRSV were first 
appreciated, a broadly neutralizing antibody response to PRRSV has been coveted by immunologists 
and practitioners [97].  

Recent research shows that there are animals capable of developing a broadly neutralizing 
antibody response to genetically disparate viruses [9,98]. However, this immune capability has only 
been found in a proportion of animals in groups of similar genetics age, sex, and exposure history 
[9]. The seemingly random ability of some animals to develop broadly neutralizing antibodies 
suggests that the inherent variation of the adaptive immune response may play a role in conferring 
broadly neutralizing capabilities to certain animals. Investigations into this ability are needed at the 
lymphocyte level and while the obvious target is the B cell, T cells cannot be overlooked, as the 
induction of a humoral immune response requires antigen-specific T cell driven help [99,100]. 
Therefore, animals able to develop a strong neutralizing antibody response would require both B 
cells and T cells that are capable of recognizing neutralizing epitopes.  

The conditions needed to achieve cross-neutralizing antibody production are not known, but 
may involve multiple exposures to the same or different virus isolates. Sows with high titered, 
broadly neutralizing antibodies were found in herds with multiple exposures to virulent field viruses 
[9]. In an experimental study, cross-neutralization was reported in animals exposed first to a PRRSV 
vaccine strain followed by homologous or heterologous virus challenge [86]. However, the majority 
of data analyzed were below the neutralization assay cutoff. Duration of viremia, up to 42 days, was 
linked with increased breadth of neutralizing antibodies following a single viral infection [101]. 
However, since cross-neutralization activity and titer data were not presented, it was not possible to 
further interpret the results. The animals were not subsequently challenged, so it is not known if the 
cross-neutralizing activity in serum was predictive of protection. Other studies showed that 
significant neutralizing antibody responses are not commonly observed during viremic infection of 
young pigs, as well as in adult sows [69,102–104].  

Recently, vaccinology research in HIV has shown that sequential immunizations, tailored for 
specific stages of the immune response, may be useful for inducing broadly neutralizing antibodies 
[105–107]. The approach is based on the finding that early immune responses to HIV resulted in 
neutralizing antibodies against the circulating virus which quickly led to immune escape of the virus 
and the ineffectiveness of generated antibodies. The antibody-resistant virus then stimulated a 
secondary antibody response which again selected for antibody resistant virus. This virus-antibody 
hide and seek continued, eventually resulting in the selection of several neutralization targets of the 
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virus as well as the generation of broadly neutralizing antibodies [108–110]. Cloning of the antibodies 
showed that somatic mutations are generally necessary for antibody neutralizing capabilities against 
HIV-1 [111,112]. These findings have shown that the B cell response of the host adapts in the germinal 
center as the virus evolves, suggesting that tailored sequential immunization could lead to the 
development of a broadly neutralizing antibody response [113].  

The consistent generation of a broadly neutralizing antibody response to PRRSV on the herd 
level has evaded the swine health industry since the emergence of PRRSV. There are multiple 
proposed mechanisms by which PRRSV may evade or inhibit the development, or the effectiveness, 
of a neutralizing antibody response, such as glycan shielding of envelope glycoprotein (GP)3 or GP5 
[114,115], the existence of decoy epitopes in GP5 [116], lymphocyte dysregulation [79], and inhibition 
of the innate immune response [117]. Comprehension of defense mechanisms employed by PRRSV 
makes the development of a broadly neutralizing immune response appear to be a daunting task. 
However, as previously shown, some animals are capable of developing such a response. Simply, the 
key to adapting the immune phenomenon of some animals to a vaccine capable of inducing broadly 
protective immunity in many animals lies in identifying conserved epitopes on surface proteins 
which are necessary for infection.  

While the purported targets of neutralization have been extensively discussed in recent reviews, 
it is worth noting that several epitopes on the membrane (M) protein, GP5, GP2, GP3, and GP4, have 
been shown, or implicated, to harbor neutralizing activity [114,116,118–124]. However, knocking out 
only CD163 in the pig is sufficient to render animals non-susceptible to PRRSV infection and 
replication [24,25,125]. It is proposed that following endocytosis, CD163 associates with the virus 
within the endosome, resulting in uncoating of the virus and the release of the viral genome into the 
cellular cytoplasm [126]. Since CD163 is necessary for viral infection and replication, the logical next 
step is to identify the conserved regions of viral surface proteins, most likely the minor glycoproteins 
(GP2, GP3, and GP4), that interact with CD163 [124,127].  

4.2. Non-Neutralizing Antibody Response 

Traditionally, the non-neutralizing antibody response to PRRSV has been considered useful only 
for its ability to identify if an animal had been exposed and seroconverted to virus. Indeed, there are 
many structural and non-structural proteins of PRRSV which make this possible through their ability 
to induce a robust humoral immune response [15,80,102]. However, recent research on other 
pathogens has shown that non-neutralizing antibodies may play a much larger role in immunity than 
was previously appreciated [128–131]. Alternative antibody functions, such as antibody dependent 
cell-mediated cytotoxicity (ADCC), antibody-dependent complement-mediated cytotoxicity (CDC), 
and antibody-dependent complement-mediated virolysis may be important in the clearance of virus 
and virally infected cells from an animal. To our knowledge, there are only two published papers 
investigating non-neutralizing antibody functions in the context of PRRSV infection [59,132]. Both of 
these in vitro studies utilized a PRRSV-1 virus and failed to find an effect of ADCC and CDC on 
infected cells. However, experiments focused on PRRSV-2 viruses with extended time points beyond 
12 h are warranted. A more extensive review of non-neutralizing antibody functions can be found in 
the cited review [133].  

5. The B Cell Response 

If antibodies are the most important effectors of the immune system against viral infection, then 
B cells that make the antibodies are the most important cells. Previous research on the interaction 
between PRRSV and the porcine B cell is contradictory. It has recently been suggested that PRRSV 
infection results in lymphocyte apoptosis and immune impairment [61]. Several sources have shown 
that PRRSV largely or exclusively induces a specific humoral response to infection [51,134]. Other 
studies report that PRRSV infection results primarily in polyclonal B cell activation leading to 
hypergammaglobulinemia and the development of immune complexes [135–138]. The majority of 
work describing infection leading to polyclonal activation and hypergammaglobulinemia was 
performed in germ-free isolator piglets. This model is very effective for comparing B cell and 
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antibody repertoire development in the fetus, as the germ-free status of the pigs removes many of 
the variables present when experiments are performed on conventionally reared animals [139]. 
However, these animals are deprived of the microflora and maternal antibodies to which 
conventional animals are exposed. As a result, the translation of immunological outcomes observed 
in isolator pigs to conventional pigs must be performed with caution. Studies in mice show that the 
immune systems of specific-pathogen free laboratory mice are similar to neonatal human immune 
systems, whereas feral mice displayed immune systems more comparable to adult humans. 
Effectively, the immune systems of germ-free animals may not display “normal” immune system 
phenotypes due to the lack of exposure to microflora [140,141].  

The development of protective humoral immunity, after vaccination or exposure to a pathogen, 
is dependent upon two lines of defense. The first immune defense is secreted antibodies, first from 
short-lived and then from long-lived, plasma cells residing somewhere in the body (Figure 1). The 
second line of defense is memory B cells (Figure 1). Memory cells are sentinels against reinfection 
which are activated upon antigen recognition to proliferate and differentiate into antibody secreting 
plasma cells, thus rapidly boosting circulating antibody titers with high affinity class switched 
antibodies [142].  

 
Figure 1. Development of systemic humoral immunity. Naive B cells move through the B cell follicles 
of the secondary lymphoid organs searching for antigens specific for their B cell receptors (BCR, 
surface immunoglobulin). Upon antigen recognition, the BCR is endocytosed, the antigen is degraded 
and then presented on the surface of the cell via Major Histocompatibility Complex (MHC)II. The B 
cell then migrates to the periphery of the B cell follicle searching for a Cluster of Differentiation (CD)4+ 
T cell specific for the same antigen. Upon T cell recognition of the MHCII presented antigen, the T cell 
stimulates the B cell by cytokine driven proliferation. The B cell proliferates and differentiates, some 
cells become immunoglobulin (Ig)M producing plasma cells, and other cells migrate into the B cell 
follicle where, with the help of cytokines from CD4+ follicular helper T cells and follicular dendritic 
cells, a germinal center is formed. In the germinal center, B cells proliferate and undergo somatic 
hypermutation and isotype switching. Affinity matured B cells then leave the germinal center as 
either IgG+ plasma cells or IgG+ memory cells. These cells constitute the first two lines of defense 
against reinfection: (1) affinity matured antibodies produced by plasma cells; and (2) memory cells 
which boost antibody titers upon antigen recognition. For an in depth review of this process based on 
data in humans and mice, please refer to Taylor et al. [143]. APRIL: a proliferation-inducing ligand; 
BAFF: B-cell-activating factor of the TNF family; IL: interleukin. 
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Currently, there is scant research on the memory B cell response to PRRSV. Strong memory 
responses have been shown against nsp2, nsp7, N, and the 3′ end of GP5 [51,144]. The specific 
memory B cells are abundant in tonsil, lymph nodes draining the lungs and reproductive tract, and 
spleen. Unfortunately, there are many questions about the porcine memory response to PRRSV which 
have yet to be answered, including if memory cell kinetics closely mimic antibody kinetics, the 
response of PRRSV-specific memory pools upon homologous or heterologous viral challenge, and 
the importance of these cells in conferring protection against challenge. The development of sensitive 
and specific reagents, such as B cell tetramers, is a first step in being able to answer these critical 
questions. Additionally, it is possible that the key to understanding the broadly neutralizing response 
to PRRSV lies within circulating or lymphoid organ resident memory B cells. The potential to 
investigate these cells for identification of heavy and light chain antibody sequences is reviewed in 
Rahe and Murtaugh [133]. 

Plasma Cells 

Plasma cells are terminally differentiated B cells responsible for making antibodies. Apart from 
the immature plasmablast, two types of plasma cells have been defined in the mouse and human 
[145,146]. Short-lived plasma cells quickly boost antibody titers while long-lived plasma cells 
maintain circulating antibody titers in the face of continual antibody degradation. Mulupuri et al. 
identified PRRSV-specific plasma cells in several secondary lymphoid organs, such as the spleen, 
tonsil, sternal lymph node, and inguinal lymph node [51]. Interestingly, no PRRSV-specific or KLH-
specific plasma cells were found in the bone marrow of immune pigs [51]. This was surprising, as the 
bone marrow has been long considered as the reservoir for long-lived plasma cells in both mice and 
humans [147–149]. It then begs the question, do pigs have long-lived plasma cells and, if so, where 
do they reside? Mulupuri et al. found PRRSV and KLH specific plasma cells in secondary lymphoid 
organs 120 days after inoculation [51]. However, these cells may not be “long lived” as the prolonged 
viremia of PRRSV may result in a somewhat continuous stimulation of memory B cells resulting in 
the appearance of this plasma cell population in secondary lymphoid organs.  

It seems unlikely that pigs do not have long lived plasma cells, as the half-life of porcine 
antibodies in serum is, on average, approximately nine days [150,151]. Therefore, without long lived 
plasma cells, pigs would quickly lose humoral protection as antibody titers waned. The identification 
of the anatomic location as well as the understanding of mechanisms for inducing a strong long lived 
plasma cell response may be important for future vaccine design as well as comprehending host–
pathogen interactions.  

6. T Cell Response 

Interestingly, even though neutralizing antibodies have historically garnered the majority of 
attention in PRRSV immunology, it is well-known that pigs readily control infection in the absence 
of neutralizing antibodies. Furthermore, viremia is reported in the presence of neutralizing 
antibodies [152,153]. Therefore, there must be other facets of the immune system which effectively 
function to control infection and eliminate PRRSV from the host. While some of this activity may be 
attributed to non-neutralizing functions of antibodies, the T cell response to infection demands 
further investigation. A recent PRRS immunity review summarized previous research on functional 
T cell subsets, and PRRSV epitope targets, as well as gaps in T cell immunity [11]. Here, we provide 
context for the understanding of novel results that have not been comprehensively reviewed. 

Early research on the T cell response to PRRSV identified a large, transient decrease in the 
CD4+/CD8+ T cell ratio early, usually within the first week, in the course of infection [154]. The change 
in this ratio could have been due to a temporary loss of CD4+ cells through apoptosis or to an increase 
in CD8+ cells due to antigen-specific proliferation [154]. The importance of these findings for clearance 
of PRRSV or protection from infection were not known at the time, and other explanations, such as 
fluxes in cell populations between spleen, other lymphoid tissues, and blood could not be discounted.  

Experiments to address the helper T cell type 1/helper T cell type 2 (Th1/Th2) paradigm in the 
pig showed that PRRSV induced a strong Th1 response, as expected, identified in vivo by an 
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increased expression of Th1-specification factor Tbx21(T-bet) in CD4+ cells [155]. However, the 
finding is at odds with previously reports indicating that PRRSV infection results in the production 
of IL-10, a cytokine classically associated with a Th2 phenotype. Similarly, monocyte-derived 
dendritic cells (Mo-DCs) infected with PRRSV down regulate swine leukocyte antigen (SLA)-I, SLA-
II, CD40 and CD80 as well as promote IL-10 secretion over IL-12 secretion [156]. Delineation of the 
Th1/Th2 response to PRRSV, elucidation of Th1/Th2-specific cytokine markers in swine, as well as 
identifying associated cytokine responses of dendritic cells within secondary lymphoid organs where 
T cell proliferation and differentiation is most likely to occur, would help to resolve these outstanding 
questions [157].  

The Th17 cell has classically been identified, in mouse and human, as playing an important role 
in extracellular bacterial immunity through the production of the pro-inflammatory cytokines, IL-
17A, IL-17F, and IL-22 [158,159]. IL-17 producing Th17 cells are known to exist in the pig [160]. The 
importance of this T cell subset in the context of PRRSV infection has recently been investigated. A 
strain of Chinese highly pathogenic PRRSV (HP-PRRSV) appeared to suppress Th17 cells in the 
peripheral blood and lungs of pigs, resulting in an increased susceptibility to secondary bacterial 
infections [56]. Remarkably, the effect was PRRSV strain-specific, as a non-HP PRRSV strain failed to 
elicit the same response. Future research into the T cell response to PRRSV, especially with T cell 
tetramers and functional ELISPOTs, will be essential for the characterization of both CD4+ and CD8+ 

antigen specific T cells. Understanding how antigen-specific T cells interact with both infected and 
uninfected antigen presenting macrophages and dendritic cells will be helpful for advancing the field 
of PRRSV immunity. 

7. Natural Killer Cell Response 

The natural killer cell is an innate lymphoid cell which can have a profound impact on adaptive 
immunity, but is also able to induce an early and rapid innate response against pathogens through a 
variety of mechanisms. NK cells produce cytokines, such as IFNγ, show cytotoxic activity against 
infected cells not expressing MHCI, can induce dendritic cell maturation, and effect the destruction 
of infected cells in ADCC [161]. However, NK cells may deploy even more extensive and important 
functions in porcine immunity than are currently realized.  

An early clue that NK cells were involved in innate responses to PRRSV was a sharp peak in 
serum IFNγ shortly after infection [162]. The acute response was attributed to NK cells, as the result 
was deemed too early for a T cell response, and suggested that decreased viral burdens in the lung 
prior to humoral or T cell responses could be due to the function of NK cells. However, it is known 
that porcine macrophages are also capable of producing IFNγ in the presence of PRRSV infection 
[163,164]. Furthermore, PRRSV appears to suppress the NK cell response without significantly 
affecting NK cell numbers [165–168]. The cause of this suppression has yet to be determined, although 
viral proteins, rather than soluble factors from cells, may be responsible [59]. Potential roles of 
additional NK cell functions, such as ADCC, in PRRSV immunity are poorly understood [133].  

8. Conclusions 

PRRSV has tormented the health and wellbeing of swine worldwide since its discovery in the 
late 1980s. Unfortunately, after almost 30 years of research into the porcine immune response to 
PRRSV, there is still no effective means for inducing a broadly protective immune response at the 
herd level. The reasons for this failure are not completely known, but presumably include 
mechanisms by which the virus subverts the immune system. The ability of the virus to rapidly 
mutate while not losing fitness challenges the host immune system to keep pace. At the same time, 
infection of macrophages, a key player in immunoregulation, challenges both innate and adaptive 
immune cell mobilization as well as induction of a coordinated response that is needed for effective 
control and elimination of the virus.  

Fortunately, foundational advances in the understanding of viral pathogenesis and immunity 
are enabling more informative investigations. The identification of CD163 as the necessary and 
sufficient receptor for infection supports the implications of broadly neutralizing antibodies that a 
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conserved target is present on all PRRSV. Understanding how PRRSV surface glycoproteins interact 
with CD163 should lead to the identification of conserved epitopes which are necessary for infection. 
If, as appears to be the case, there is only one conserved way into the cell, then there must be a 
conserved viral sequence, or structure, which enables viral entry. Furthermore, the knowledge that 
pigs eventually develop sterilizing immunity, if given enough time, supports the concept that 
conserved epitopes exist on the virus. Therefore, the study of mature animals, which have cleared the 
virus, may provide the key to understanding how the immune system eventually gets the upper hand 
on the virus and cures infection.  

Even with seminal advances in several aspects of the study of PRRSV, there remains much to be 
understood and clarified. Currently, the published literature presents conflicting views on many 
aspects of PRRSV adaptive immunity, especially related to T and B cell responses and the production, 
or inhibition, of cytokines in the face of infection. The continued development of antigen-specific 
reagents, of high sensitivity and specificity, is needed for understanding how the host responds to 
PRRSV infection. Furthermore, it is important that future PRRSV studies focus on the relevant host 
animal, the conventional pig. While the study of this outbred animal species is perhaps challenging 
at times, it affords the ability to study the host–pathogen interaction in the only species in which the 
virus naturally interacts. Additionally, knowledge gained about the immunology of conventional 
pigs will accelerate immunological elucidation of other pig–pathogen interactions. 

In conclusion, PRRSV continues to be the most burdensome pathogen of pigs worldwide, due 
to its propensity for immune evasion and manipulation. However, the continued study of the porcine 
immune response to infection, with improved reagents and methods, will illuminate those aspects of 
the host–pathogen interaction that are now hidden. It is through these discoveries that the complex 
question that is PRRSV will finally be answered. 
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