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Abstract: Transdermal drug administration presents several advantages and it is therefore favorable
as an alternative drug delivery route. However, transdermal delivery of biopharmaceutical drugs is
made difficult by the skin barrier. Microneedle application and iontophoresis are strategies which
can be used to overcome this barrier. Therefore, recombinant human growth hormone (rhGH)
was used as a model macromolecular drug and was transdermally delivered using microneedle
application and iontophoresis. Methylene blue staining, stereomicroscopy and scanning electron
microscope (SEM) imaging were used to characterize the microchannels produced. To optimize the
iontophoresis protocol, the effects of molecular charge and current density on transdermal delivery
were evaluated in an in vitro permeation study using excised rat skin tissues. Using the optimized
iontophoresis protocol, the combination effects of iontophoretic delivery via microchannels were
evaluated in three different experimental designs. The flux obtained with anodal iontophoresis
in citrate buffer was approximately 10-fold higher that that with cathodal iontophoresis in
phosphate buffered saline (PBS). Flux also increased with current density in anodal iontophoresis.
The combination of iontophoresis and microneedle application produced higher flux than single
application. These results suggest that anodal iontophoresis with higher current density enhances
the permeation of macromolecules through microchannels created by microneedles. In conclusion,
the combination of iontophoresis and microneedles is a potential strategy for the enhancement of
transdermal delivery of macromolecular drugs.
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1. Introduction

Administration of biopharmaceutical drugs such as proteins and peptides has been limited to
invasive routes (e.g., intramuscular and subcutaneous injection), because of their poor absorption and
enzymatic degradation. However, administration via invasive routes presents several disadvantages.
First, the use of syringe needles causes pain and holds risk of infection such as needlestick
injuries. Second, administration via invasive route is not suitable for patients with needle phobia.
Third, invasive route administration induces financial and temporal costs, as patients generally need to
visit a clinic for administration of medication. Even if self-administration is possible, patients should
visit the clinic to learn the correct dosage regimen. As a result, these disadvantages can cause low
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patient compliance. Therefore, several studies investigating alternative routes of administration for
macromolecules have been conducted to overcome these problems [1].

A potential alternative administration route that could solve this problem is the transdermal route.
The skin has a relatively large surface area (1–2 m2), which is advantageous for drug administration.
Transdermally administered drugs can avoid pre-systemic metabolism (e.g., degradation in the
gastrointestinal tract and first-pass effect in the liver). It is also possible for patients to discontinue
administration if desired, by removing the patch for example. However, the largest barrier for
transdermal delivery of macromolecules is the stratum corneum, which is the outermost part of the
skin. Because of the stratum corneum, only low-molecular weight drugs with moderate lipophilicity
are transferred systemically via passive diffusion. For transdermal delivery of macromolecules,
permeation enhancers are needed to overcome this barrier [2,3].

Iontophoresis, a second-generation transdermal delivery system, is a physical permeation-
enhancing method, which uses an electrical driving force to enhance drug permeability of the
biomembrane [2]. Iontophoretic delivery is based on the phenomenon of repulsion of same charges
and attraction of opposite charges. The permeation-enhancing mechanisms of iontophoresis are
electrorepulsion and electroosmosis [4]. The ability of low-molecular weight drugs to permeate through
membranes is mainly governed by electrorepulsion. On the other hand, as the molecular weight of
a drug increases, this ability is more affected by electroosmosis [5]. Iontophoresis is also known as
a permeation enhancer capable of increasing peptide permeability in a non-invasive and controlled
manner [6].

However, iontophoresis has limitations in that its permeation-enhancing effects are proportional
to skin damage [2]. In addition, only molecules with a limited molecular weight can permeate via
iontophoresis [7]. Therefore, the application of iontophoresis alone has its limitations, considering the
difficult transdermal delivery of macromolecules.

A microneedle is a micron-sized needle that disrupts the stratum corneum and produces
microchannels, allowing macromolecules and hydrophilic drugs to permeate through the skin [8].
Microneedle application is minimally invasive because of the needle’s size. It therefore affects only
the stratum corneum, epidermis and superficial dermis when applied to the skin, does not affect
nerve-endings in the dermis and enhances permeation of drugs without pain [2]. The permeation of
drugs through microchannels is not limited by molecular weight, as the microchannels are micron-sized
and the macromolecules are nanosized [7]. Microneedle application therefore allows not only small
molecules but also macromolecules such as proteins and nanoparticles to permeate through the
skin [9,10].

The Tappy Tok Tok® microneedle (Figure 1) is designed to enhance transdermal drug delivery
using a novel approach. The diameter of the microneedles used (150 µm) is similar to the thickness of
a hair to minimize pain. The microneedle was designed to enhance drug delivery by its unique surface
structure. The screw-shaped groove on the surface of the microneedle allows drug injection through
the groove whilst applying the microneedle to the skin [11].
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Because one of the limitations of iontophoresis is that it does not change the skin barrier
substantially, it is used for transdermal delivery of macromolecules together with third-generation
transdermal delivery systems such as microneedles, ultrasound and chemical enhancers that can
disrupt the skin barrier [2,9,12–15]. Considering that microneedle treatment is an effective way to
overcome the limitations of iontophoresis, the combination of two enhancers is a potential strategy for
transdermal delivery of macromolecules. The possibility of transdermal delivery of macromolecules
such as proteins using a combination of iontophoretic delivery through microchannels has been studied
previously [9,13,15].

In this study, recombinant human growth hormone (rhGH) was used as a large-molecular weight
model drug. Since rhGH has a large molecular weight of approximately 22 kDa, it is difficult to
deliver it without the use of permeation enhancers. To investigate the possibility of transdermal
delivery of macromolecules, the permeation-enhancing effect of iontophoretic delivery through
microchannels made with a novel microneedle device (Tappy Tok Tok®) on transdermal delivery
of rhGH was evaluated.

2. Materials and Methods

2.1. Materials

Microneedle devices (Tappy Tok Tok ®) were developed and supplied by U-biomed, Inc.
(Daegu, Korea). rhGH was obtained from Dong-A ST, Inc. (Yong-in, Korea). Silver wire was purchased
from Sigma-Aldrich (St. Louis, MO, USA). rhGH enzyme-linked immunosorbent assay (ELISA) kits
were purchased from R&D systems, Inc. (Minneapolis, MN, USA). All other chemicals and solvents
were of reagent grade.

2.2. Microneedle Device (Tappy Tok Tok®)

The microneedle device consists of a head part comprising 20 microneedles on its surface and
a bottle part that can hold drug solution. On the surface of the head, there is an On/Off valve and
20 microneedles arranged in a circle. The microneedles are made of stainless steel (SUS304) and gold
(99.9%). Gold is coated on stainless steel microneedles to reduce metal allergic reactions in the skin.
The On/Off valve controls drug elution when the microneedle device is applied to the skin after
assembly of the head and bottom parts.

2.3. Skin Preparation

Rat skin tissues from male Sprague-Dawley rats (8 weeks old) were used for all permeation studies.
The rats were anesthetized via intraperitoneal injection of urethane. The hair from the dorsal skin was
removed using an electric clipper and then a depilatory was applied to remove any remaining hair.
After detachment of the dorsal skin tissue, the underlying subcutaneous fat was carefully removed
using forceps. The rat skin tissues were stored at −20 ◦C until further use. All experiments were
performed according to guidelines approved by the Institutional Animal Care and Use committee of
Keimyung University (KM 2018-002).

2.4. Characterization of Microneedles

To characterize microneedles and microchannels, stereomicroscopy and scanning electron
microscope (SEM) imaging were performed. Rat skin tissues were placed on polystyrene plates
and fixed with syringe needles, before microneedle application. The tissues were stained with 1%
(w/v) methylene blue solution for visualization of the microchannels. After 1 min, excess methylene
blue solution was removed using KimwipesTM and alcohol swabs and stereomicroscopy imaging was
performed (SMZ-U, Nikon Corporation, Tokyo, Japan). The microchannels were observed via SEM
(Hitachi S-4200, Hitachi, Ltd., Tokyo, Japan).
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2.5. Skin Histology

A small area was cut from the rat skin tissue before microneedle application. The small area of
tissue was fixed with optical cutting temperature (OCT) compound (Sakura Finetek, Tokyo, Japan)
and frozen in liquid nitrogen. The block was cut into 8-µm-thick sections using cryostat (Cryotome FE,
Thermo Fisher Scientific, Waltham, MA, USA) and mounted onto glass slides. Hematoxylin and eosin
(H&E) staining was applied and cover slips were placed on the glass slides. Microscope imaging (Leica
DM IL LED, Leica, Wetzlar, Germany) was then performed to visualize the creation of microchannels
by application of the microneedle device.

2.6. Iontophoresis Protocol

For all iontophoresis experiments, the Ag/AgCl electrode was prepared using Jacobson’s
method [16]. Briefly, Ag wire or a planar Ag electrode was soaked in distilled water, ethanol and
fuming nitric acid 3 times for 3 s each. Next, the wire or planar electrode and another Ag wire (cathode)
were dipped into 0.1 N HCl and a current of 1.0 mA was applied for 12 h to coat the AgCl.

Current was applied using a direct current (DC) power supply (UP-100DT, Unicorn, Gunpo,
Korea) and measured using a digital multimeter (M-3610D, METEX, Seoul, Korea). The anode and
cathode were placed in a donor chamber and sampling port according to the direction of iontophoresis.

2.7. In Vitro rhGH Permeation Study

As shown in Figure 2, an in vitro permeation study was performed on rat skin using a vertical
static Franz diffusion cell with an effective area of 1.77 cm2. The receptor chamber was filled with PBS
(pH 7.4) and the receptor medium was stirred constantly using a TeflonTM-coated magnetic stirrer
at 600 rpm. For the microneedle treatment group, rat skins placed on a polystyrene plate and fixed
with syringe needles were treated using the microneedle device for 1 min at a rate of two punctures
per second with constant force. Next, treated skins were mounted on the receptor chamber with
the epidermal surface facing the donor chamber. For the non-microneedle-treated group, intact skin
was mounted. A 1-mL sample of rhGH solution was loaded into the donor chamber. During the
permeation study, the Franz diffusion cell was maintained at 37 ◦C. Samples (0.5 mL) were taken from
the donor chamber at pre-determined time points over 8 h and immediately replenished with an equal
volume of PBS. Each experiment was performed in triplicate.
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permeation study.

2.7.1. Optimization of the Iontophoresis Protocol in rhGH Permeation

To evaluate the effect of molecular charge on rhGH, a permeation study investigating
iontophoresis and microneedle treatment was conducted using two different buffers (PBS, pH 7.4
and citrate buffer, pH 4.0) to prepare a liquid rhGH formulation (isoelectric point = 5.27) with two
different charges. Buffer exchange was performed using a centrifugal filter device (Amicon Ultra
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0.5 mL, Millipore, Burlington, MA, USA) with a 3000-Da molecular weight cut-off. Because rhGH is
negatively charged at pH 7.4 and positively charged at pH 4.0, formulations were delivered under
cathodal and anodal iontophoresis, respectively. A constant current of 0.5 mA/cm2 was applied for
4 h through an Ag/AgCl electrode to both groups.

Furthermore, to evaluate the effect of current density on rhGH permeation, the permeation
study on anodal iontophoresis and microneedle treatment was conducted using three different
current densities. Current densities of 0.125, 0.25, or 0.5 mA/cm2 were applied for 4 h through
Ag/AgCl electrodes.

2.7.2. Combination Effects of Microneedle and Iontophoresis on rhGH Permeation

The combination permeation-enhancing effects of the optimized iontophoresis protocol with
microneedle treatment were evaluated. Permeation studies were performed to evaluate the
combination effects of iontophoretic delivery through microchannels under three different settings:
(a) optimized iontophoresis alone (anodal iontophoresis with current density of 0.5 mA/cm2 for 4 h),
(b) microneedle pre-treatment (1 min of application at a rate of two punctures per second with constant
force) and (c) microneedle pre-treatment with optimized iontophoresis.

2.8. Analysis of rhGH

The amount of rhGH that had permeated was analyzed using a commercially available ELISA
rhGH kit (DuoSet®, R&D system, Minneapolis, MN, USA). The standard curve ranged from 31.25 to
2000 pg/mL.

3. Results

3.1. Characterization of Microneedle

The microneedle device used in this study (Tappy Tok-Tok®) is made of stainless steel (SUS304).
As shown in Figure 3, the device has 20 microneedles on its surface and each microneedle is
750 µm long and has a diameter of 130 µm. SEM imaging and methylene blue staining after
microneedle treatment were conducted to characterize microchannels created by these microneedles.
A picture of rat skin tissue stained with methylene blue after microneedle pre-treatment is shown
in Figure 4a. Microneedles successfully generated microchannels in the rat skin tissue according to
their arrangement. An SEM image of microchannels in rat skin tissue after microneedle treatment is
shown in Figure 4b. A single microchannel has an area of approximately 0.016 mm2. Therefore, a single
application of the microneedle device containing 20 needles disrupts a total of 0.32 mm2 of skin surface.
In this permeation study, an area of 38.4 mm2 rat skin tissue was disrupted by applying Tappy Tok
Tok® for 1 min at a rate of two punctures per second. The effective diffusion area of the Franz diffusion
cell used in the permeation study was 1.77 cm2. Therefore, Tappy Tok Tok® theoretically disrupted
approximately 21.7% of the effective diffusion area of rat skin tissue in this permeation study.
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3.2. Skin Histology

As the application of microneedles causes structural changes in skin tissue, a histological study
was conducted to confirm this effect. A histological representation of rat skin tissue after the application
of the microneedle is shown in Figure 5. Microneedles penetrated the stratum corneum, epidermis
and superficial dermis of rat skin tissue and produced microchannels. These microchannels allow
macromolecules to be delivered through the skin by disrupting the stratum corneum. In addition,
as the microneedle affects skin layers up to the superficial dermis only, it can enhance transdermal
drug delivery without pain.
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3.3. In Vitro rhGH Permeation Study

rhGH is a peptide hormone that is used in children and adults to treat growth hormone deficiency
and growth disorders. rhGH is a single chain polypeptide comprising 191 amino acids and is difficult
to deliver transdermally without the use of permeation enhancers because of its large molecular weight
and hydrophilic nature [17].

The molecular limit of iontophoretic delivery through intact skin is approximately 13 kDa [7].
Because the molecular weight of rhGH is over this range (approximately 22 kDa), iontophoresis
protocol optimization was conducted for use with microneedle pre-treatment. The steady-state rhGH
flux was calculated from the slope of the linear portion of cumulative rhGH amount permeated over
time [18].

3.3.1. Optimization of the Iontophoresis Protocol in rhGH Permeation

We investigated the iontophoretic delivery of rhGH through microchannels using two different
molecular charges. rhGH is negatively charged above its isoelectric point and positively charged
below it. Thus, negatively charged rhGH in PBS buffer (pH 7.4) was delivered under cathodal
iontophoresis and positively charged rhGH in citrate buffer (pH 4.0) was delivered under anodal
iontophoresis. The cumulative amount of rhGH permeated through the rat skin tissue by combination
of cathodal or anodal iontophoresis with microneedle treatment is shown in Figure 6a. The
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cathodal iontophoresis and anodal iontophoresis groups showed a cumulative amount permeated
of 2.91 ± 1.77 and 12.70 ± 6.12 ng/cm2, respectively. The cumulative amount permeated in the
anodal iontophoresis group was approximately 4.4-fold higher than that in the cathodal iontophoresis
group. The cumulative amount permeated reached a plateau within 1 h. As shown in Figure 7,
the steady-state flux was 1.18 ± 0.53 and 11.75 ± 5.53 ng·cm−2·h−1 under cathodal and anodal
iontophoresis, respectively, with the same current density. The steady-state flux was approximately
10 times higher in anodal iontophoresis.

Pharmaceutics 2018, 10, x FOR PEER REVIEW  7 of 11 

 

The cathodal iontophoresis and anodal iontophoresis groups showed a cumulative amount 
permeated of 2.91 ± 1.77 and 12.70 ± 6.12 ng/cm2, respectively. The cumulative amount permeated in 
the anodal iontophoresis group was approximately 4.4-fold higher than that in the cathodal 
iontophoresis group. The cumulative amount permeated reached a plateau within 1 h. As shown in 
Figure 7, the steady-state flux was 1.18 ± 0.53 and 11.75 ± 5.53 ng∙cm−2∙h−1 under cathodal and anodal 
iontophoresis, respectively, with the same current density. The steady-state flux was approximately 
10 times higher in anodal iontophoresis. 

 
Figure 6. Cumulative amount of rhGH delivered through rat skin tissue after microneedle pre-
treatment and iontophoresis with (a) two different molecular charges and (b) three different current 
densities. 

 
Figure 7. Steady-state flux of rhGH delivered through rat skin tissue after microneedle pre-treatment 
and iontophoresis with various protocols (* or ** indicates statistically significant difference (t-test; p 
< 0.05 or p < 0.01, respectively) compared with M + CI). 

Furthermore, three different current densities (0.125, 0.25 and 0.5 mA/cm2) were applied to 
identify the correlation between current density and cumulative rhGH amount permeated. As shown 
in Figure 6b, the cumulative amounts permeated were 10.76 ± 0.9, 13.94 ± 4.5 and 12.70 ± 6.12 ng/cm2 
at a current density of 0.125, 0.25 and 0.5 mA/cm2, respectively. There was no significant difference 
in cumulative amount of rhGH permeated with different current densities. However, steady-state 

Figure 6. Cumulative amount of rhGH delivered through rat skin tissue after microneedle pre-treatment
and iontophoresis with (a) two different molecular charges and (b) three different current densities.

Pharmaceutics 2018, 10, x FOR PEER REVIEW  7 of 11 

 

The cathodal iontophoresis and anodal iontophoresis groups showed a cumulative amount 
permeated of 2.91 ± 1.77 and 12.70 ± 6.12 ng/cm2, respectively. The cumulative amount permeated in 
the anodal iontophoresis group was approximately 4.4-fold higher than that in the cathodal 
iontophoresis group. The cumulative amount permeated reached a plateau within 1 h. As shown in 
Figure 7, the steady-state flux was 1.18 ± 0.53 and 11.75 ± 5.53 ng∙cm−2∙h−1 under cathodal and anodal 
iontophoresis, respectively, with the same current density. The steady-state flux was approximately 
10 times higher in anodal iontophoresis. 

 
Figure 6. Cumulative amount of rhGH delivered through rat skin tissue after microneedle pre-
treatment and iontophoresis with (a) two different molecular charges and (b) three different current 
densities. 

 
Figure 7. Steady-state flux of rhGH delivered through rat skin tissue after microneedle pre-treatment 
and iontophoresis with various protocols (* or ** indicates statistically significant difference (t-test; p 
< 0.05 or p < 0.01, respectively) compared with M + CI). 

Furthermore, three different current densities (0.125, 0.25 and 0.5 mA/cm2) were applied to 
identify the correlation between current density and cumulative rhGH amount permeated. As shown 
in Figure 6b, the cumulative amounts permeated were 10.76 ± 0.9, 13.94 ± 4.5 and 12.70 ± 6.12 ng/cm2 
at a current density of 0.125, 0.25 and 0.5 mA/cm2, respectively. There was no significant difference 
in cumulative amount of rhGH permeated with different current densities. However, steady-state 

Figure 7. Steady-state flux of rhGH delivered through rat skin tissue after microneedle pre-treatment
and iontophoresis with various protocols (* or ** indicates statistically significant difference (t-test;
p < 0.05 or p < 0.01, respectively) compared with M + CI).

Furthermore, three different current densities (0.125, 0.25 and 0.5 mA/cm2) were applied to
identify the correlation between current density and cumulative rhGH amount permeated. As shown
in Figure 6b, the cumulative amounts permeated were 10.76 ± 0.9, 13.94 ± 4.5 and 12.70 ± 6.12 ng/cm2

at a current density of 0.125, 0.25 and 0.5 mA/cm2, respectively. There was no significant difference
in cumulative amount of rhGH permeated with different current densities. However, steady-state
fluxes at the initial permeation time of 1 h were significantly different. Steady-state flux was
5.07 ± 4.61, 10.57 ± 3.89 and 11.75 ± 5.53 ng·cm−2·h−1 at a current density of 0.125, 0.25 and
0.5 mA/cm2, respectively.
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3.3.2. Combination Effect of Microneedle Application and Iontophoresis on rhGH Permeation

The combination effect of microneedle treatment and iontophoresis was studied under three
different conditions. The cumulative permeated amounts were 1.89 ± 1.25, 6.63 ± 4.69 and
12.70 ± 6.12 ng/cm2, after iontophoresis only, microneedle pre-treatment only and microneedle
pre-treatment with iontophoresis, respectively. The group receiving microneedle pre-treatment
with optimized iontophoresis resulted in 1.92- and 6.73-fold higher cumulative amount permeated
than the group receiving iontophoresis alone and microneedle pre-treatment alone, respectively.
The combination of microneedle and iontophoresis resulted in a much greater permeation-enhancing
effect than when each was applied separately. The synergetic effect of microneedle application
and iontophoresis on permeation was also clearly observed in steady-state flux. The application
of iontophoresis and microneedle, respectively, resulted in steady-state flux of 1.86 ± 1.30
and 2.02 ± 0.50 ng·cm−2·h−1, respectively and when used together, steady-state flux of
11.75 ± 0.50 ng·cm−2·h−1 was observed. The combination group resulted in 6.33- and 5.82-fold higher
steady-state flux than iontophoresis alone and microneedle pre-treatment alone, respectively. The
synergetic effect of increasing steady-state flux of rhGH with microneedle application and iontophoresis
is shown in Figure 8.
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4. Discussion

The transdermal route presents several advantages as an alternative route of administration:
(1) skin is easily accessible because it is the outermost layer of the body and (2) it has a relatively large
surface area (1–2 m2). However, because the skin basically acts as a barrier for molecular transport,
only drugs which possess certain physico-chemical properties can penetrate without the help of
penetration enhancers [19]. Microneedles allow for the transdermal delivery of macromolecules by
painlessly creating microchannels in the stratum corneum, which is the main barrier of the skin [2].
Iontophoresis enhances delivery of peptides in a non-invasive and controlled manner [6]. In this
study, we evaluated the possibility of transdermal administration of biopharmaceutical drugs using
microneedle application and iontophoresis as penetration enhancers.

Through the characterization of microneedles, the micron-sized needle and the specific structure
of the surface were observed. Methylene blue was not observed in the intact skin but it diffused into
the skin through the microchannels produced by microneedle pre-treatment. SEM imaging revealed
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that the area of each microchannel was approximately 0.016 mm2. As shown in Figure 5, microneedles
penetrated the stratum corneum and punctured the superficial dermis.

An in vitro rhGH permeation study using excised rat skin tissue was performed to optimize
the iontophoresis protocol. The flux of iontophoretic delivery is theoretically calculated as the sum
of passive delivery, electrorepulsion and electroosmosis [13]. The balance between electrorepulsion
and electroosmosis is affected by the molecular size of the drug molecules. Iontophoretic transport
of small molecules is mainly enhanced by electrorepulsion. In the case of electrorepulsion, relative
flux decreases as molecular size increases, while electroosmosis maintains constant relative flux
regardless of molecular size [20]. Therefore, the flux of electroosmosis becomes larger than that of
electrorepulsion if the drug is larger than a certain size [5]. Because of its large size, electroosmosis
is the main mechanism of iontophoretic delivery for rhGH. The electrorepulsive flow of negatively
charged rhGH in cathodal iontophoresis competes with electroosmotic flow from anode to cathode [21].
The positively charged rhGH in anodal iontophoresis produced relatively high flux via the combination
of electrorepulsive and electroosmotic flow. The skin is negatively charged, which is favorable for the
permeation of cations [22]. As a result, positively charged rhGH with anodal iontophoresis resulted
in cumulative amounts approximately 4-fold higher and steady-state flux 10-fold higher than that
achieved with cathodal iontophoresis.

Application of constant current in iontophoresis results in time-dependent changes in the skin.
Iontophoresis reduces the resistance of skin through reversible pore formation and enhances drug
permeation. This change in skin occurs at a relatively low voltage (approximately 1 V) and within a
short time (approximately 10 min after application of constant current). Furthermore, after the removal
of current, the skin returns to its original state, although this is not completely reversible [23,24].
Application of constant current for a long time can induce electrochemical polarization of the skin,
which increases its resistance and reduces the permeation-enhancing effect. Since iontophoresis was
carried out for a relatively long time in this study using a high voltage, the cumulative permeation
amount plateaued rapidly after 1 h.

As shown in Figure 7, the steady-state flux of rhGH increased with the current density.
The approximate linear correlation between current density and steady-state flux is advantageous
in that the amount of drug delivered can be controlled. The dose requirement of rhGH depends
on the patient’s response to the hormone and the weight of the individual [25]. In addition,
an iontophoretic protocol can be programmed with an electronic controller to allow the drug to
be delivered according to normal physiological secretion patterns or to deliver drugs during sleep [6].
Therefore, personalized transdermal delivery of biopharmaceutical drugs will be made possible by
controlling the iontophoresis protocol.

Microneedles painlessly pierce the main barrier of the skin, creating microchannels that increase
skin permeability of small molecules and macromolecules. Iontophoresis promotes drug delivery
through electrical driving forces [2]. However, only small-area microchannels are produced by
microneedles, so other enhancers are needed to increase skin permeability. Because a limitation
of iontophoresis is that it cannot disrupt the main barrier of the skin, a high permeation-enhancing
effect is needed and achieved through combination with microneedle pre-treatment. The combination
of microneedle pre-treatment and iontophoresis resulted in steady-state flux approximately 6-fold
greater than that achieved in single application groups, showing synergetic effects on the permeation
of rhGH into excised rat skin tissues (Figure 9).
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5. Conclusions

In this study, we evaluated the effect of iontophoresis on the transdermal delivery of rhGH,
a macromolecular model drug and the combined effect of new types of microneedles. During the
iontophoresis optimization process, anodal iontophoresis with higher current density produced a
greater permeation-enhancing effect. Furthermore, the combination of microneedle pre-treatment
and iontophoresis showed synergetic effects. In conclusion, the combination of iontophoresis and
microneedle treatment is a potential strategy for the enhancement of transdermal delivery of
biopharmaceutical drugs.
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