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Abstract: Silicon nanotubes (SiNTs) with unique well-defined structural morphologies have been
successfully fabricated and recognized as a novel architecture in the nanoscale Si family. While the
typical dendritic microstructure of mesoporous silicon prepared anodically has been exploited
previously for therapeutics and biosensing, our status of utilizing SiNTs in this regard is still in
its infancy. In this review, we focus on the fundamental properties of such nanotubes relevant to
therapeutic applications, beginning with a description of our ability to sensitively tune the structure
of a given SiNT through synthetic control and the associated detailed in vitro dissolution behavior
(reflecting biodegradability). Emphasis is also placed here on the range of functional moieties
available to attach to the surface of SiNTs through a summary of current studies involving surface
functionalization and strategies that facilitate conjugation with molecules of interest for multiple
purposes, including cell labeling, nucleotide attachment, and scaffolding of therapeutic metallic
nanoparticles. Experiments addressing our ability to load the interior of a given nanotube with species
capable of providing magnetic field-assisted drug delivery are also briefly described. Given the range
of diverse properties demonstrated to date, we believe the future to be quite promising for employing
SiNTs as therapeutic platforms.

Keywords: silicon nanotubes; surface chemistry; drug delivery

1. Introduction

For some time, porous silicon (pSi) has attracted great attention in applications relevant to diagnosis
and therapy, owing in part to its biocompatibility and biodegradability in aqueous physiologically-
relevant environments [1–4]. Such a response in vitro/in vivo of pSi is sensitively dictated by porous
morphology, associated Si domain dimension and surface chemistry [4,5]. While demonstrating utility
in applications as diverse as bioimaging [6], drug delivery [7], and nucleotide sensing [8], pSi in a
mesoporous form also exhibits some detrimental properties, namely intricate dendritric morphologies,
and requires corrosive reagents in its preparation and expensive starting material (wafer grade Si).
Among alternative nanostructured forms that minimize such undesirable properties, one-dimensional
nanotube constructs with unique well-defined hollow interior spaces and curved side walls have captured
significant interest in the investigation of new properties and potential merit in diverse fields [9,10].
To successfully prepare such a morphology, a ZnO sacrificial template method was successfully developed,
which yields a broad library of silicon nanotubes (SiNTs) with controllable structural parameters (inner
diameter, shell thickness, length and surface morphology) [11]; under selected fabrication conditions,
porous sidewalls can also be incorporated as a part of the nanostructure morphology (pSiNTs).

While SiNTs have been actively evaluated in several applications, including Li ion batteries [12]
and photovoltaics [13,14], this review focuses on biomaterial aspects of SiNTs. To be qualified as a
relevant candidate in biomedical applications (e.g., drug delivery and biosensing), an understanding
of stability and degradation rate of a selected matrix is required [15]. In this discussion, dissolution
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behavior of a large family of SiNTs at physiological temperature is emphasized, thereby elucidating
biodegradability properties of a given nanotube type. In terms of therapeutic platforms, there are
ample opportunities to exploit this tubular nanostructure for multiple purposes. While the inner
void spaces of SiNTs are favorable for housing therapeutic species, the tunable surface chemistry of
SiNTs is exploited to facilitate coupling reactions with various targeting molecules or therapeutic
moieties [10]. Specifically, owing to high surface area and synthetic route, SiNTs present an oxide-rich
interface; therefore, such a native oxide of SiNTs allows facile surface functionalization via formation
of a stable siloxane Si-O-Si bond with a molecule containing silanol groups [16]. A well-established
approach to extend functionality of the material is to use a linker with a free moiety on the distal end
that can interact with molecules in the surroundings [17]. To probe the utility of SiNTs as a possible
therapeutic matrix, our group has explored multiple strategies using aminosilane species, particularly
3-aminopropyltriethoxysilane (APTES), to allow conjugation to several molecules of interest, thereby:
(1) Altering dispersion properties of SiNTs in aqueous environments; (2) enabling fluorescent labeling
for detecting the nanotube in biological environments; and (3) facilitating complex formation with
polynucleotides (e.g., plasmid DNA or siRNA) for potential gene therapy.

Thus, in this article we focus on several fundamental aspects of SiNTs relative to their possible
utility as a therapeutic platform: (1) Convenient synthetic protocols; (2) temporal degradation in
biologically-relevant media; and (3) surface modification strategies. As we will see shortly, the latter
category has implications not only with regard to imaging and delivery, but also in our ability to
create more sophisticated metal-semiconductor nanostructures, also of therapeutic value. Finally,
we also demonstrate proof of concept in loading the large interior of the nanotube, utilizing
superparamagnetic nanoparticles.

2. Fabrication of Silicon Nanotubes

Silicon nanotubes with a well-defined structure are readily fabricated via a sacrificial ZnO
nanowires (NWs) template method (Figure 1) [11]. In this approach, ZnO NWs are grown on a
substrate (e.g., Si wafer or fluorine-doped tin oxide (FTO) glass) pre-deposited with ZnO nanocrystals
and are subsequently coated with a Si layer by performing chemical vapor deposition (CVD), in which
silane (SiH4) diluted in He gas (0.5%) serves as a precursor. Hollow SiNTs are achieved via a gas-phase
etching process, which involves decomposition of NH4Cl into NH3 and HCl at 450 oC in He to remove
the ZnO NW core. By controlling ZnO growth conditions (i.e., concentrations of ZnO precursors
(Zn(NO3)2 and hexamethylenetetramine (HMTA) and growth time), the subsequent average inner
diameter and length of SiNTs can be manipulated from 30 to 200 nm and 500 nm to 10 µm, respectively
(Figure 2). Interestingly, via control of the CVD process, not only can the thickness of the Si shell can be
sensitively adjusted (10–100 nm thickness), but a distinct surface morphology of SiNTs is also achieved.
Specifically, when the Si sidewall thickness is limited to 10–12 nm, a unique porous morphology is
obtained as a result of Si island formation via an Ostwald coalescence process. The porosity of such
walls can be readily demonstrated in a simple chemical diffusion experiment involving infiltration
of small luminescent molecules (e.g., the luminescent dye tris(bipyridyl) ruthenium(II), Ru(bpy)3

2+)
(Figure 2g) [11]. As the shell grows thicker, porous features disappear and the outer surface becomes
smoother (Figure 2h). An additional annealing step at 600 °C in He can be performed to enhance the
crystallinity of SiNTs.
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3. Dissolution Properties of Silicon Nanotubes

Biological applications of SiNTs require careful evaluation of the biodegradation behavior of the
materials in a simulated physiological environment. Based on a molybdate-based spectrophotometric
method, dissolution kinetics of a variety of SiNTs have been examined [11,18,19]. In phosphate-buffered
saline (PBS) at physiological temperature (37 °C), dissolution kinetics of SiNTs is strongly dependent
on shell thickness and crystallinity [11,19]. Presumably due to high surface area, SiNTs with thinner
walls expose more reactive surface species, thereby dissolving faster than relatively thicker ones.
For unannealed SiNTs, while some variation in sample-dependent dissolution kinetics exist for the
10 nm wall porous SiNTs (70–100% dissolution after 2 days), resorption of SiNTs with a thicker wall is
significantly slower (38 nm: ~15%; 80 nm: ~5%) (Figure 3a) [11,19]. Interestingly, dissolution behavior
of porous SiNTs is similar to bioactive anodized mesoporous Si, where the degradation occurs in the
form of soluble Si(OH)4 (and is eliminated from the body via the kidneys in a non-toxic manner),
thereby implying favorable biodegradability of this type of SiNT [1]. In contrast, within the same time
frame, dissolution of the annealed SiNTs drops to less than 5% for all shell thickness; nevertheless,
dissolution kinetics still follows the same trend observed in unannealed samples with thin, porous
SiNTs resorbing faster than the 38 nm wall, followed by 80 nm walled SiNTs (Figure 3b).

Since dissolution behavior of SiNTs depends on the media utilized in a given experiment [11],
in another experiment the complete cell culture medium was chosen since it more closely mimics
biological conditions [18]. In addition, to examine the impact of the degraded byproducts of SiNTs to
cell viability, human embryonic kidney (HEK) 293 cells grown in the culture medium were exposed
to SiNTs. Surprisingly, while a significant amount of SiNTs with a ~50 nm wall remained visible
after a 2-day incubation in PBS, SiNTs resorbed significantly faster in the complete medium (no cells),
since almost all the nanotubes dissolved within the same time interval [18]. However, due to the
complex nature of the growth medium, it is still unclear which compositions facilitate rapid dissolution
of SiNTs. When SiNTs were incubated with HEK 293 cells, not only the dissolution of SiNTs was
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relatively fast, as indicated above, noticeably, cells were still healthy and proliferated normally, hence
confirming biocompatibility of this material [18].Pharmaceutics 2019, 11, x 4 of 12 
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During the course of dissolution studies using the cell culture medium, morphological changes of
SiNTs in the presence of cells were also monitored. Optical imaging showed that the color of SiNT
arrays transformed from opaque black (in the initial 50 nm wall thickness) to transparent brown as the
Si shell gradually became thinner, reaching a value of 12.63 ± 2.83 nm after 3 days, thereby suggesting
approximately 75% of SiNTs dissolved (Figure 4). However, since multiple components of the complete
medium interfere with the molybdate assay, specific quantification of the dissolution rate of SiNTs in
the growth medium cannot be determined via this route.
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4. Nanotube Surface Modification Strategies Relevant to Therapeutic Applications

The versatile surface chemistry of nanostructured pSi enables attachment of numerous molecules
of interest via straightforward coupling chemistry, thereby extending their utility in bio-relevant
applications [17,20]. With regard to SiNTs, the native oxide surface of as-prepared material allows
facile formation of stable siloxane linkages, similar to the case of oxidized pSi surfaces demonstrated
previously [17,21]. Among possible modifying agents, organoalkoxysilane molecules have been widely
used to alter surface properties of the materials via the introduction of a useful functional group at the
other end of the organosilane species (amine, thiol, etc.) [22,23]. Much of our emphasis to date has
entailed functionalization of SiNTs with amino organosilane (3-aminopropyltriethoxysilane (APTES))
to graft amino terminal groups on the SiNT surface, thereby allowing conjugation with additional
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molecular entities via covalent bonds (polyethylene glycol (PEG) and fluorescent dyes) or electrostatic
interactions (polynucleotides). We subsequently discuss the implications of adding these specific
moieties for its use as a therapeutic vehicle. Furthermore, we also demonstrate the fact that such
amino-terminated SiNTs can be exploited as a synthon for formation of a dispersed scaffold of metallic
nanocrystals, such as platinum (Pt), the latter of which exhibit intrinsic anti-cancer activity, thereby
expanding the utility of this type of surface-modified nanostructure.

4.1. PEGylation of SiNTs

In addition to a lack of toxicity, nanostructures seeking use in a biological context must also
remain stable in aqueous solution for long-term storage [24–27]. Depending on solution ionic strength,
pH, and physicochemical properties of the nanoparticles, the extent of aggregation will vary [28].
For oxide-terminated nanoparticles, aggregation is often observed due to high surface energy of
the materials [29]. One well-studied strategy to prevent particle–particle interaction is shielding the
surface with hydrophilic molecules of tunable chain length, such as polyethylene glycol (PEG) [28].
In this case, PEGylation or PEG coating creates a hydrated shell surrounding the nanoparticle core,
thereby sterically hindering nanoparticles from interacting with each other [30]. Besides dispersion
enhancement, several studies have indicated other benefits of PEGylation, which involve the extension
of systematic circulation time and reducing immunogenicity of nanoparticles in vivo [31,32].

This concept was successfully demonstrated using PEG-diacid (600) moieties grafted on
amino- terminated SiNT surfaces via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and
N-hydroxysuccinimide (NHS) coupling chemistry [33]. While unmodified SiNTs tend to aggregate
within a few hours after sonication, PEGylated SiNTs were not only highly dispersed in deionized
H2O, but also remain suspended in solution for months at room temperature (Figure 5).
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4.2. Fluorescently-Tagged SiNTs

Fluorescence-based imaging is one of the most important tools in biological studies [34]. In the
specific case of gene/drug delivery using nanoparticles, it is crucial to distinguish the drug delivery
vehicles from cellular components within the biological microenvironment, thereby determining the
fate of the drug carrier [35]. In this regard, simple fluorophore tagging can endow non-fluorescent
nanoparticles with an emissive fluorescence feature for bioimaging and related applications [36,37].

In this section, we evaluate the use of SiNTs terminated with THE amino group as a platform
for conjugating with two different fluorescent dyes: Fluorescein isothiocyanate (FITC) (green
fluorescence, λem = 520 nm) [38] and Alexa Fluor 594 NHS (succinimidyl ester) (red fluorescence, λem

= 615 nm) [39]. The amine moeities of APTES molecules conjugated to the SiNT surface react with
FITC and Alexa dyes to produce an isothiourea linkage and an amide bond, respectively. In both
cases, APTES serves as an efficient linker to stably incorporate fluorescent dyes to the SiNT matrix.
Based on confocal fluorescence imaging, SiNT surfaces were successfully labeled with FITC and
Alexa dyes, as indicated in uniform emission from the nanotube arrays (Figure 6a,b) [18], therefore
implying possible uses of fluorescently-labeled SiNTs in biological studies. To demonstrate this
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concept, Alexa-labeled SiNTs with 35 nm Si shell thickness were utilized as fluorescent probes to
ideally track cellular uptake of SiNTs in HEK 293 cells. By staining the cytoplasm of HEK 293
cells with 3,3′-dioctadecyl-5,5′-di(4-sulfophenyl)oxacarbocyanine, sodium salt (SP-DIOC18)(3) (green
fluorescence, λem = 513 nm), the interaction between Alexa-labeled SiNTs and the cells was clearly
observed. Clear accumulation of the labeled SiNTs in the cytoplasm of HEK 293 cells was observed
after 24-h exposure (Figure 6), thereby confirming the role of Alexa-labeled SiNTs as an option in
cellular labeling [18].
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(35 nm wall thickness) in human embryonic kidney (HEK) 293 cells (cytoplasm stained SP-DIOC18(3))
after 24 h (adapted from [18] with permission).

4.3. DNA Immobilization on SiNT Surface through Electrostatic Interaction

As one of the most exciting new options in the treatment of disease, gene therapy has demonstrated
extraordinary potential in the possible treatment of a variety of diseases, such as cancer and heart
disease, as well as tissue repair and regeneration [40–42]. This process involves introducing exogenous
nucleic acids (e.g., DNA plasmid and small interference RNA) into cellular compartments of the host
cells [40]. In order to achieve efficient expression of the foreign genes, fragile genetic materials must be
protected from degradation in a biological environment [42].

While selected viruses have been demonstrated as efficient vectors to effectively transfect cells,
immunogenicity is a main concern that restricts the application of this route [43,44]. An alternative
safer method is using positively charged polymers or cationic lipids to encapsulate negatively charged
suitable nucleic acids via electrostatic interactions, thereby forming a stable complex while protecting
the cargos from degradation [45,46]. Inorganic nanoparticles are yet another appealing option in this
regard, owing to their tunable structures, surface chemistry, and compositions [47,48].

Along these lines, we have demonstrated the use of SiNTs as a potential carrier to encapsulate
and deliver genetic materials, specifically plasmid DNA (pDNA) encoding green fluorescent protein
(GFP) [18]. Initial grafting with APTES (pKa = 9.6) converts the negative surface charge of SiNTs to
positive owing to the presence of the amino groups, thereby enabling immobilization of pDNA on the
SiNT surface [49]. Formation of pDNA/APTES-SiNTs complexes was evaluated by determining the
amount of pDNA remaining in the supernatant by an agarose gell electrophoresis assay. Our results
indicate complete binding of pDNA to functionalized SiNTs at a 55:1 (pDNA:SiNTs) mass ratio,
thereby suggesting potential use of SiNTs as a vector in gene therapy (Figure 7). Evaluation of
transfection efficiencies using this system in a suitable in vitro model are underway.
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4.4. Functionalized SiNTs as a Template for Formation of Platinum Nanocrystals

Since FDA approval in 1978, the platinum-based drug cisplatin has been effectively utilized to
treat a variety of cancers (lymphomas, carcinoma, etc.) [50–52]. However, a lack of specificity and
selectivity has led to multiple detrimental side effects, thereby raising legitimate caution in its use
as a chemotherapeutic agent [51]. In order to improve the therapeutic efficiency of cisplatin, several
drug carrier systems have been developed, such as polymers or inorganic nanoparticles, to effectively
deliver a desired payload while avoiding nonspecific delivery to healthy cells [50,53–55].

In terms of possible carrier candidates, SiNTs with ample interior space can ideally load therapeutic
molecules, while surface modification of the nanotube carrier allows possible targeting ability for
delivery and subsequent release of a useful drug at the disease site(s). One initially envisioned
approach involves cisplatin attachment to SiNTs via a linker strategy, in which amino moieties of
APTES coordinate to Pt complexes; a locally-concentrated amount of the drug is thereby clustered on
SiNTs and, if coupled with a suitably-functionalized targeting peptide (or the alternative) present on
the nanotube surface, is ideally delivered to cancer cells.

Interestingly, in initial experiments, instead of observing the intact molecular Pt complexes
adsorbed on the SiNT surface, we detected a highly dense cluster of crystalline platinum species
(1–3 nm) uniformly deposited on SiNTs (Figure 8a). By evaluating possible impurities in the cisplatin
using standard spectrometric assays of the λ310/λ247 ratio [56], we discovered the presence of significant
amounts of K2PtCl4, (common precursor in cisplatin synthesis) and that this species was responsible for
the formation of elemental Pt on functionalized SiNTs [57]. As Pt nanocrystals (Pt NCs) preferentially
form on functionalized SiNTs, but not on as-prepared unmodified SiNTs, it is clear that the presence of
the primary amine moieties of APTES coordinate with PtCl42- and play a role in the reduction of Pt2+

to Pt0.[58]
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Although this result is unexpected in terms of cisplatin loading, we have discovered a new
synthetic route to readily synthesize ultra-small Pt NCs on the SiNT matrix using K2PtCl4 as a Pt
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precursor. While Pt-based drugs (e.g., cisplatin, carboplatin) have been exploited in cancer treatment,
noticeably, reports in recent years have demonstrated Pt NCs (1–3 nm) as an alternative anticancer
reagent which can effectively overcome chemoresistance in some cancer cell lines, such as hepatocellular
carcinoma (HCC) [59–61]. Inspired by these preceding studies, investigations in Pt NCs deposition on
SiNTs using K2PtCl4 and in vitro toxicity of the Pt NCs-SiNT composites are ongoing in our lab to
evaluate the associated therapeutic activity of this novel material.

5. Loading of the Nanotube Interior

From a geometric perspective, the rather large and tunable inner cavity of a SiNT presents a
significant loading opportunity for applications involving delivery of a therapeutic cargo. In a rather
novel twist to this strategy, we have actually demonstrated the efficient loading of biocompatible
superparamagnetic iron oxide nanoparticles into the interior of different SiNT inner diameters
(Figure 9) [62,63].
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Using this strategy, one can ideally achieve targeted delivery of a drug attached to the outer
nanotube surface, while guided by the presence of an external magnetic field to the desired site
in vitro/in vivo [64]. This is in contrast to the alternative strategy of functionalizing the outer nanotube
surface with a targeting moiety (e.g., antibody or peptide) and subsequently loading the nanotube
interior with a desired therapeutic species.

6. Conclusion

This review has covered a number of key aspects of SiNTs that have interesting implications in
therapeutics. While additional opportunities remain, multiple clear advantages of exploiting surface
tunability of SiNTs for exploiting their functional tubular structure have been demonstrated. Studies
involving biocompatibility of the SiNTs and applications in drug/gene delivery are underway to
broaden our knowledge of its interactions with biological systems and potential applications of this
novel one-dimensional material.
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