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Abstract: The formulation of arylpropionic acid derivatives (profens), which are poorly soluble 

Biopharmaceutical Classification System (BCS) Type II drugs, has a strong impact on their 

therapeutic action. This article shows that heat-treated powder mixtures of free acid profens with 

high surface area Cladophora cellulose induces drug amorphization and results in enhanced 

solubility and bioavailability. Similar mixtures produced using conventional low surface area 

cellulose, i.e., microcrystalline cellulose, does not produce the same effect. The concept is 

thoroughly described and links the solid-state characterization data, such as differential scanning 

calorimetry, X-ray powder diffraction, and Fourier-transform infra-red spectroscopy, with in vitro 

dissolution in biorelevant media and in vivo pharmacokinetic analysis in rats. The concept is 

demonstrated for several substances from the profens group, including ibuprofen (main model 

drug), ketoprofen, flurbiprofen, and naproxen. The presented approach opens new ways to 

produce solid dosage forms of profen drugs in their free acidic form as alternatives to existing 

analogues, e.g., drug-salt conjugates or soft gel liquid capsules. 
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1. Introduction 

Non-steroidal anti-inflammatory drugs (NSAIDs) are the most frequently used individual 

medical products. Although regarded as relatively safe, their use could be associated with severe 

adverse effects [1]. In the USA alone, there are annually ca. 100,000 hospitalizations and 16,500 

deaths due to NSAID overdosing [2]. The US Food and Drug Administration (FDA) and the 

European Medical Products Agency (EMA) recommend that NSAIDs should be prescribed with the 

lowest effective dose and for the shortest duration in order to avoid drug abuse [3]. 

Profens, i.e., arylpropionic acid derivatives such as ibuprofen (IBU) or naproxen (NAP), show a 

relatively low incidence of gastrointestinal tract adverse effects. However, the advantage of “low 

risk” NSAIDs is reduced once their dose is increased [4]. The linearity of dose-effect also becomes 

deviant at higher than normal doses due to protein binding issues [5]. Metabolism of profens occurs 

in the liver via the cytochrome P450 (CYP) enzyme activity. Genetic polymorphism has been 

observed in CYP iso-enzymes, i.e., CYP2C8 and CYP2C9, which may result in an increased risk of 

adverse effects [6,7]. Apart from pharmacogenetic aspects, other factors, especially formulation, can 

also contribute to the variability in observed therapeutic and toxic effects [4]. 

Profens are Biopharmaceutical Classification System (BCS) Type II drugs that show high 

permeability and pH-dependent solubility [8,9]. Free acid IBU absorption from conventional tablets 
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is slow and sometimes even incomplete [10]. Profens show limited solubility in the stomach at low 

pH [11], and the rate of absorption is limited by the dissolution rate there [12]. The peak plasma 

concentration for IBU free acid is achieved 1.5–3 h after oral administration [13]. This delay is 

undesired as it increases the risk for overdosing because the patient will be more prone to taking 

another pill.  

In order to enhance the dissolution rate of IBU in the stomach, soft gelatin capsules filled with 

solubilized IBU [14] or IBU salt conjugates, e.g., IBU-arginine [13,15,16] or IBU-lysine [12,17], are 

used. In particular, it was shown in healthy volunteers that film-coated tablets had 39% lower Cmax 

and 3.2 times higher tmax (min) values than soft gel capsules of IBU [14]. Similarly, ordinary IBU 200 

mg tablets showed 1.6 times lower Cmax and five times higher tmax (min) than IBU-arginine conjugate 

formulations of similar dose in 16 healthy volunteers [15]. The benefits of using lysinate or arginate 

salt conjugates are offset by large stoichiometric quantities of conjugate building agent, e.g., for 400 

mg IBU, another 350–400 mg of arginine or lysine is needed. The latter makes the tablets more 

expensive (2–3 times), more bulky, and more difficult to formulate. Therefore, even if salt conjugates 

of IBU show benefits, improved formulations are needed based on the free acid form. 

Amorphous solid dispersions have been widely explored for enhancing the solubility of poorly 

soluble drugs [18,19]. On the molecular level, amorphous materials lack the long-range periodicity 

characteristic for crystalline solids. The characteristic properties of the amorphous solids are their 

absence of melting enthalpy and enhanced solubility and dissolution rate compared to the same 

material in the crystalline form. The crystalline-to-amorphous state transition can be induced by 

several physical methods such as using solvents, heat, and comminution [20]. Since amorphous 

solids tend to be chemically and physically less stable than the corresponding crystalline solids, 

various organic polymers, e.g., polyvinyl pyrrolidone (PVP), have been used to stabilize the 

amorphous state and prevent recrystallization of the amorphous pharmaceutical compounds in the 

solid-state [21]. Another way to produce amorphous materials is by loading them in 

micro/mesoporous inorganic materials with pores less than 50 nm [18,22]. Small pores limit the 

ability of the molecules to rearrange inside the pores and, thus, suppress the 

amorphous-to-crystalline phase transformation. Nanocrystals of varying size, especially those 

smaller than 10 nm, and shape exhibit melting point depression, melting enthalpy reduction, and 

enhanced solubility [23]. To avoid ambiguity, in the context of this article, the term amorphization 

will be used only to describe the absence of long-range periodicity, without implications for 

nanosizing effects. 

Microcrystalline cellulose (MCC) is an important pharmaceutical excipient. It is used as a 

binder/diluent in oral tablets and capsules both by wet granulation and direct compression. 

European Pharmacopoiea defines MCC as purified, partially depolymerized cellulose, prepared by 

treating α-cellulose, obtained as a pulp from fibrous plant material, with mineral acids [24]. Various 

types of celluloses can be produced which primarily vary in their particle size and moisture content. 

Other important characteristics of MCC grades include the level-off degree of polymerisation 

(LODP), specific surface area (m2/g), and degree of crystallinity (%) [25]. Ordinary MCC is 

characterised by a relatively low surface area, i.e., 1 m2/g. However, nanocellulose can provide much 

larger surface area, i.e., 60–100 m2/g [26,27]. The differences in solid-state properties of nanocellulose 

as compared to MCC can be highly beneficial for pharmaceutical formulation. Nanocellulose can 

produce much stronger tablets during direct compression than MCC [27,28]. Furthermore, it can be 

beneficial for preventing nicotine oxidation as opposed to ordinary MCC. [29] It was also reported 

that nanocellulose may accelerate the rate of hydrolytic degradation of moisture-sensitive drugs, e.g. 

aspirin [30–32]. 

Advances in nanocellulose science have generated interest in using this material for drug 

delivery applications. [33–36] Indomethacin was loaded into a nanofibrillated cellulose (NFC) carrier 

to produce hierarchically structured hybrid structures [37]. NFC foams loaded with indomethacin 

were produced with high drug loading [38,39], showing that indomethacin was important for 

stabilizing the foam structure. In the context of enhancing the solubility of poorly soluble drugs, 

other cellulose derivatives need to be mentioned as well. Cellulose esters and, in particular, alkyl 
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cellulose ω-carboesthers with hydrophobic side chains of various lengths have been explored for 

their amorphization potential of poorly soluble drugs [40,41]. For example, the amorphization of 

several poorly soluble anti-infective drugs such as rifapentine [42], ciprofloxacin [43], and ritonavir 

[44] was studied. 

This article is the first in a series of forthcoming publications exploring the formulation of 

poorly soluble drugs from various pharmacological classes with high surface area nanocellulose. In 

particular, a straightforward strategy of formulating heat-treated powder mixtures of profens is 

described for several profens. The results of the article demonstrate how the solubility at low pH, 

dissolution rate, and bioavailability of IBU can be increased in mixtures with high surface area 

nanocellulose. 

2. Materials and Methods  

2.1. Materials  

Cladophora cellulose (CLAD) was provided by FMC Biopolymers (currently DuPont, 

Philadelphia, PA, USA). Microcrystalline cellulose (MCC) (Avicel PH101), ibuprofen (IBU), 

Ibuprofen-D3 (IBU-D3); Naproxen (NAP), Flurbiprofen (FLB), and Ketoprofen (KET) were 

purchased from Sigma Aldrich (Saint Louis, MO, USA). Biorelevant media of simulated gastric fluid 

(SGF), fasted simulated intestinal fluid (FaSIF), and fed state simulated intestinal fluid (FeSIF) were 

prepared using powder purchased from Biorelevant (London, UK) according to the manufacturer’s 

instructions. The chemical structures of studied profens are presented in Table 1. Table 1 

summarizes the physical chemical properties of the arylpropionic acid derivaties under study. 

Table 1. Chemical structures and physical-chemical properties of the studied profens. 

 Structure IUPAC Name 

Mol. 

mass, 

g/mol 

Tm, 

°C 

pKa logP 

IBU 

 

Iso-butylphenylpropionic acid 

206 78 4.9 4.0 

KET 

 

2-(3-benzoylphenyl)-propanoic acid 

254 94 3.9 3.1 

FLB 

 

2-(3-fluoro-4-phenylphenyl)-propa

noic acid 

244 111 4.4 4.2 

NAP 
(2S)-2-(6-methoxynaphthalen-2-yl)-

propanoic acid 

230 155 4.2 3.3 

2.2. Mixture Preparation 

All mixtures were placed in amber vials which were additionally folded with aluminum foil, 

for extra photoprotection during preparation, storage, and in vitro dissolution.  

2.2.1. Physical Mixtures Preparation  

The physical mixtures corresponded to non-heated mixtures. The weight ratio between the 

model drug and cellulose was 1:9. Typically, 5 mg of the model drug was mixed with 45 mg of 
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cellulose in a sealed glass vial with cap using a 3-dimensional-type Turbula mixer (Muttenz, 

Switzerland) for 15 min at 72 rpm for solid-state characterizations. 

2.2.2. Heated Mixtures Preparation 

Following the preparation of the powder mixtures as described above, the sealed vials were 

heated to the melting temperature of the corresponding model drug for 1 h. All samples were used 

after 24 h at room temperature from the time of preparation to allow for possible recrystallization. 

2.3. Scanning Electron Microscopy (SEM) 

Scanning electron microscopy (SEM) images of drug-cellulose mixtures were obtained using a 

Carl Zeiss Merlin FEG-SEM (Carl Zeiss, Jena, Germany) instrument. The samples were mounted on 

aluminum stubs using adhesive carbon tape and sputtered with a thin layer of Au/Pd to minimize 

charging. A Polaron sputter coater (Ashford, UK) was used. The sputtering settings were 4∙× 10−2 

mbar and 35 mA, and the sputtering time was 30 s. 

2.4. Differential Scanning Calorimetry (DSC)  

The differential scanning calorimetry (DSC) measurements were performed with a Q 2000 TA 

instrument (TA instruments, New Castle, DE, USA). The samples were first cooled from room 

temperature to −40 °C and then heated to around 10 °C higher than the melting temperature at a 10 

°C min−1 heating rate. Nitrogen gas at a flow rate of 60 mL/min was purged throughout the 

measurements. Melting temperature and enthalpies were derived using the thermal analysis 

software supplied by the manufacturer (Advantage version 5.5.3, TA Instruments, New Castle, DE, 

USA).  

The crystallinity index was calculated as follows: 

 (1) 

where ΔHmix is the enthalpy of drug’s melting in the mixture, ΔHdrug is the melting enthalpy of pure 

drug, and a is the correction factor corresponding to the drug content, i.e., a = 1 for the pure drug and 

a = 0.1 for a 10% w/w mixture. 

2.5. X-Ray Diffraction (XRD)  

An X-ray diffractometer (D8 Twin-Twin, Bruker, Karlsruhe, Germany) with Bragg−Brentano 

geometry (Cu Kα radiation; λ = 1.54 Å) was used. The operating current settings were 40 kV and 40 

mA. The 2θ angle was varied between 10° and 45° at 0.02° scan steps. The data were collected on flat 

powders placed in reduced background specimen holders supplied by the manufacturer (Bruker). 

2.6. Fourier-Transform Infrared Spectroscopy (FTIR) 

The measurements were performed with Bruker Tensor 27 FTIR (Bruker, Karlsruhe,  

Germany) according to the pellets technique with potassium bromide (KBr). The amount of model 

drug substance in the 1:9 w/w drug-cellulose mixtures was about 2 mg. The amount of KBr used was 

around 200 mg. KBr and the drug-cellulose mixture were blended in a mortar and then pressed into 

a pellet using a hydraulic press.  

2.7. In Vitro Drug Release—Dissolution Test in Biorelevant Media 

The dissolution test was performed in a SOTAX (AT7 Smart, Basel, Switzerland) apparatus 

using 500 mL of biorelevant medium per dissolution vessel. The temperature for each dissolution 

vessel was maintained at 37 ± 0.2 °C. The same amount of mixed samples was used in all timings and 

all different media (100 mg IBU + 900 mg cellulose). Each group of physical and heated samples was 
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run in triplicate. The paddle speed for each dissolution vessel was 50 rpm. Sampling times for all 

media were 15, 30, 45, 60, 90, 120, and 180 min, respectively. At each time point, 5 mL of the medium 

was withdrawn and filtered through a 0.45 μm polytetrafluoroethylene PTFE filter discarding the 

first 2–3 mL. A volume (1.5 mL) of the remaining sample was transferred in amber glass vials for 

further analysis by HPLC. 

2.8. HPLC Analysis 

An HPLC-UV system was optimized for the detection of IBU prior to the analysis. The liquid 

chromatography system used was a quaternary pump (Agilent, Santa Clara, CA, USA) with an 

autosampler and Xbridge BEH C18, 3.5 μm, 2.1 × 50 mm, Waters column. The column temperature 

was 50 °C and injector temperature was 20 °C. The Mobile phase A was 0.1% formic acid in water, 

and mobile phase B was 0.1% formic acid in acetonitrile. The flow rate was 0.800 mL/min. The 

injector wash was 50% acetonitrile. The retention time was 4.45 min, and the run time was 8.0 min. 

UV Detection at the wavelength of 220 nm was used. The IBU stock solution was prepared in the 

biorelevant medium at 250 ug/mL and used for the calibration curve at 1:250 v/v. Calibration 

samples were run prior to the analysis of the studied samples.  

2.9. In Vivo Drug Release—Administration in Animals  

The in vivo study was conducted by Citox Lab, Denmark, an authorized contract research 

organization (study no 77081, on 27-04-2015). The study was performed in 18 fasted SPF Wistar rats 

of the strain HanTac:WH (GALAS) from Taconic Europe A/S, Ejby, Denmark. An acclimatization 

period of at least 5 days was allowed prior to the studies. Two batches of test item were used, 

including IBU-MCC-P (as a reference) and IBU-CLAD-H.  

The treatment was given by oral gavage using a syringe. The content of one vial containing 30 

mg of 10% IBU-cellulose mixture was flushed with a total of 2 mL purified water per animal. 

Pre-treatment blood samples were taken from all animals. On the day of administration, blood 

sampling was performed at 15, 30, 45, 60, and 120 min post-treatment (n = 3 per time point). Blood 

samples of approximately 0.3 mL were drawn into a collecting tube containing Heparin as an 

anticoagulant. The collecting tube was placed in an ice bath until centrifugation (10 min, 1270 G, 4 

°C). Approximately 100–150 μL of plasma was transferred to Nunc cryotubes (Thermo Scientific, 

Waltham, MA, USA) and frozen at –18 °C or below before analysis. 

2.10. Analysis of Plasma Samples 

The liquid chromatography system used was a LC-10AD pump with a SIL-HTc autosampler 

(Shimadzu, Kyoto, Japan) and a HyPurity C18 column (3 μm particle size, 50 × 4.6 mm, from Thermo 

Scientific, Waltham, MA, USA) with a guard column (HyPurity C18 column, 3 μm particle size, 10 × 

4.0 mm, from Thermo Scientific, Waltham, MA, USA). For detection, a Quattro Ultima (Waters, 

Milford, MA, USA) LC-MS/MS operated in selected reaction monitoring (SRM) mode with negative 

electrospray ionization was used. Data analysis was performed using Masslynx 4.1 software 

(Micromass, Manchester, UK). 

Quantitation was performed using multiple reaction monitoring (MRM) mode to detect Parent

→Product ion (m/z) transitions. IBU and IBU-D3 (analytical standard) SRM transitions were m/z 

204.9→160.9 and m/z 207.9→163.9, respectively. The source-dependent parameters maintained for 

IBU and IBU-D3 were as follows: 3.8 kV; source temperature 125 °C; desolvation temperature 450 °C; 

cone gas flow 35 L/h; and desolvation gas flow 1000 L/h. The cone voltage (V) and collision energy 

(eV) were 35 and 8, respectively, for both IBU and IBU-D3. 

IBU and IBU-D3 stock solutions corrected for purity and salt form were prepared in duplicate 

in dimethyl sulfoxide and stored at –20 °C. Intermediate stock solutions in acetonitrile were kept at 4 

°C. 

Calibration standards were prepared by spiking blank plasma from three male 

Sprague-Dawley rats with IBU at pre-selected concentrations between 5 and 100,000 nM (total of 15 
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points). Quadratic regression analysis with 1/y weighting was performed to quantify the 

concentration. The determination coefficient (R2) was greater than or equal to 0.99. 

2.11. Plasma Sample Preparation 

Prior to analysis, all samples were equilibrated at room temperature. To an aliquot of 50 μL of 

plasma sample, 100 μL of ice-cold 0.1% formic acid in acetonitrile spiked with 200 nM IBU-D3 was 

added. The samples were vortexed for 20 s and centrifuged at 10,000 g for 3 min at room 

temperature. One hundred microliters of the supernatant was mixed with 100 μL of mobile phase A 

(5 mM ammonium acetate) followed by vigorous vortexing and centrifugation at 10,000 g for 1 min. 

Ten microliters was injected into the column. 

HPLC separation was performed using 5 mM ammonium acetate as mobile phase A (MPA) and 

5 mM ammonium acetate in 90:10 (v:v) acetonitrile:water as mobile phase B (MPB). The flow rate 

was 0.80 mL min−1, and the column temperature was room temperature. Isocratic elution with 45% 

MPB was used. The autosampler temperature was 4 °C, and the injection volume was 10 μL. The 

retention time for IBU and IBU-D3 was 2.07 min, and the total run time was 4 min. A basic 

autosampler wash with 50:50 (v:v) water:methanol was used to reduce carryover. 

2.12. Pharmacokinetic Data Evaluation 

The non-compartmental pharmacokinetic (PK) evaluation was performed using RStudio 

v0.99.441, package ‘PK’ (RStudio Inc., Boston, MA, USA). For samples with a concentration level 

below the low limit of quantification, the values were considered as zero. 

The following PK parameters were calculated: 

- AUC0–t (area under the curve from 0 h to the time point of the last quantifiable 

concentration) was calculated according to the log linear trapezoidal method, μg mL−1; 

- AUC0–∞ (area under the curve from time 0 to infinity) was calculated as the sum of AUC0–

t and AUCt–∞, where AUCt–∞ = Ct/λz (the measured concentration at the last time point with 

quantifiable data divided by the elimination rate constant), μg mL−1; 

- Mean residence time (MRT), min; 

- Non-compartmental t½ (terminal half-life), min.  

3. Results 

3.1. Ibuprofen Mixtures  

Figure 1 shows the SEM images of MCC and CLAD. It is seen in these images that MCC 

features are relatively dense monolith structures, whereas CLAD particles show open structures 

consisting of intertwined cellulose nanofibers. Nitrogen gas sorption analysis verified that CLAD 

features much greater pore volume and specific surface area than MCC powder, as summarized in 

Table 2. The differences in surface area are believed to be key for pharmaceutical function, as will be 

shown later. 
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Figure 1. Scanning electron microscopy (SEM) image of (A) microcrystalline cellulose (MCC) and (B) 

Cladophora cellulose (CLAD). Magnification 20,000×. 

Table 2. Specific surface area and pore volume of studied celluloses. 

Cellulose BET Surface Area, m²/g Pore Volume, cm³/g DFT Pore Mode, nm 

MCC 0.9 0.002 a - 

CLAD 98.8 0.553 b 37 

a Single point desorption total pore volume of pores is less than 117 nm width at p/p0 = 0.9832; b Single 

point desorption total pore volume of pores is less than 1 088 nm width at p/p0 = 0.9982. 

Figure 2 shows the SEM images of the studied mixtures and pure IBU crystals as a reference. 

Free IBU crystals could not be easily differentiated for MCC samples (Figure 2A,B). The latter could 

be partly differentiated due to the similar morphology and image contrast of MCC and IBU particles. 

However, it should also be noted that aggregated structures were clearly seen in MCC mixtures, as 

shown in Figure 2A,B. Interestingly, while the morphology and particle size of IBU and CLAD 

particles were sufficiently different, no free IBU crystals could be detected in CLAD mixtures. It is 

known that IBU has a relatively low melting temperature of 78 °C and its glass transition 

temperature can be lowered well below room temperature in mixtures with pharmaceutical 

excipients. [45] The latter could explain the difficulty in differentiating free IBU particles in physical 

mixtures of CLAD. In heated mixtures, it would be expected that the IBU crystals fuse with the 

cellulose particles. To avoid further speculation, the SEM images presented here should be treated 

with caution with respect to the solid state of IBU while still open for the reader’s own 

interpretations. 
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Figure 2. SEM images of studied mixtures, i.e. (A) IBU-MCC-P, (B) IBU-MCC-H, (C) IBU-CLAD-P, 

(D) IBU-CLAD-H, and (E) IBU (pure). Magnification was 1000× for MCC and IBU, and 5000× for 

CLAD. 

Figure 3 shows the DSC results for the mixtures of IBU with MCC and CLAD. Figure 3A shows 

the DSC profiles for IBU, MCC, and CLAD. The melting point of IBU is around 76 °C as indicated by 

the sharp endothermic peak in the graph. The broad peak visible in the thermograms of MCC and 

CLAD correspond to water evaporation. It is seen that the water evaporation peak is centred ca. 80 

°C for CLAD and 100 °C for MCC. The water-cellulose interactions for MCC and CLAD are 

discussed elsewhere and will not be covered here [30,32,46]. Figure 3B,C shows the DSC results of 

the IBU mixtures in MCC and CLAD. The sharp melting peak of IBU observed in the DSC is overlaid 

on the broad endothermic halo due to the water evaporation in cellulose. Both in the physical and 

heated mixtures of IBU with MCC, the endothermic event is clearly visible, corresponding to the IBU 

melting point. In the mixture with MCC, as seen in Figure 3B, there is a shift in Tm (°C) between the 

physical and heated mixture from around 76 °C (physical mix) to 73 °C (heated mix). As shown in 

Figure 3C, the endothermic event corresponding to the melting of IBU is also visible in the physical 

mixture of IBU with CLAD. However, it is negligible in the heated mixture of CLAD, and the only 

barely visible halo shifted to around 67 °C is detected. In general, the absence of a sharp melting 

endotherm suggests that IBU is transformed into an amorphous form in the heated IBU-CLAD 

mixture. 

 

 

Figure 3. Differential scanning calorimetry (DSC) analysis of (A) pure IBU, MCC, and CLAD, (B) 

IBU-MCC, and (C) IBU-CLAD 10% w/w mixtures. The symbols are only a guide for the eye. 
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Table 3 summarizes the results of the DSC analysis for IBU mixtures. It is concluded from the 

table that IBU is largely crystalline in the mixture with MCC even after heating: The degree of 

crystallinity is 99.6% and 75.8% for the physical and heated mixtures, respectively. It should be 

noted that while IBU was also largely crystalline in the physical mixture with CLAD, the degree of 

crystallinity is around 78%, suggesting that some molecular rearrangement may have occurred 

during mixing. The degree of crystallinity of IBU in heated mixture with CLAD is only 0.9%, based 

on the endotherm value for halo at around 67 °C. 

Table 3. Summary of DSC analysis of profen mixtures with celluloses. 

Drugs 

Samples  

Ton, °C Tm, °C ΔΗ, J/g drug CrI, % 

IBU 74.9 75.7 197.6 100 

IBU-MCC-P 71.5 74.4 196.9 99.6 

IBU-MCC-H 72.2 73.1 149.9 75.8 

IBU-CLAD-P 71.5 73.1 154.7 78.3 

IBU-CLAD-H 62.6 67.6 1.7 0.9 

KET 92.4 94.4 149.3 100 

KET-CLAD-P 92.4 94.4 137.8 92.3 

KET-CLAD-H - - 0.3 0.2 

FLB 112.0 114.2 131.8 100 

FLB-CLAD-P 112.0 114.2 52.6 39.9 

FLB-CLAD-H 103.0 105.5 3.2 2.4 

NAP 153.0 155.1 174.4 100 

NAP-CLAD-P 155.9 156.3 98.3 56.4 

NAP-CLAD-H 128.1 132.2 1.0 0.6 

Figure 4 shows the XRD profiles of IBU mixtures with MCC and CLAD. The characteristic 

peaks for MCC are as following: broad halo centred around 16°, main peak at around 22°, and a 

minor peak around 34°. The characteristic diffraction peaks for CLAD are sharper and better 

resolved than those for MCC. In particular, the following peaks are characteristic: at 14° (main), 17° 

(main), 20° (minor), 22° (main), and 34° and 35° (both minor). The XRD profiles for pure MCC and 

CLAD are shown in Appendix, Figure A1. The diffraction profile for IBU is characterised with many 

sharp and well-resolved peaks over the entire range of studied diffraction angles. The latter are 

presented in the background as dashed lines in Figure 4. When studying the XRD profiles of the 

mixtures it is seen that the characteristic peaks for crystalline IBU are clearly seen in the physical 

mixture of MCC overlaid on the cellulose pattern. These sharp peaks of IBU are also visible in the 

physical mixture of IBU-CLAD mixture but they are essentially suppressed in the heated IBU-CLAD 

mixture. The absence of the characteristic sharp diffraction peaks of IBU suggests that the drug is in 

the amorphous state. 
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Figure 4. X-ray diffraction images of (A) IBU-MCC-P, (B) IBU-MCC-H, (C) IBU-CLAD-P, and (D) 

IBU-CLAD-H 10% w/w mixtures.  

Figure 5 shows the FTIR profiles of IBU in mixtures with MCC in the region corresponding to 

the stretch C=O bond. In Figure 5A no shift of the stretching C=O bond is observed at 1720 cm−1 in 

the physical and heated IBU-MCC mixtures. Figure 5B shows the FTIR profiles of IBU in mixtures 

with CLAD. Contrary to the mixtures of IBU-MCC, a shift of the C=O bond is observed from 1720 to 

1708 cm−1 in the heated sample of CLAD, indicating molecular rearrangement and interactions 

between IBU and CLAD. 
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Figure 5. FTIR profiles of (A) IBU-MCC and (B) IBU-CLAD 10% w/w mixtures. The symbols are only 

guide for the eye. 

In all, the results of the DSC, XRD and FTIR analysis suggest that the molecular state of IBU in 

heated mixtures with CLAD is substantially different from that of the physical mixture as well as 

those for physical and heated mixtures of MCC. The experimental evidence suggests that IBU is in 

the amorphous state in IBU-CLAD-H mixtures, which is expected to result in higher dissolution rate. 

In order to investigate the dissolution behaviour of IBU in mixtures with cellulose, in vitro and 

in vivo studies were performed. Figure 6 shows the IBU dissolution curves of physical and heated 

MCC and CLAD mixtures in biorelevant media. The composition of biorelevant media is 

summarised in Appendix, Table A1. The solubility of IBU is pH dependent, since IBU is a weak acid. 

Figure 6A,B show the dissolution rate of IBU in SGF, where the solubility of IBU is the lowest. It is 

seen from Figure 6A that the heated IBU-MCC mixture shows slightly improved dissolution rate 

compared to the physical IBU-MCC mixture. It should be noted that both mixtures levelled at 41 ± 4 

and 38 ± 4 μg/mL, which is the saturation solubility of IBU in SGF. The observed rapid dissolution of 

IBU in the heated MCC mixture is most pronounced during the first hour of dissolution. Figure 6B 

shows the IBU release from CLAD mixtures. The rate of IBU release from IBU-CLAD-P mixture was 

rather similar to that of IBU-MCC-H sample, levelling at 38 ± 1 μg/mL after 90 min. The release of 

IBU from the heated CLAD mixture showed a remarkable profile. In particular, Cmax was the highest 

and tmax (min) was the shortest among all tested samples. After 45 min, the Cmax value was 65 ± 17 

μg/mL in IBU-CLAD-H after which it decreased gradually to 34 ± 4 μg/mL, i.e. the saturation level 

observed in other tested samples in SGF. The observed shape of the dissolution curve for 

IBU-CLAD-H shows distinct “spring-and-parachute” profile, [47] due to transient supersaturation 

of IBU in SGF. Figure 6C,D shows the dissolution profiles of IBU from cellulose mixtures studied in 

FaSIF. As expected the solubility of IBU in SIF was substantially higher than that in SGF due to 

higher pH of SIF, which is expected. The solubility of IBU in FaSIF was faster in the heated mixtures 

compared to the physical ones both for MCC and CLAD. The solubility plateau level, which 

corresponds to the complete dissolution of IBU under the experimental conditions, for the heated 

samples was achieved very rapidly, i.e. in less than 15 min, whereas that for the physical mixtures 

typically required 1–2 h. Interestingly, the total amount of dissolved IBU in FaSIF for IBU-MCC 

mixtures was substantially lower than that for IBU-CLAD mixtures, i.e., ca. 62.5% from total load. 

The solubility of IBU in FeSIF was complete for all mixtures, and the observed rate of dissolution 

was much faster for the heated mixtures compared to the physical ones. The rate of IBU dissolution 

in the heated mixtures was high both for IBU-MCC-H and IBU-CLAD-H mixtures. The rate of 

dissolution from IBU-CLAD-P mixture was slightly faster than that for IBU-MCC-P mixture in 

FeSIF. Overall, it was confirmed that IBU-CLAD-H sample shows very rapid IBU dissolution profile 

in both FaSIF and FeSIF media, which could be explained by the amorphous state of IBU. When 

comparing the worst- and best-case scenarios in FeSIF, i.e. IBU-MCC-N and IBU-CLAD-H mixtures, 
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it will take approximately 1–2 h for IBU-MCC-N to reach Cmax level, even if FeSIF conditions are 

considered favourable for absorption. 

 

 

Figure 6. In vitro time-dependent IBU dissolution in biorelevant media: (A) IBU-MCC in SGF, (B) 

IBU-CLAD in SGF; (C) IBU-MCC in FaSIF; (D) IBU-CLAD in FaSIF; (E) IBU-MCC in FeSIF, and (F) 

IBU-CLAD in FeSIF 10 w/w mixtures. The results are the average of 3 measurements with standard 

deviation as error bars. The dashed line is guide for the eye. 

In order to prove that enhanced solubility and dissolution rate of IBU in IBU-CLAD-H mixtures 

is translated further into enhanced bioavailability, pilot PK in vivo studies were performed in rats. 
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Figure 7 shows the plasma concentration of IBU of the IBU-MCC-P and IBU-CLAD-H samples. It is 

seen in the graph that IBU-CLAD-H mixture exhibited substantially improved PK parameters 

compared to the IBU-MCC-P mixture. Table 4 summarizes the PK parameters of the studied 

samples. It is seen that compared to IBU-MCC-P, all PK parameters are significantly improved in 

IBU-CLAD-H, i.e., AUC0–∞ increased almost 7 times, while MRT and T1/2 are halved, as shown in 

Table 4. The observed large difference between the samples suggests that under the experimental 

conditions IBU-MCC-P mixture exhibited poor and incomplete dissolution of drug. Thus, the 

observed differences represent two extremes, i.e., the best- and the worst-case scenarios. 

 

Figure 7. In vivo IBU plasma concentration in rats at 30 mg/kg dose from IBU-MCC-P and 

IBU-CLAD-H 10% w/w mixtures. The results are the average of three measurements with standard 

deviation as error bars. The lines are guide for the eye. 

Table 4. Pharmacokinetic parameters for IBU 10% w/w mixtures at 30mg/kg dose in rats. The results 

are average of three measurements with standard error. 

Samples 
AUC0–t 

min (µg mL−1) 

AUC0–∞ 

min (µg mL−1) 

MRT, min T1/2, min 

IBU-MCC-P 197.0 ± 20.8 419.9 ± 328.3 192 ± 202 133 ± 140 

IBU-CLAD-H 2323.7 ± 170.1 3026.0 ± 186.4 85 ± 11 59 ± 8 

MRT: mean residence time. 

Lastly, in order to demonstrate that the observed amorphization of IBU in heated mixtures with 

CLAD is also generally valid for other profens, additional solid-state characterisations of the 

physical and heated drug-CLAD mixtures were performed, including KET, FLB, and NAP. In the 

series of studied drug substances, Tm (°C) increases in the following order: 

m m m m

IBU KET FLB NAPT T T T   . 

3.2. Ketoprofen Mixtures 

Figure 8 shows the DSC, FTIR, and XRD solid-state characterization results for the mixtures of 

KET with CLAD. As shown in Figure 7A, the endothermic event corresponding to the melting of 

KET at 94 °C that is seen in KET-CLAD-P mixture is absent in the KET-CLAD-H. As seen in Table 3, 

the degree of KET crystallinity decreased from 92.3% for KET-CLAD-P to merely 0.2% in 

KET-CLAD-H mixture based on DSC data.  

Figure 8B shows the FTIR profiles of KET in mixtures with CLAD in the region corresponding 

to the stretching of the C=O bond. The position of the C=O bond at 1697 cm−1 in the physical mixture 

coincides with that of the pure KET. As seen in Figure 8B, a shift of the stretching C=O bond occurs 

in the heated sample from 1695 to 1711 cm−1 as compared to the physical mixture. The latter suggests 
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a significant molecular rearrangement of KET in the heated sample in line with the observation 

using DSC and XRD. These results are effectively similar to those observed with IBU. 

Figure 8C,D shows the XRD profiles of KET mixtures with CLAD. It is seen that the 

characteristic peaks for crystalline KET that can be seen in the physical mixture disappear upon 

heating, and the profile features the diffraction peaks characteristic of pure CLAD. As discussed 

above, the absence of characteristic crystalline peaks suggests amorphization of the drug in the 

heated mixture. 

 

  

Figure 8. Solid-state analysis of KET-CLAD 10% w/w mixtures: (A) DSC, (B) FTIR, (C) XRD for 

P-mixture, and (D) XRD for H-mixture. The symbols are only a guide for the eye. 

3.3. Flurbiprofen Mixtures 

Figure 9 shows the DSC, FTIR, and XRD solid-state characterization results for the mixtures of 

FLB with CLAD. The melting temperature for crystalline FLB is 113 °C. In Figure 9A, a sharp 

endothermic peak is visible in the FLB-CLAD-P mixture at 113 °C. The magnitude of the 

endothermic peak due to melting of FLB is substantially smaller and shifted to lower 

temperatures—105 °C—in the FLB-CLAD-H mixture. As seen in Table 4, the degree of FLB 

crystallinity in FLB-CLAD-P is about 40%, based on enthalpy of pure FLB, and is further reduced to 

2.4% upon heating of the mixture. The results of the DSC analysis suggest that there are strong 

interactions between FLB and CLAD. 

Figure 9B shows the FTIR profiles of FLB in mixtures with CLAD in the region corresponding to 

the stretching C=O bond. In Figure 8B, a shift of the stretching C=O bond is observed in the heated 

FLB-CLAD mixture from 1702 to 1712 cm−1 as compared to the physical mixture.  
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Figure 9C,D shows the XRD profiles of the FLB mixtures with CLAD. The characteristic peaks 

for crystalline FLB that can be seen in the physical mixture have completely disappeared, and the 

observed profile is similar to that of pure CLAD. As discussed above, the absence of sharp 

characteristic diffraction peaks of FLB indicates that the drug is predominantly in the amorphous 

state upon heating. 

 

Figure 9. Solid-state analysis of FLB-CLAD 10% w/w mixtures: (A) DSC, (B) FTIR, (C) XRD for 

P-mixture, and (D) XRD for H-mixture. The symbols are only a guide for the eye. 

3.4. Naproxen Mixtures 

Figure 10 shows the DSC, FTIR, and XRD solid-state characterization results for the mixtures of 

NAP with CLAD. The melting of pure NAP crystals occurs at 155 °C, which is the highest Tm  (°C) 

among the studied samples. As it was discussed above, the first broad endothermic halo observed in 

the thermogram corresponds to water evaporation from CLAD both in the physical and heated 

mixtures. As seen from Figure 10A, the endothermic event corresponding to the melting of NAP in 

the physical mixture is absent in the heated sample. Instead, a barely detectable endothermic halo is 

observed at 132 °C in the NAP-CLAD-H mixture. Table 3 shows that the degree of NAP crystallinity 

is about 56% in the NAP-CLAD-P mixture based on the enthalpy of pure NAP crystals. However, 

the degree of crystallinity is further reduced to 0.6% upon heating of the NAP-CLAD mixture, 

implying that NAP is essentially amorphous in this mixture. 

Figure 10B shows the FTIR profiles of NAP in mixtures with CLAD in the region corresponding 

to the stretching C=O bond. A shift in the characteristic C=O bond position from 1729 to 1710 cm−1 is 
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observed in the heated sample as compared to the physical mixture. The position of the C=O bond 

(1729 cm−1) in the physical mixture coincides with that of the pure NAP. 

Figure 10C,D shows the XRD profile of the NAP mixtures with CLAD. The graph shows that 

the characteristic peaks for crystalline NAP seen in the physical mixture are substantially 

suppressed in NAP-CLAD-H, and only a small diffraction peak of NAP was detected at 19° in 

NAP-CLAD-H. Overall, the conclusion is that naproxen is essentially amorphous in the 

NAP-CLAD-H mixture. 

 

 

Figure 10. Solid-state analysis of NAP-CLAD 10% w/w mixtures: (A) DSC, (B) FTIR, (C) XRD for 

P-mixture, and (D) XRD for H-mixture. The symbols are only a guide for the eye. 

The findings of the presented work show benefits both from the technological and clinical point 

of view, as it will be discussed below. It is known that the therapeutic effect of profens is influenced 

by formulation, such as excipients, surfactants, solubilizers, pH modifying substances, and drug 

particle size, which primarily affect plasma Cmax and tmax (min) values. Here, a robust method of 

formulating several profen drugs in their free acid form with high surface area nanocellulose is 

reported. The most common way of obtaining amorphous solid dispersions has been based on 

solvent removal, e.g., spray-drying, rotary evaporation, etc. [20]. Heating, e.g., melt extrusion, is the 

second most commonly employed method for formulating poorly soluble drugs after solvent-based 

methods [20]. Heating is attractive because there is no need to subsequently add and remove organic 

solvents to achieve drug loading and amorphization. Normally, to produce amorphous solid 

dispersion by heating methods, water-soluble thermoplastic polymers, e.g., PVP, are used [20]. In 

this context, the miscibility of the thermoplastic polymer and the drug has traditionally been 
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considered important for the successful formulation of amorphous solid dispersions [20,48]. It 

should be noted that MCC and CLAD are water-insoluble, non-thermoplastic (non-derivatized), 

native cellulose polymers. By providing a large surface area for molecular level interactions, CLAD 

enables amorphization of profens with varying melting points upon mixing and heating. 

The results of DSC, XRD, and FTIR analysis generally confirm this conclusion for IBU as well as 

three other drug substances from the profens group. The use of low surface area MCC did not 

sustain amorphization of IBU upon heating. IBU in vitro dissolution in biorelevant media and in 

vivo studies further corroborated the conclusions of the study. In should be mentioned that the 

findings of the present work are generally aligned with the previous observations that adsorbent 

materials, featuring a large specific surface area, can induce phase transitions and amorphization of 

aromatic substances. [18,49–52]  

From the clinical point, the problems of formulating IBU have been discussed previously in the 

literature [10]. In particular, solubility and dissolution in the stomach are the main hurdles for IBU 

absorption and onset. The most remarkable improvement of PK parameters here was observed 

thanks to the enhancement of IBU solubility in the stomach for IBU-CLAD-H, wherein the rapid 

dissolution and transient supersaturated solubility of IBU were the driving forces for absorption. So 

far, the rapid onset of IBU was typically possible using either soft gelatin capsules with solubilized 

IBU or using IBU-arginine or IBU-lysine conjugates, and thereby, formulation of free acid IBU with 

rapid onset of action has been challenging. Facile powder formulation of profens with nanocellulose, 

as shown in Figure 11, bears great promise for designing better drugs with low risks of overdosing, 

reduced incidence of adverse effects, and low interpersonal variability. 

 

Figure 11. Process scheme for formulating profens with CLAD. 

In all, the presented strategy of formulating profens with CLAD is beneficial from several 

points: 

- It involves a minimal number of processing steps;  

- Profens are used in their free acidic form; 

- There is no need for organic solvents for drug loading;  

- There is no need for salt conjugates or soft gel liquid capsules.  

4. Conclusion 

Heated mixtures of IBU with high surface area nanocellulose, i.e., CLAD, become amorphous 

and show enhanced solubility and bioavailability of free acidic form of the drug in vitro in 

biorelevant media and in vivo in rats. The low surface area, traditional tableting excipient MCC does 

not show such an enhancing effect. The possibility of amorphization of other substances from 

profens, i.e. KET, FLB, and NAP, is confirmed by various solid-state characterizations. Future 

studies should explore the long-term stability issues and include PK studies benchmarked against 

commercial analogues. 
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Abbreviations 

IBU ibuprofen 

MCC microcrystalline cellulose 

CLAD Cladophora cellulose 

DSC differential scanning calorimetry 

SGF simulated gastric fluid 

FaSIF fasted simulated intestinal fluid 

FeSIF fed simulated intestinal fluid 

KET ketoprofen 

XRD X-ray diffraction 

FTIR Fourier-transform infrared spectroscopy 

FLB flurbiprofen 

NAP naproxen 

Appendix 

 

Figure A1. X-Ray diffraction (XRD) profiles of pristine (A) MCC and (B) CLAD. 

Table A1. Composition of biorelevant media as reported by manufacturer (Biorelevant Inc). 

Component 

Concentration mM 

SGF FaSIF FeSIF 

Taurocholate 0.08 3 15 

Phospholipids 0.02 0.75 3.75 
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Sodium 34 148 319 

Chloride 59 106 209 

Phosphate - 29 - 

Acetic acid - - 144 
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