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Abstract: Mechanical, thermal, chemical, or ischemic injury of the central or peripheral nervous system
results in neuron loss, neurite damage, and/or neuronal dysfunction, almost always accompanied
by sensorimotor impairment which alters the patient’s life quality. The regenerative strategies
for the injured nervous system are currently limited and mainly allow partial functional recovery,
so it is necessary to develop new and effective approaches for nervous tissue regenerative therapy.
Nanomaterials based on inorganic or organic and composite or hybrid compounds with tunable
physicochemical properties and functionality proved beneficial for the transport and delivery/release
of various neuroregenerative-relevant biomolecules or cells. Within the following paragraphs, we will
emphasize that nanomaterial-based strategies (including nanosized and nanostructured biomaterials)
represent a promising alternative towards repairing and regenerating the injured nervous system.
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1. Introduction

The main role of a nervous system is to integrate the corresponding organism into the world
around it, by balancing a very precise relationship between its fundamental principles, namely data
collection, information processing, and response selection. Asserting the nature of neuronal networks,
the accuracy and speed by which billions of neurons come together within the central nervous system
to achieve different functions is astonishing. Some authors have gone as far as to consider that this
level of complexity is an expression of quantum mechanics, thus giving life to the quantum brain and
quantum conscience concepts [1,2].

In any case, although the nervous tissue is such a vital component for invertebrate and vertebrate
organisms, with regards to the human nervous system, the adult neuron is a very fragile cell, being
irreplaceable within the central nervous system (except for a few suspected situations). The majority of
a neuron’s energy reserves are used for maintaining synaptic potentials and neurofilament structural
dynamics, which form the main backbone of neuronal computations. For this reason, other supporting
cells (neuroglia) are required to help with vital key roles, such as ion and water homeostasis, defense
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against oxidative stress, energy storages, tissue repair and scar formation, modulation of synaptic
activity through gliotransmitters, and synapse formation/ remodeling [3,4]. Since the main focus
of the current paper is directed towards medical end-goals, any discussion moving forward will be
considered with regards to human physiology.

As we previously mentioned about the exception to the irreversible neuronal damage concept,
it must be stated that there is conflicting evidence for neurogenesis within the central nervous system
(CNS), with supporting studies pointing mainly at the sub-granular zone of the hippocampal dentate
gyrus, subventricular zone of the lateral ventricular wall and the amygdala [5], where learning and
memory processing is considered to unfold, while other studies being unable to identify such properties
in the adult mammalian brain [6].

In any case, outside of these territories, any injury to the CNS that is severe enough to produce
neuronal cell body death will be followed by a cascade of biochemical events that ultimately lead
to liquefactive necrosis. The necrotic core will be surrounded and isolated by a glial scar, in time
ultimately forming a cerebrospinal fluid-like low-density well-circumscribed region that replaces the
once noble neuronal tissue. The end result will be the subsequent loss of function and expression of
different types of clinical syndromes [7,8]. With this in mind, it is important to understand that direct
neuronal cell body is not the only cause of clinical dysfunction, since white matter lesions, hence axonal
injury, can also result in severe dysfunction, by interrupting important signals from the neuronal cell
body [9,10]. It is also important to note that any lesion, be it grey or white matter located, will also
damage surrounding neuroglia, which are represented by astrocytes, oligodendrocytes, ependymal
cells and microglia in the CNS, and Schwann and satellite cells in the peripheral nervous system (PNS).

In contrast, the peripheral nervous system’s auto-repair capacity greatly outperforms that of the
CNS, being capable of regenerating nerve fibers with speeds ranging from 1 mm/day in small nerves
to 5 mm/day in large nerves [11]. The most important factor influencing the regeneration potential of
the two systems is the type of glial cell present and its particular behavior in response to threat, injury,
and maintenance.

Schwann cells wrap around only one axon, thus multiple cells are required to fully insulate a
nerve fiber. When nerve damage occurs, the distal section of the axon (relative to the site of injury)
remains electrically excitable, but will eventually undergo Wallerian degeneration within 24–36 h of
the lesion. This phenomenon refers to the process of cleaning the myelin sheath fragments and axonal
debris that follows the axonal skeleton and membrane disintegration, which occurs due to the severing
of the molecular transport pathway from the neuronal cell body. As it currently stands, Schwann
cells, alongside recruited macrophages, are implicated in this process and it ends with the former
proliferating and forming special tubes (Büngner bands) in which they express surface molecules that
guide the axonal growth cone of the proximal regenerating fibers [12,13].

In comparison, oligodentrocytes can produce myelin sheaths for up to 50 axons, but their survival
depends on signals from within the axons themselves [14]. This means that during the Wallerian
degeneration that follows white matter lesions, the axonal disintegration will eventually induce
apoptosis of the corresponding oligodendrocytes, thus failing to quickly recruit macrophages to help
clean the myelin/axonal debris, which by themselves have inhibitory effects for the regenerating
axonal growth cones, alongside the newly forming glial scar that also hinders reinnervation. Microglia
remains the primary cellular detritus cleaner, but they tend to hypertrophy, instead of transforming
into fully operational phagocytic cells, which makes them slower in comparison to macrophages
(which eventually enter the lesion site after 3–4 days) [15].

Fortunately, although the CNS lacks the cellular regenerative capacity of the PNS, it compensates to
a certain degree of functional recovery through a different and highly remarkable mechanism, known as
neuroplasticity [16,17]. This biological property emerges from the sheer electrical complexity of neuronal
networks linked throughout the CNS and their dynamic activity-modulated synaptic connection
maintenance, in accordance with Hebb’s postulate: “neurons that fire together, wire together”.
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In other words, through positive behavioral modifications reinforced by neuro-rehabilitation
techniques, it is possible to recruit the help of surviving adjacent neurons and the corresponding intact
white matter tracts (projection, association and commissural fibers) that connect them to ipsilateral
or contralateral neuronal populations within the CNS. The new synaptic connections formed at
various levels either try to relocate lost cortical functions to other adjacent areas of the ipsilateral
neocortex, or try to compensate and reroute signals in an attempt to “borrow” neuronal functions from
the contralateral cerebral hemisphere (or spinal cord) and bypass the dysfunctional regions and/or
connections [18,19].

2. Nervous System Regenerative Therapy

The intrinsic ability of healthy nervous system to remodel itself, to generate particular
experience-derived response and to analyze complex information is impressive. Injured central and
peripheral nervous system leads to permanent tissue damage and significant functional impairment.
The limited innate ability of neural tissue for self-regeneration represents an attractive and challenging
concern for scientists regarding the development of novel neuroregenerative strategies. For what
concerns the particular field of modern neural tissue bioengineering, the regenerative potential related
to nanostructured biomaterials have been assessed with respect to traumatic or degenerative lesions
occurring in central or peripheral conditions.

The clinical and experimental therapeutic strategies for traumatic CNS (including brain and spinal
cord injury) are inherently limited due to (i) cellular heterogeneity and complex synaptic connections;
(ii) presence of endogenous inhibitory molecules associated with myelin and extracellular matrix
(ECM) or inhibitory proteins secreted by glial scar’s cells, which generally prevent axonal outgrowth
and regeneration; and (iii) complex ultrastructure of blood-brain barrier (BBB), which provides the
intrinsic regulation in CNS-related physiological and pathophysiological events [20–24].

For what concerns the first limitation in CNS regeneration, a massive progress was reported by
means of stem cells—based therapy. Thanks to their impressive potential to differentiate into mature
and functional neurons and neural cells, stem cells proved excellent and clinically effective candidates
for remyelination, axonal outgrowth and generation of signaling pathways [25–27]. Important results
were observed in CNS therapy by considering pluripotent human-derived embryonic stem cells [28–31],
fetal stem cells [32,33] and adult stem cells [34–36]. Moreover, other promising pre-clinical results for
CNS repair were mentioned by inducing transdifferentiation of resident and mature cells into neural
cells [37–39].

With respect to the hostile microenvironment of the lesion site within the CNS, modern therapeutic
approaches enable the subtle and precise alteration of injury site, as to combat inhibitory effects and
encourage regenerative processes [21,24,40]. By gathering extensive molecular and cellular biology
knowledge, as well as biotechnology and bioengineering expertise, various biomolecules were assessed
as beneficial for normal neural development and functional regulation, including growth factors [41–44],
neurotrophins [45,46] and ECM proteins [47–50].

In addition to the multidisciplinary considerations mentioned in the last paragraph, research in
the field of pharmacology remains essential in overcoming the BBB for CNS regenerative applications.
By properly selecting and specifically tuning the therapeutic candidate, various surpassing routes can
be achieved, such as BBB permeabilization followed by infiltration, endothelial-mediated transcytosis
and endothelial endocytosis followed by abluminal exocytosis [40,51–53]. Given the intricate
ultrastructure and accurate function of cerebral capillaries, surpassing the BBB is a major challenge
in neuropharmacology [54,55]. The implication of BBB in managing CNS conditions is essential and
extensive, but does not represent the main topic of the present paper. For thorough understanding,
systematic data evidence that specific and complex pharmaceutical considerations and solid research
are required to successfully deliver bioactive molecules across BBB [56–61].

By contrast, the PNS fibers possess significant self-healing ability, mainly thanks to the constructive
role of Schwann cells, which represent the counterparts of CNS glial cells [51,62].
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When the injury creates small gaps in the peripheral nerves (corresponding to maximum axonal
transection of 5 mm), direct anastomosis occurs and spontaneous regulatory processes mediated by
local biomolecules contribute to fascicular coaptation, axonal repair and nerve reinnervation [63–65].

On the other hand, the proper repair and regeneration of PNS nerves with larger gaps
require the implantation of nerve grafts [66–68]. The gold standard therapeutic procedure used
for severely injured peripheral nerves relies on autologous nerve grafts, which particularly extinguish
immunogenicity issues and favors microstructural repair and functional recovery [66,69,70]. Impressive
neuroregenerative potential was also observed for biomodified acellular nerve allografts [71–73].
Furthermore, tremendous attention was directed towards clinically relevant artificial grafts, namely
nerve guidance conduits that exhibit outstanding capacity to regenerate the injured peripheral
nerves [74–76]. Herein, the current approaches consider acellular grafts (including membranes,
meshes, scaffolds, tubes and gels) derived from ECM components [77–81] or new biomaterial-based
architectures [82–86].

The nanotechnology-derived techniques to manipulate matter at atomic and molecular scale
enable impressive methodologies and approaches to synthesize and engineer novel biomaterials.
Thanks to their versatile functionality and tunable biological behavior, nanomaterials proved suitable
candidates for neural repair and regeneration, being efficiently involved in modifying the nervous
tissue microenvironment [87–89], the regulatory process of neural responses [90–92], the specific and
selective delivery strategy of relevant drugs [93–95] and biomolecules [96–98].

3. Nanomaterials for Central Nervous System Regenerative Applications

Paclitaxel-encapsulated liposomes loaded within collagen microchannel scaffolds were recently
proposed as a promising strategy for spinal cord injury repair. Following the treatment with
liposomes embedded with the microtubule-stabilizing chemotherapeutic agent, an enhanced neuronal
differentiation of neural stem cells (NSCs) was reported. The microchannel scaffolds provided a
sustained release of paclitaxel from the liposomes, which resulted in an enhanced differentiation of
both grafted and endogenous NSCs into mature and functional sensory and motor neurons (as assessed
in a rat animal model with complete thoracic transection). Moreover, the collagen scaffolds loaded
with paclitaxel-encapsulated liposomes promoted the animal locomotion recovery, as evaluated for up
to 8 weeks [99].

The incorporation of growth factors (GFs) within nanomaterials and nanodevices (either by
physical or chemical loading) represents a suitable and versatile approach adopted for neuroregenerative
or neuroprotective strategies designed for peripheral or central neural therapies [65,100]. Dextrin-GFs
conjugates were recently evaluated as beneficial platforms for local and sustained delivery of bioactive
proteins involved in neural regenerative processes, providing enhanced and prolonged proliferation,
specific nerve cell differentiation and inhibited apoptosis of mouse-derived neural stem cells (mNSCs).
The biopolymer-protein formulations, obtained by conjugating succinoylated dextrin with epidermal
growth factor (EGF) and basic fibroblast growth factor (bFGF), proved a sustained release of GFs
following the incubation with amylase at concentrations similar to the cerebrospinal fluid physiological
levels. As assessed in mNSCs cultures, dextrin-GF conjugates stimulated the expression of nestin
protein (associated with neural progenitor), as well as the regulated expression of neural differentiation
markers (associated with neuron, astrocyte and oligodendrocyte cells) [101].

Thanks to their intrinsic ability to modulate immune response by specifically binding the
inflammatory monocyte receptors, synthetic and highly negatively charged nanoparticles—also
known as immune-modifying nanoparticles (IMPs)—are in the spotlight of modern tolerant immune
nanoparticle-based pharmacotherapy [102,103]. The intravenous administration of commercial IMPs
based on carboxylated poly(lactide-co-glycolide) (PLGA, 500 nm particle size) in mice with spinal
cord injury resulted in immediate reduction of the local inflammatory response, but also in the
long-term reduction of fibrotic scarring and the levels of chondroitin sulphate proteoglycans deposits
(as assessed for up to 10 months). Moreover, the PLGA-based treatment also maintained glial scarring



Pharmaceutics 2019, 11, 266 5 of 22

and demyelinization levels, increased regional and caudal axon densities (as evaluated for up to
6 months) and significantly improved motor function [104].

In a study performed by Zamproni and co-workers, spherical micro- and nanoparticles based on
PLGA were evaluated as promising encapsulation and release platforms for stromal cell-derived factor 1
(SDF-1), a chemokine responsible for neuron migration during embryonic development [105,106].
The obtained systems (with 4.83 ± 0.33 µm and 167.9 ± 0.38 nm mean particle size, respectively)
enabled superior encapsulation of SDF-1 (above 84%) and resulted in effective and sustained release of
the protein, with a particular prolonged release profile in the case of the PLGA nanoparticles. Both
polymeric formulations enabled physiological levels of the released SDF-1, thus providing the suitable
microenvironment for cellular chemotactic response. The PLGA/SDF-1 system proved neurogenesis
potential only in nanoparticle formulation, since the investigated traumatic mouse brain injury was
significantly repaired by the superior recruitment of neuroblasts towards the injured site [107].

Another study proved the efficiency of negatively charged PLGA nanoparticles (293 ± 19 nm) to
provide the encapsulation-free release of positively charged CNS-relevant molecules from composite
polysaccharide hydrogels by means of sole short-range electrostatic interactions. The copolymer
nanosystems loaded with SDF or NT-3 (neurotrophin-3) and BDNF (brain-derived neurotrophic factor)
molecules by electrostatic adsorption, resulted in a burst-free and sustained release (for up to 28 days) of
the CNS proteins from hydrogels, which are based on cross-linked methylcellulose (XMC) or physically
blended hyaluronic acid and methylcellulose (HAMC), respectively. Interesting fact, similar release
profiles were reported in the case of protein-embedded and non-covalently protein-loaded PLGA
nanoparticles, with only an increased amount of released proteins being reported in the first case [108].

The same research group observed the beneficial release of SDF chemokine and chondroitinase
ABC (ChABC, an enzyme purified from Proteus vulgaris that is responsible for the degradation of
chondroitin sulphate proteoglycan within glial scars, with inhibitory effects against myelin proteins
within the nervous system) [109,110] with respect to the combined regenerative potential of the neural
tissue. As observed in a rat model for up to 8 weeks, the thoracic local injection of methylcellulose
hydrogels obtained by cross-linking either with SDF-loaded PLGA nanoparticles or with ChABC
specific peptide and protein, resulted in improved and sustained locomotor behavior. When compared
to sole chemokine-loaded hydrogels, both ChABC-loaded XMC and XMC co-loaded with ChABC
and SDF enabled reduced levels of glial scars’ specific glycosaminoglycan chains and enhanced the
migration of endogenous neural precursor cells [111].

A multi-step synthesis process was employed for the formation of complex nanosystems based
on chitosan and branched polyethyleneimine (CS-g-PEI), conjugated by means of polyethylene glycol
(PEG) with covalently linked cyclic arginine-glycine-aspartate (cRGD) and twin-arginine translocation
(TAT) peptides. The resulted positively charged and spherical shaped polyplexes (mean particle
size below 150 nm) proved excellent biocompatibility and DNA condensation capacity (as evaluated
by monitoring a fluorescent plasmid reporter gene) in NIH 3T3 and 293T normal cells and HeLa
tumoral cells. Moreover, improved transfection potential was assessed in all cell cultures, and the
293T cells treated with polymeric carriers embedded with NT-3 gene resulted in neuron and astrocyte
differentiation, and neurite growth stimulation in neural stem cells derived from mice. Within this study,
the complex polymeric carriers embedded with the gene encoding the NT-3 protein—a representative
of nerve growth factors (NGF) which promotes peripheral or central neural survival, differentiation
and new synapses formation [112,113]—were evaluated as a promising stem cells-based strategy for
neural therapy [114].

An attractive strategy embraced to develop neuro-active platforms intended to provide enhanced
cellular recruitment, sustained survival, and retention of cells, is to induce or potentiate the sensitivity
of biomaterials for specific receptors involved in chemokine-mediated regenerative processes [115,116].
For example, biomaterials based on hyaluronic acid HA proved significant roles towards the
overexpression of chemokine receptors in different stem cells types [117,118].
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Porous composite hydrogels based on hyaluronic acid and laminin (HA-Lm) demonstrated
stiffness values similar to native neural tissue and suitable microstructure for cellular migration,
which resulted in enhanced survival and proliferation of neural progenitor stem cells (NPSCs).
The composite hydrogels stimulated the overexpression of CXCR4 receptor (the principal receptor of
SDF-1α chemokine), which subsequently promoted the chemotactic-guided migration of NPSCs by
following SDF-1 gradients [119]. Furthermore, the co-injection of NPSCs suspension and HA-Lm gels
into adult mice brain significantly increased cellular transplant retention during a 3-day treatment. Also,
an increased and sustained migration of transplanted NPSCs towards the injection site of exogenous
SDF-1αwas reported. Complementary results proved that the enhanced transplant retention was a
consequence of sole HA-Lm composite gel, whereas the in vivo migration of transplanted NPSCs was
the consequence of SDF-1α-mediated chemotaxis [120].

Jian and co-workers recently assessed the neural regenerative potential of hydrogel matrices based
on HA incorporated with polyelectrolyte complex nanoparticles (PCN) based on heparan sulphate or
chondroitin sulphate non-covalently loaded with SDF-1α chemokine or bFGF growth factor, respectively.
As evaluated during in vitro tests, the nanostructured hybrid materials proved an extended preservation
time for the loaded bioactive molecules and showed sustained release, but also manifested an accelerated
biomolecule release, following the exposure to matrix metalloproteinase (MMP, zinc-containing and
calcium-dependent proteolytic enzymes up-regulated after brain injuries that are capable of degrading
all components of ECM during structural and functional tissue repair) [121–123]. Moreover, the
biomolecule-incorporated PCN, loaded within HA matrix, proved the ability to recruit endogenous
NSC by chemotactic means, but also to facilitate their migration and proliferation. After local injection
in a photothrombotic ischemic rat brain, the in situ gelation of the nanostructured hydrogel was
reported, followed by significant reduction of the infarcted cavity and improved functional recovery.
The authors reported enhanced endogenous neurogenesis and stimulated angiogenesis after one month
of experimental treatment [124].

Highly porous and aligned hydrogel tubes based on PEG were recently proposed as platforms
with in situ gelation properties for regenerative therapy in spinal cord injury. Starting from PEG
microspheres and followed by an ultraviolet-initiated radical polymerization procedure performed in
polydimethylsiloxane molds, PEG tubes (inner and outer diameters of 250 and 450 µm, respectively)
were obtained. The emulsification-synthesized PEG microspheres (45 µm average diameter) provided
suitable macroporosity (66.5%) for cellular infiltration. PEG tubes were further incorporated within
a fibrin matrix, forming a 5-tube composite material that was implanted in mice with induced
thoracic spinal cord injury. The composite hydrogel induced a reduced inflammatory response
period and a reduced glial scar formation. Moreover, the tubular structure proved beneficial for
the infiltration of endogenous cells, for the support and guidance of axon elongation, and superior
oligodendrocyte-derived re-myelinization with better recovery of locomotor function [125].

Composites based on silk fibroin (SF) and biologically derived melanin were processed by
electrospinning either in random or aligned nanofibrous meshes, with highly hydrophilic properties
and increased thermal stability. Both melanin-containing SF materials exhibited antioxidant activity,
with superior results in the case of the randomly distributed nanofibers. All composites showed
superior proliferative ability for neuron-like cells, but only the aligned distribution proved more
beneficial for cellular attachment and spreading. Moreover, all meshes induced neuronal differentiation
of human-derived neuroblastoma cells, thus confirming the potential use of melanin-containing SF
nanofibrous scaffolds for restoration and repair of CNS nerves [126].

Zeng and co-workers reported that mesenchymal stem cells (MSCs) overexpressing NT-3 receptors,
differentiate into neuron-like cells and possess active roles in synapse formation following their
co-culture period of 14 days alongside Schwann cells that overproduce NT-3 in 3-dimensional gelatin
sponge (GS) scaffolds. When transplanted in rats with thoracic spinal cord injury, the intra-GS
differentiated MSCs were partially integrated into the host neural network and promoted structural
and functional hindlimb recovery [127].



Pharmaceutics 2019, 11, 266 7 of 22

More recently, the research group successfully achieved the MSC-differentiated neural network
by applying previously mentioned genetic engineering and GS co-culture protocols to canine-derived
bone marrow progenitor cells and sciatic nerve glial cells. The co-culture enabled the MSCs to adopt
neuronal phenotypes, to develop synapse-like structures and to exhibit electrophysiological functions
(as shown by assessing the presence of voltage-gated ion channels, the potential of neurotransmitter
synthesis and transmission of synaptic currents). Moreover, the 3-dimensional GS scaffold provided the
beneficial substrate for ECM formation. The as-developed MSC-derived neural network tissues were
further transplanted in Beagle dogs with complete thoracic spinal cord transection with the long-term
(6.5 months) post-transplant evaluation showing significant nerve fiber regeneration. Also, a gradual
motor function recovery of the paralyzed limbs was reported both in open field and underwater
locomotion tests, as well as an important recovery of the front-pelvic limb coordination and an
improved electrophysiological restoration [128].

The axonal regenerative potential related to dibutyryl cyclic adenosine monophosphate (db-cAMP)
and chondroitinase ABC (ChABC) was considered in the development of electrospun microfibers
based on poly(propylene carbonate) (PPC) impregnated with both biomolecules. An initial burst
release of db-cAMP was observed in the first 24 h, followed by a sustained release profile until
day 8 and accompanied by 46.76% total agent release. A progressive release of ChABC was also
observed for up to 10 days, with no burst release and with a total biomolecule release rate of 25.90%.
The overexpression of neural growth-associated proteins was reported following the implantation of
co-loaded PPC microfibrillar meshes in rats with hemisected thoracic spinal cords. Important axonal
regenerative sprouting was also observed within the glial scars, as well as significant inhibition of glial
scar formation. PPC modified microfibers provided significant motor function recovery, showing that
the sustained co-delivery of db-cAMP and ChABC from polymeric matrices represents a promising
strategy for CNS-related regenerative applications [129].

Another nanostructured candidate with regenerative potential for spinal cord injury treatment
was proposed by considering polysialic acid (PSA) polysaccharide, whose expression level is in direct
relationship with the neural cell membrane adhesion molecules, thus suggesting the possibility of
modulating the intercellular and cell-ECM interactions [130,131]. Thus, Zhang and co-workers developed
hybrid scaffolds based on polycaprolactone (PCL) and PSA encapsulated with methylprednisolone
(MP) glucocorticoid. The electrospun nanofibrous scaffold exhibited suitable tensile strength and
convenient deformability and flexibility. In the presence of astrocytes and neuroblastoma cells, the
hybrid PCL/PSA/MP scaffolds were assessed as non-cytotoxic and suitable substrates for cellular
attachment and proliferation. Following the implantation of PCL/PSA/MP scaffolds in rats with thoracic
spinal cord lesion, the authors reported a reduced acute inflammatory response (by inhibiting local
levels of pro-inflammatory cytokines) and apoptosis inhibition. The long-term tests (performed for up
to 7 weeks) showed that the hybrid scaffolds significantly reduced glial scar formation, and improved
axonal myelinization and superior neuronal survival, showing the improved structural and functional
recovery after treatment with PCL/PSA/MP scaffolds [132].

A versatile member of the so-called smart biomedical materials and devices entity is represented
by electroactive biomaterials, whose facile microstructural and electrical conductivity tailoring allows
impressive possibilities for externally triggering specific bioactivities and developing genuine platforms
for neuroregenerative applications [133–135].

Biodegradable and electrically conductive nanostructured materials were obtained by the
interface polymerization of poly(3,4-ethylenedioxythiophene) nanolayer onto the channel surface of
chitosan/gelatin scaffolds. The PEDOT/CS/Gel composite scaffolds, with 3-dimensional architecture
and highly porous microstructure, proved suitable and superior substrates for NSCs adhesion when
compared to pristine CS/Gel scaffolds, thanks to the beneficial contribution of the nanostructured
PEDOT layer. Moreover, the PEDOT-assembled CS/Gel scaffolds proved enhanced cellular proliferation
(as assessed by monitoring specific proliferation-related and cellular metabolism markers), maintenance
of normal cell growth and superior intra-pores cellular migration. The pluripotent ability of neural
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stem cells cultured in the presence of PEDOT/CS/Gel scaffolds enabled their differentiation into neural
cells, with superior data being reported for mature neurons and astrocytes (evaluated by up-regulation
of specific proteins expression) [92].

The potential clinical implication of nanostructured biomaterials based on reduced graphene oxide
(rGO) in regenerative applications for spinal cord injury was recently demonstrated. The implantation
of highly porous rGO foams, with mechanical behavior similar to neural tissues, into hemisected
cervical spinal cord rats did not alter the animal spontaneous behavior, nor induced toxicity in main
organs. The implanted rGO foams provided structural support within the injury site and proved
beneficial for infiltration and migration of endogenous cells and collagen fibers. Moreover, the rGO
nanostructured aerogels determined a reduced local inflammation response, ingrowth of myelinated
axons, and significant angiogenesis. rGO sheets dissociation and cellular internalization was reported
at 4 months post-implantation, indicating the first biodegradability data of rGO-based materials [136].

4. Nanomaterials for Peripheral Nervous System Regenerative Applications

Among the smart biomaterials class—which represent the ultimate healthcare-derived
desideratum in terms of specific, selective, tailored, and patient-oriented therapy—stimuli-responsive
biopolymers are of great interest [137–139]. The physicochemical, microstructural and functional
modifications occurring during certain external conditions (such as pH or temperature variation and
electromagnetic or ultrasound filed presence) enable impressive tuning possibilities in developing
novel, performance-enhanced and patient-oriented modern therapies [140–142].

Positively charged nanoparticles based on thiolated trimethyl chitosan nanoparticles grafted
with tetanus neurotoxin (TMCSH-HC) and loaded with plasmid DNA encoding BDNF gene were
assessed as suitable non-viral carriers for peripheral nerve injury therapy. BDNF exhibits significant
actions in both CNS and PNS, being responsible for the survival and normal development of sensory
and motor neurons, as well as for the promotion of growth and differentiation of new neurons and
synapses [143–145]. Following the intramuscular administration in mice with sciatic nerve induced
injury, the TMCSH-HC/BDNF platforms induced locomotor function recovery and delayed, but
improved recovery of thermal and mechanical sensory functions, as well as enhancing pro-regenerative
events, such as overexpression of growth-associated neural proteins, preservation of unmyelinated axons
density, enhancement of myelinated axons density and protection of injury-denervated muscles [146].

Li and co-workers performed a combined micromolding—lyophilization procedure to fabricate
chitosan (CS) conduits with longitudinally disposed and highly aligned ridge/groove in-wall structure
and wall interpenetrated porous microstructure (porosity about 88.19 ± 0.75%). The micropatterned
CS conduits exhibited mechanical behavior (tensile strength, elasticity deformation, folding and
knotting flexibility) comparable to normal rat sciatic nerve. After implantation of micropatterned CS
conduits in sciatic nerve injured rats, the authors reported regenerative potential comparable or slightly
superior to the autografted group, including reinnervation of adjacent muscles, cellular infiltration, and
intra-luminal nerve tissue growth and recovery of sciatic nerve myelination. The polysaccharide-based
conduits with luminal in-wall pattern proved as promising candidates for prolonged regenerative
therapy of peripheral nerves, since a slow degradation of micropatterned CS conduits was reported
3 months post-implantation [147].

Thanks to their intrinsic mechanical-induced electrical behavior, piezoelectric biomaterials
attracted significant attention regarding the development of biological-mimicking structures or devices
intended for particular bone tissue restorative and regenerative strategies [148–151]. Surprisingly,
it was reported that calcium titanate (CaTiO3) nanoparticles homogenously embedded within chitosan
(CS) scaffolds proved beneficial with respect to the peripheral nerve regeneration. While increasing the
perovskite concentration within hybrid materials, the CS/CaTiO3 scaffolds exhibited decreased porosity
and pore dimension and increased negative surface charge and hydrophobic feature. The addition
of CaTiO3 nanoparticles resulted in prolonged (for up to 5 days) and beneficial effects on Schwann
cells, for what concerns their normal development (as assessed following the attachment, distribution,
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proliferation and morpho-structural integrity of cells) and physiological behavior (as assessed by
monitoring the expression of specific neural growth factors) [152].

PEI nanoparticles (40 ± 10 nm) embedded with plasmid DNA (pDNA) encoding
neurotrophin-associated genes were proposed by Lackington and co-workers as suitable non-viral
carriers for neural regenerative applications. The positively charged polymeric platforms, which
proved superior complexation efficiency and prolonged enzymatic protection of pDNA, were assessed
as enhancers for Schwann cell transfection efficiency (60 ± 13%), with no long-time effects in terms of
proliferation and metabolic activity. The polymer complexes loaded with genes encoding NGF, GDNF
(glial derived neurotrophic factor, responsible for the survival of motor and sensory neurons and
Schwann cells) [153,154] and c-Jun (transcription factor implied in reprogramming and up-regulation of
injured Schwann cells) [155,156], proved superior in expressing neurotrophic cytokines and promoting
neurite outgrowth in both Schwann and neuronal cells derived from rat dorsal root. The most promising
cellular regenerative potential was assigned to the PEI-pDNA nanosystems embedded with c-Jun
encoding gene [157].

Zhang and co-workers proved that PLGA microspheres represent a promising platform for
sustained and sequential delivery of erythropoietin (EPO) and NGF. To avoid early nerve apoptosis
following the administration of NGF, the protein release was postponed by introducing bovine serum
albumin (BSA) within the PLGA microsphere matrix. Motor function recovery, electrophysiological
improvement, fibrosis decrease, and axon myelinization increase were reported at 2 months after the
co-administration of EPO/PLGA and NGF/BSA-PLGA microsystems in sciatic nerve injured rats [158].

The immobilization or incorporation of nectin-like molecule 1 (NECL1) onto or within biomaterials
represents an attractive strategy to mimic the microenvironment of the nervous system. NECL1 is
an immunoglobulin-like molecule specifically expressed by the neural tissue, being responsible for
cell-cell interactions, synapse and myelinated axons formation and brain morphogenesis [159–161].
PLGA membranes modified with NECL1 (50 ng/mL concentration) proved as beneficial substrates
for the attachment, proliferation and normal growth of rat-derived Schwann cells (as shown by both
morphological consideration and neurotrophic factor gene expression). Furthermore, the composite
biomaterials were mechanically processed to form PLGA/NECL1 conduits which were implanted in rats
with induced sciatic nerve injury. Following a 3-month animal treatment, progressive time-dependent
events were reported, such as significant functional recovery of sciatic nerve, improved recovery
of nerve conduction velocity and reduced weight loss of adjacent muscle. Since both motor and
sensory nerve functions were restored and the local non-aberrant reinnervation was promoted, the
PLGA/NECL1 conduits were proposed as promising candidates for peripheral nerve regenerative
applications [162].

Artificial conduits based on linearly oriented multi-walled silk fibroin / silk sericin blend (SF/SS,
90/10 wt.%) coated with a hollow PLGA sheath were successfully assessed for peripheral nerve
regenerative applications. At 45 days after implantation in rats with sciatic nerve defects, the
highly transparent and porous PLGA/SF/SS conduits showed no clear signs of systemic or local
inflammation, but determined the gradual recovery of limb motor function. In comparison with the
autografted rats, the PLGA/SF/SS-treated animals manifested similar electrophysiological recovery,
slightly superior regenerated nerve fibers and myelinated nerve axons and comparable adjacent muscle
reinnervation [163].

The beneficial implications of electrically active biomaterials in neural tissue regeneration [134,164]
enabled the evaluation of highly porous and hydrophobic meshes based on poly(L-lactic) acid (PLLA)
for such specific applications. The PLLA meshes, consisting of highly aligned polymeric nanofibers
obtained by electrospinning, proved a narrow distribution of thermally stimulated depolarization
currents and a high stability of corona-induced polarization (for up to 6 months). The developed
nanostructured materials were evaluated as suitable platforms for the proliferation of neuroblastoma
cells, while their intrinsic polarization potentiated the neuronal differentiation under retinoic acid
exposure. Moreover, as assessed on primary embryonic cortical neuronal cultures, the presence
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of polarized PLLA meshes (either positively or negatively poled surfaces) stimulated an improved
neuritogenesis with ~30%, in comparison with non-poled meshes [165]. Also, PLLA nanofibrous
meshes coated with polypyrrole (Ppy) proved to induce the transdifferentiation of bone mesenchymal
stromal cells (BMSCs) into neural cells in the presence of external electrical stimulation. Moreover,
the addition of NGF to the culture medium or the modification of PLLA/Ppy nanofibers with laminin
proved synergistic effects with respect to the transdifferentiation ability of BMSCs under proper
electrical stimulation conditions [166].

Jing and co-workers proposed composite conduits based on electrospun parallel-aligned PLGA
fiber-based meshes coated with Ppy for peripheral nerve regeneration. When compared to electrospun
PLGA mesh, the PLGA/Ppy fibrous mesh proved good dimensional stability following its testing
under physiologically simulated conditions, but slightly reduced tensile strength and elasticity. On the
other hand, when assessed in the presence of primary neuron-like cells, the Ppy-coated PLGA fibrous
meshes displayed non-cytotoxicity, enhanced cellular attachment, fast cellular proliferation rate,
and predominant oriented cellular morphology. After inductive culture conditions, the PLGA/Ppy
composite also induced the most significant neurite outgrow and spreading, indicating the potential
of parallel-aligned conductive fibers for mature neural cells differentiation. The 12-week evaluation
performed under physiological conditions showed that the constructed PLGA/Ppy conduit possessed
prolonged and sustained degradation (accompanied by ~40% weight loss) and maintained their tubular
morphology. Following the implantation of PLGA/Ppy fibrous conduits in sciatic nerve transected
rats and compared to autografted animals, similar functional and electrophysiological recovery and
regenerated axons were reported 12 weeks after implantation procedure [167].

The non-cytotoxic and superior electroactivity related to Ppy was also employed to modify
the surface of poly(L-lactide-co-ε-caprolactone)/silk fibroin (PLCL/SF) nanofibrous membranes.
Polypyrrole nanoparticles were superficially deposited onto electrospun nanofibers by applying
an oxidative polymerization process. In comparison with pristine PLCL/SF membranes, the Ppy-coated
composites exhibited similar thermal stability, but possessed electrical conductivity and pronounced
hydrophilicity, as well as enhanced mechanical properties. The PLCL/SF-Ppy membranes proved
beneficial for the proliferation of Schwann cells under normal culture conditions, but an external
electrical stimulation encouraged even more enhanced proliferation rates and spreading. Superior
cellular proliferation was also reported in the case of primary neuron-like cells cultured with
PLCL/SF-Ppy nanofibrous membranes. However, only by applying electrical stimulation, the
differentiation ability of neuron-like cells into mature neural cells was reported, as demonstrated both by
the presence of many branched neurites and extended axons and by the monitoring of neuron-associated
gene expression [168]. By the facile modification of the collector during the electrospinning process, the
same research group fabricated hollow conduits of PLCL/SF, whose surface was further modified with
a Ppy nanoparticle layer. After implantation of PLCL/SF-Ppy conduits in rats with sciatic nerve injury,
the authors reported re-bridged and regenerated nerves. In comparison with autografted subjects,
the PLCL/SF-Ppy-treated animals possessed similar local invasion and proliferation of endogenous
Schwann cells in both early and later healing stages (4 and 12 weeks post-surgery, respectively), but
similar promotion of myelin formation only in later post-surgical stage. The long-term microstructural
investigations showed that the PLCL/SF-Ppy conduits enabled the substitution of the induced nerve
gap with regenerated nerve tissue, which mainly consisted of myelinated nerve fibers. Moreover,
the functional recovery of the PLCL/SF-Ppy-treated animals was comparable to the autografted
ones, showing that the polypyrrole-coated PLCL/SF nanofibrous conduits could represent promising
alternatives for autograft-based therapy in peripheral nerve regeneration [169].

By combining molding and thermally induced phase separation procedures, Uz and co-workers
developed gelatin-based conduits for MSC cultures. The synthesized platforms possessed different
microstructures, namely nanofibrous (NF, opaque after water contact, total porosity of ~95%, swelling
ratio of ~160%, the stiffest conduit), macroporous (MP, transparent after water contact, pore size of
~100 µm, swelling ratio of ~800%) or ladder-like (LL, transparent after water contact, pore size of
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~150 µm, swelling ratio of ~900%), but preserved their elastic behavior and maintained their solid
nature at physiological temperatures. The cultivation of MSCs in the presence of gelatin conduits
demonstrated improved cellular proliferation, but emphasized increased cellular spreading, cellular
network interconnection, and superior long-term cellular survival only for MP and LL structures. Both
MP and LL gelatin conduits proved high efficiency for the direct transdifferentiation into Schwann cells,
as shown by monitoring specific markers of glial cells. Still, the most promising data was attributed
to the LL gelatin conduits, which further showed the highest neurotrophic factors secretory capacity
and the greatest growth of neurite extension (the last being assessed in a co-culture experiment).
The proposed 3-dimensional conduits based on natural-derived gelatin are promising platforms for
MSCs-based regenerative therapy of peripheral nervous tissue [170].

Another study emphasized the potential use of fibrous scaffolds based on highly aligned
electrospun polycarbonate urethane (PCU) modified with neuroscience-relevant cationic hydrophilic
biomolecules of Poly-L-Lysine (PLL) or Poly-L-Ornithine (PLO). When compared to pristine PCU
scaffolds, both PLL- and PLO-modified materials significantly improved cellular attachment and
subsequent cellular proliferation in dental pulp stem cells cultures (with intrinsic potential for neuronal
differentiation). The most promising results, in terms of peripheral nerve regeneration potential, were
assigned to the PLO-modified PCU scaffolds [171].

Particular representatives of electroactive materials with tremendous implications in
neuroregenerative applications are graphene and its derivatives (that can be obtained by applying
various physical or chemical protocols). The atomic structure and electron distribution related to these
materials mainly dictate their superior properties, such as excellent mechanical behavior, distinctive
optical properties, increased thermal stability, superior electrical conductivity, excellent chemical
stability [172–174].

Single layers of hydrophilic graphene oxide (GO) and hydrophobic reduced graphene oxide (rGO)
proved as beneficial substrates for neuronal differentiation of adipose-derived stem cells (ADSCs),
with a neurogenic differentiation rate above 90%. In particular, GO-based mats provide an enhanced
proliferation and differentiation rate of ADSCs into neuron-like cells [175].

Wang and co-workers proposed the combination of allogeneic decellularized scaffolds and GO for
regeneration of injured peripheral nerve. Following the implantation procedure in rats with sciatic
nerve trauma, neither acute inflammation nor mid-term toxic effects (as shown by monitoring the
level of hepatic enzymes) were reported. Starting from the 11th week after implantation, the authors
reported muscle strength rehabilitation and electrophysiological functional recovery [176].

Electrospinning fabricated hybrid scaffolds based on sodium alginate (SA) and polyvinyl alcohol
(PVA) embedded with graphene nanosheets proved suitable microstructural features (uniform and
interconnected porous structure with superior hydrophobicity and prolonged degradation rate), as well
as beneficial mechanical (simultaneously improved tensile strength, toughness and elongation) and
electrical properties for peripheral nerve regeneration [177].

Reduced graphene oxide (rGO) nanosheets were deposited onto the surface of composite SF/PLCL
electrospun fibers towards the fabrication of scaffolds with randomly oriented constituent nanofibers,
nanoporosity and nanoroughness, prominent hydrophobic behavior, enhanced mechanical properties,
and prolonged conductive stability. The SF/PLCL/rGO scaffolds proved beneficial effects regarding
the proliferation, spreading, myelination, and neurotrophin secretion of Schwann cells, the results
being superior under electric stimulation conditions. The neurotrophin-enriched medium resulted
by removing the Schwann cells cultured with SF/PLCL/rGO proved enhanced differentiation of
the primary neuron-like cells. Moreover, the polymer scaffolds coated with graphene derivative
showed differentiation of neuron-like cells, with superior results after electrical stimulation. After
the implantation of SF/PLCL/rGO conduits into sciatic nerve injured rats, significant locomotor and
electrophysiological functional recovery of the regenerated nerve was reported (as assessed both at 4
and 12 weeks post-surgery and compared with autografted animals). Also, the fabricated composite
conduits showed no local inflammation but important invasion and proliferation of endogenous
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Schwann cells and induced significant nerve fiber regeneration and re-myelinization. Given the fact
that the healing capacity exhibited under endogenous electrical stimulation (animal model) by the
graphene-derivative-modified SF/PLCL conduits was similar to autografts, the SF/PLCL/rGO scaffolds
possess impressive potential for peripheral nerve repair and regeneration [178].

5. Conclusions

The complex microstructure and ultrastructure and the intricate physiology and pathophysiology
of the nervous tissue represent major challenges in developing new therapeutic strategies. Autografts
and stem cells—based therapies represent the current standards in nervous tissue regenerative strategies.
Even if substantial efforts have been oriented towards intensive research, the treatment possibilities
with clinically acknowledged efficiency for minimizing or reversing the damaged nervous system are
currently limited.

However, the impressive progress in nanotechnology with regards to molecular biology,
biotechnology, biophysics, biochemistry, materials science, and bioengineering enables researchers
to allocate resources towards specific, specialized, and personalized therapeutic approaches for the
nervous tissue. In the particular case of injured CNS and PNS, modern regenerative strategies focus on
exploring the tunable biological multifunctionality related to novel biocompatible nanomaterials.

Nanopharmaceuticals and nanostructured particles, nanostructured films and membranes,
nanostructured gels, and scaffolds showed promising clinical potential for neuroregeneration,
as efficient platforms for loading and conditional release of neuroprotective drugs, growth factors,
neurotrophins, chemokines, genes, and stem cells relevant in both CNS and PNS therapy. As discussed
above, biocompatible nanomaterials represent ideal candidates for the future of performance-enhanced
strategies in the field of nervous system repair and regeneration.
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Abbreviations

ADSCs adipose-derived stem cells
BBB blood-brain barrier
BDNF brain-derived neurotrophic factor
bFGF basic fibroblast growth factor
BMSCs bone mesenchymal stromal cells
BSA bovine serum albumin
ChABC chondroitinase ABC
CNS central nervous system
cRGD cyclic arginine-glycine-aspartate
CS chitosan
db-cAMP dibutyryl cyclic adenosine monophosphate
DNA deoxyribonucleic acid
ECM extracellular matrix
EGF epidermal growth factor
EPO erythropoietin
GDNF glial derived neurotrophic factor
Gel gelatin
GFs growth factors
GO graphene oxide
GS gelatin sponge
HA hyaluronic acid
HA-Lm hyaluronic acid-laminin
HAMC hyaluronic acid-methylcellulose
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IMPs immune-modifying nanoparticles
LL ladder-like
MMP matrix metalloproteinase
mNSCs mouse-derived neural stem cells
MP macroporous
MP methylprednisolone
MSCs mesenchymal stem cells
NECL1 nectin-like molecule 1
NF nanofibrous
NGF nerve growth factor
NPSCs neural progenitor stem cells
NSCs neural stem cells
NT-3 neurotrophin-3
PCL polycaprolactone
PCN polyelectrolyte complex nanoparticles
PCU polycarbonate urethane
pDNA plasmid DNA
PEDOT poly(3,4-ethylenedioxythiophene)
PEG polyethylene glycol
PEI polyethyleneimine
PLCL poly(l-lactide-co-ε-caprolactone)
PLGA poly(lactide-co-glycolide)
PLL poly-l-Lysine
PLLA poly(l-lactic) acid
PLO poly-l-Ornithine
PNS peripheral nervous system
PPC poly(propylene carbonate)
Ppy polypyrrole
PSA polysialic acid
PVA polyvinyl alcohol
rGO reduced graphene oxide
SA sodium alginate
SDF-1 stromal cell-derived factor 1
SF silk fibroin
SS silk sericin
TAT twin-arginine translocation
TMCSH-HC thiolated trimethyl chitosan nanoparticles grafted with tetanus neurotoxin
XMC cross-linked methylcellulose
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