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Abstract: Uncovering drug-target interactions (DTIs) is pivotal to understand drug mode-of-action
(MoA), avoid adverse drug reaction (ADR), and seek opportunities for drug repositioning (DR).
For decades, in silico predictions for DTIs have largely depended on structural information of both
targets and compounds, e.g., docking or ligand-based virtual screening. Recently, the application of
deep neural network (DNN) is opening a new path to uncover novel DTIs for thousands of targets.
One important question is which features for targets are most relevant to DTI prediction. As an early
attempt to answer this question, we objectively compared three canonical target features extracted
from: (i) the expression profiles by gene knockdown (GEPs); (ii) the protein–protein interaction
network (PPI network); and (iii) the pathway membership (PM) of a target gene. For drug features,
the large-scale drug-induced transcriptome dataset, or the Library of Integrated Network-based
Cellular Signatures (LINCS) L1000 dataset was used. All these features are closely related to protein
function or drug MoA, of which utility is only sparsely investigated. In particular, few studies have
compared the three types of target features in DNN-based DTI prediction under the same evaluation
scheme. Among the three target features, the PM and the PPI network show similar performances
superior to GEPs. DNN models based on both features consistently outperformed other machine
learning methods such as naïve Bayes, random forest, or logistic regression.

Keywords: drug target interaction; deep neural network; drug-induced transcriptome data;
drug repositioning

1. Introduction

In silico prediction of drug–target interaction (DTI) is becoming more data-driven than conventional
modeling-based approaches such as docking or molecular dynamic simulation. Deep neural network
(DNN) is increasingly being applied to highly complex and challenging problems such as protein
folding [1]. The vast majority of drugs and compounds are expected to interact with multiple targets,
i.e., polypharmacology [2]. While millions of DTIs have been identified, and increasingly keep being
revealed, it is still costly and time-consuming to validate DTIs experimentally even by high throughput
screening (HTS) [3]. It is most likely that there still exist unknown DTIs for both approved drugs and
clinical candidate compounds. Such hidden DTIs could critically impact the drug development process
including unexpected clinical outcome, or may broaden their indications through drug repositioning.

In order to facilitate identification of DTIs, a number of in silico approaches have been
developed [3–5]. There are three major approaches for compound virtual screening: ligand-based virtual
screening (LBVS), structure-based virtual screening (SBVS) such as docking, and the chemogenetic
method. Ligand-based approaches are based on the idea that structurally similar compounds tend
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to have similar binding properties to protein targets. This method requires a sufficient number of
known ligand information [6]. SBVS such as docking predicts DTIs by executing the simulation of
compound–target interactions based on their 3D structures. Therefore, docking is not or less applicable
to protein targets of which 3D structural information is not available or less reliable e.g., homology
models based on the poor template proteins of low sequence similarity [7,8]. Chemogenetic approaches
integrate heterogeneous information on both compounds and targets, and apply statistical and machine
learning techniques including deep neural network (DNN) to predict DTIs [9,10].

The release of Connectivity Map or CMAP, the first large-scale drug-induced transcriptome
dataset [11], has led to the identification of a number of drug repositioning candidates for various
diseases [12]. CMAP is also shown to be highly useful to elucidate a drug’s modes-of-action (MoA) [13],
and infer its unknown targets [14–16]. The initial version of CMAP is a collection of ~7000 drug-induced
expression profiles (DEPs) in human cancer cell lines treated with 1309 compounds. Recently, CMAP
has been extended to the L1000 dataset of Library of Integrated Network-based Cellular Signatures
(LINCS) [17], a resource containing 1.3 million gene expression profiles associated with 20,413 chemical
perturbagens and ~5000 genetic perturbagens (i.e., single gene knockdown or overexpression).

Although a number of repositioning drug candidates were discovered by CMAP approach based
on inverse pattern matching between drug- and disease-expression signatures [18–21], it remains a
challenge to identify their underlying physical targets. In LINCS dataset, the expression 955 landmark
genes (L1000 genes) were actually measured, and the inferred expression levels are provided for
additional ~12,000 genes. The expression information of the remaining ~8000 genes are essentially
missing, but LINCS dataset still demonstrated its utility in predicting DTIs. Several groups predicted
DTIs based on the assumption that drugs of similar DEPs would have common targets [14,15,22].
Schroeder and colleagues predicted targets using the protein–protein interaction (PPI) network based
on the observation that drug targets tend to enriched in neighborhood of expression signature genes [16].
Zhang and colleagues constructed DNNs based on both genetically perturbed expression profiles
(GEPs) and DEPs [23].

In spite of many promising results, these studies were developed and evaluated using different
features, and datasets for both training and test, which makes it difficult get an idea of best strategies
for further improvement based on comparative analyses. In this work, we investigated how different
types of target features affect the performance of DTI prediction based on the same evaluation scheme.
We took three representative target features of independent nature, i.e., knockdown GEPs (GEP),
PPI network (PPI), and pathway membership (PM), and performed objective comparisons in DTI
prediction under a series of parameter combinations. Notably, we tried just conventional design of
DNN architectures without any elaborate optimizations because, here, we mainly aim to report the first
objective comparison of target features for DTI prediction, which is expected to facilitate development
of more innovative approaches.

2. Materials and Methods

2.1. Extraction of Drug Features

We obtained the LINCS L1000 dataset, which includes ~205,034 genes expression profiles perturbed
by more than 20 K compounds in 71 human cell lines. LINCS L1000 was generated using Luminex
L1000 technology, where the expression levels of 978 landmark genes were measured by fluorescence
intensity [17]. The LINCS L1000 dataset provides five different levels of dataset depending on the stage
of data processing pipeline. The Level 1 dataset contains the raw expression values from Luminex
1000 platform; the Level 2 dataset gives the gene expression values for 978 landmark genes after
deconvolution; the Level 3 provides normalized gene expression values for the landmark genes as well
as imputed values for an additional ~12,000 genes; the Level 4 dataset contains z-scores relative to the
all the samples or vehicle controls in the plate. The Level 5 dataset is the expression signature genes
extracted by merging the z-scores of replicates; We used the Level 5 data marked as exemplar signatures,
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which is relatively more robust, thus reliable set of DEGs (Differentially Expressed Genes). We took
the concatenated expression values of 978 landmark genes for both drug-induced expression profiles
(DEPs) and their untreated controls, resulting in a vector of 978 + 978 = 1956 in length. Since there are
multiple untreated controls, we took the median values of replicates.

2.2. Extraction of Target Features

2.2.1. Expression Profiles by Gene Knockdown (GEPs)-Based Target Features

Knockdown GEPs were obtained from LINCS Data Portal (http://lincsportal.ccs.miami.edu/dcic-
portal/). The target features based on knockdown GEPs were extracted similarly to the compound
features as the concatenated vector of 1956 elements from the landmark GEPs of gene knockdown as
well as their control GEPs in LINCS. In order to filter out potentially spurious signals from off-targets,
we took only the consensus gene signatures (CGS) for this study.

2.2.2. Target Features by Protein–Protein Interaction (PPI) Network

Target features were extracted using Node2vec method [24], where vector representation of each
node is generated in a given network. The degree of network neighborhood is measured by random
walk directed by two parameters, p and q. The return parameter, p and the inout parameter, q control
the probability of a walk staying inward revisiting nodes or staying close to the preceding nodes
(1/p), or moving outward farther away (1/q). We set the return hyperparameter, p = 1, and the inout
hyperparameter, q = 2. The algorithmic detail of node2vec is available in [24] as well as the source code.

2.2.3. Pathway Membership (PM)-Based Target Features

We extracted vector representations of target genes using Global Vectors for Word Representation
(GloVe) method by Pennington et al. [25]. The C2 (curated gene sets) and C5 (Gene Ontology gene
sets) from MSigDB (v6.2) were used to define pathway membership [26,27]. GloVe counts global
co-occurrence across diverse pathways at different levels, while node2vec extracts local context of
network neighborhoods based on random walks. The package for GloVe was downloaded from
https://nlp.stanford.edu/projects/glove/.

2.3. Construction of Deep Neural Networks (DNNs) and Machine Learning Models

The DNNs were implemented using TensorFlow 1.13 [28] and Keras 2.24 [29]. We adopted
Adam [30] to optimize DNNs, and applied dropout = 0.5 on each FC layer [31] & early stopping at
20 epochs in order to prevent overfitting.

Naïve Bayes (NB), logistic regression (LR), and random forest (RF) methods were implemented
using python package, scikit-learn (https://scikit-learn.org). Naïve Bayes was performed under default
setting. The LR model was built after experimenting both L1 and L2 regularization methods as
well as several values of regularization strength (C = 0.01, 0.1 and 1.0). For pathway membership,
the LR model was built using L2 regularization at C = 0.1 showing best performance among the
conditions tested. Similarly, the LR model for PPI was constructed using L2 regularization at C
= 0.01. For the RF model, the number of max features (N) were tested at 1/2 × F, F, and 2F,
where F =

√
length of input feature vectors (default by scikit-learn), where F = 47 (=

√
2× 978 + 256 =√

2× number of landmark genes for drug & control + length of target features from PM or PPI). We
set N = 23 of 2/F showing better performance, and generated 10,000 trees in our RF models.

3. Results

3.1. Extraction of Drug and Target Features

In this work, input features consist of: (i) drug features; and (ii) target features, from which DTI
predictions are made for the corresponding drugs and targets. For drug features, we chose to use DEPs
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of 978 landmark genes from LINCS L1000 because DEP is expected to provide highly rich information
on MoA, and have been effectively used for DTI prediction [14–16]. DEPs were set common to all the
DNN models or other machine learning techniques, so that different target features are compared
under the same condition. We used concatenated expression profiles of 978 landmark genes for both
drug-treated and untreated controls, which resulted in 978 × 2 = 1956 feature vectors.

We took three canonical types of target features that represent distinct information on target
properties [23,32,33], but were not objectively compared for DTI prediction: (i) knockdown GEPs (GEP);
(ii) PPI network (PPI); and (iii) pathway membership (PM). First, knockdown GEPs were available for
~4500 genes across 17 cell lines. Again, GEPs were generated as 1,956 feature vectors by concatenating
the two landmark expression profiles by gene knockdown and control. Knockdown GEPs reflect
transcriptomic changes by genetic perturbation, which may be correlated to DEPs by drugs targeting
the same gene(s).

Second, PPI features were extracted by node2vec method [24] using the PPI network of STRING v11
with 13,592 genes and 297,050 interactions at confidence cutoff ≥ 0.7 [34]. In Node2vec, node features
are extracted by applying random walks in a network. Accordingly, this method is designed to preserve
local neighborhoods, i.e., mapping neighboring nodes of a network embedded close together in the
resulting feature space.

Third, pathway membership is used to extract target features. Pathway is defined as the collection
of functionally related genes, and is a standard tool for functional interpretation including drug
MoA [35]. Since pathway member genes are functional related, but not necessarily connected in a PPI
network, PM features represent a more global context than PPI-based ones. For feature extraction by
PM, we chose Global Vectors for Word Representation (GloVe) by Pennington et al. [25], where GloVe
tend to embed targets more closely if they share common pathways more frequently. GloVe is based
on word embedding methods, which were also applied to extract gene features using Gene Ontology
or coexpression [33,36].

3.2. Overall Architecture of DNNs

Our DNN models consist of several blocks of feedforward deep neural networks (FF-DNNs),
and both drug and target features are needed as input vectors. Focusing on comparative analysis of
target features, we did not try more complex types of DNNs such as RNN (recursive neural network)
or CNN (convolutional neural network).

The overall architecture is shown in Figure 1. Their characteristics include: (i) two separate
blocks of input features for drug and target, respectively; (ii) the output values of input blocks are
concatenated, and additionally connected to 1~2 hidden layers. The input block for drug consists
of 1~3 fully connected (FC) hidden layers, which is the same for the target block of GEP. Regarding
target features for PPI network and pathway membership, vector representation of genes are already
achieved by node2vec and GloVe, respectively. Therefore, their target features are directly employed
instead of adding hidden layers.

3.3. Comparison of Target Features

Then, we compared the prediction performances by the three target features. For objective
comparison, the cross-validation & test cycles were performed only for common target space; 965 targets
were common to the three type of target features (Figure S1). Therefore, we first tried comparative
evaluation of target features limited to the common 965 targets.

For cross-validation, we collected the DTI dataset from six different DTI databases of
ChEMBL Target, Therapeutic Targets Database, MATADOR, KEGG Drug, IUPHAR, PharmGKB,
and KiDB [37–43]. We also collected independent DTI datasets for testing from Binding MOAD and
DrugBank [44,45]. DTI information were made mutually exclusive between cross-validation, and test
step by allowing any DTI allocated only once. We used known DTIs as positives, and an equal number
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of unlabeled random pairs as negatives, assuming that positive DTIs are sparse. The list of DTI sources
and the full DTI dataset are listed in Tables S2 and S6, respectively.
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Figure 1. Schematic diagram of deep neural network (DNN) models for comparison of three different
target features. First, the model takes two types of input features, i.e., drug and target features,
as separate blocks. Drug features are a concatenated vector with 978 + 978 = 1956 elements from
both control and treated drug-induced expression profiles (DEPs) from the Library of Integrated
Network-based Cellular Signatures (LINCS) L1000 dataset. Target features are obtained from three
sources: (i) knockdown gene expression profiles (GEPs); (ii) protein–protein interaction (PPI) network; and
(iii) pathway membership. Target features of GEPs are set to the same structure of 1956-element vectors
as drug features. Both features for DEPs and GEPs are connected to 1~3 hidden layers. The target
features for the PPI network and pathway membership were extracted by node2vec and Glove method,
respectively without hidden layer. The output values of drug and target blocks are concatenated, and
subsequently feed to additional 1~2 hidden layers, leading to the final output.

We constructed a series of DNNs under different hyperparameter combinations, i.e., number
of hidden neurons, activation function, type of target feature, and learning rate (Table S1).
Learning parameters were optimized for each target features via 10-fold cross-validation across
all 24 parameter combinations (Table S1). The best parameter combination was variable depending on
the type of target features (Figure S2). Accordingly, optimized DNNs for each feature were constructed
as shown in Figure S3 for final comparison of target features. The DNNs were re-trained using the full
training set, and evaluated against the test set (Figure 2). PM and PPI show similar performance of
AUROC (Area Under a Receiver Operating Characteristic (ROC) curve) = 0.80 and 0.79, respectively,
which are substantially better than GEP (AUROC = 0.71). In order to check the degree of independence
among the target features, we calculated the correlations between their distance matrices. PM and PPI
seem to be moderately correlated, but uncorrelated with GEP (Figure S4).

3.4. Comparison with DNN and Other Machine Learning Methods

Since PM and PPI showed similarly better performance than GEP, we next compared these two
features with other machine learning methods. The comparison was performed in the common target
space of 1955 genes between PM and PPI (Figure S1). Accordingly, DNN models were reconstructed
and evaluated according to the new target space (Table S3) under a 10-fold cross validation and test
scheme. The DNN models were compared with naïve Bayes (NB), logistic regression (LR), and random
forest (RF). The machine learning classifiers were trained and evaluated under the same conditions as
DNNs. Again, PM and PPI showed similar performance with PM only slightly better. DNNs showed
consistently better AUROC (Figure 3A,B) and AUPR (Area under a Precision-Recall curve, Figure 3C,D)
than NB, LR, and RF classifiers (Table S4). Such trend is the same with precision at top k% of 0.1~20%
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(Figure 3E,F). RF models showed comparable performances at top 0.1%~1%. Overall, the performances
of DNNs improved compared to those in the previous section (Figures 2 and 3), probably due to
expanded training dataset.
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Figure 2. Comparison of prediction performance (AUROC) among the three target features for
common DTIs.

3.5. Construction of PM-Based DNN Model Using the Full Dataset

In our experiment, PM was shown best among the three target features tested. Since this model
was constructed using a limited dataset, a final model was built using the full dataset (Table S5) under
the optimal architecture (Figure S3C). The three PM-based DNNs are of the same architecture and
hyperparameters, and different only in terms of the input dataset. It tends to show a better performance
with increasing input dataset, although the two DNNs of the largest inputs show little difference
(Figure 4A).

In order to evaluate the performance on novel drugs that were not trained during the
model-building stage, we collected an additional DTI dataset from the Comparative Toxicogenomics
Database (CTD) [46]. We took 576 DTIs for 64 compounds not included in training dataset. In the
previous sections, positive and negative dataset was made balanced (e.g., 1:1 ratio) to avoid training bias,
which was also frequent in many other related studies for DTI prediction. In reality, positive-negative
DTIs are highly skewed toward negatives because positive DTIs are sparse. We also evaluated our
DNN model at different negative/positive ratios (1:1 to 100:1), which is expected to better simulate
real world situations of sparse DTIs. For each of the 64 compounds, the evaluation was repeated
100 times by sampling negatives 1~100 times the number of positive DTIs, and the median AUROCs
were calculated. The distribution of median AUROCs show a robust distribution of 0.82 at varying
negative/positive ratios (Figure 4B).
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4. Discussion

Recently, the deep neural network (DNN) has been gaining increasing interest as a means of solving
complex problems such as protein folding, image-based diagnosis, genomic data interpretation as well
as DTI prediction [47–49]. DTI prediction is critical for efficient hit discovery, target deconvolution
after phenotypic screening, and identifying novel indication in drug repositioning. Drug-induced
transcriptome provides rich information on drug MoA, and is considered as an alternative approach
for predicting DTIs to modeling-based methods such as docking. For DTI prediction by DNN, we took
large-scale DEPs from LINCS L1000 as drug features.

Unlike other related works based on protein sequences [50–52], we used target features reflecting
three distinct aspects of protein function, and compared their relative performances. In spite of its
preliminary nature, our result suggests that our DNN models consistently outperform several canonical
machine learning methods with PM (and PPI) showing the best results. Although network architectures
and hyper parameters may not be explored thoroughly, our results may provide useful information for
further improvement. Unexpectedly, GEPs showed the worst performance even though DEPs and
GEPs were of the same nature, and generated by the same platform. The L1000 dataset has several
limitations in that it actually measured only 1000 landmark genes, while those for ~12,000 genes were
inferred, and unavailable for the rest ~8000 genes (https://www.biorxiv.org/content/10.1101/332825v2)
for both DEPs and GEPs. The performances could be influenced by network type or gene sets for target
features from the PPI network or pathway membership, respectively. Most of all, our DNN model may
not have been trained sufficiently due to a limited number of DTI training data. This suggests that
there is plenty of room for improvement with increasing dataset and integration of different features.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/11/8/377/s1,
Figure S1: Target coverage by the three target features of PPI network, knockdown GEPs, and pathway membership,
where the number of associated unique targets is indicated; Figure S2: Performance distribution depending on
each hyper parameter of (A) Activation function before concatenation; (B) Number of hidden neurons for drug
features (DEPs); (C) Number of hidden neurons after concatenation; and (D) Learning rate. The best parameter
combination was selected showing the minimum median of loss in 10-fold cross-validation for each parameter
and feature type; Figure S3: Optimized architecture of DNN models for (a) knockdown GEPs; (b) PPI network;
and (c) pathway membership; Figure S4: The degree of Pearson (Spearman) correlations among the distance
matrices of target features; Table S1. Hyper parameters for building DNN models; Table S2: Data sources for
preparing training, validation, and test dataset; Table S3: A common dataset of PM and PPI to compare DNN and
other machine learning; Table S4: Performance comparison between DNN and other machine learning in AUROC
(AUPR); Table S5: Datasets for training and testing the final DNN model. Table S6: The list of DTI dataset for
training and testing.
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