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Abstract: Magnetic nanomaterials belong to a class of highly-functionalizable tools for cancer therapy
owing to their intrinsic magnetic properties and multifunctional design that provides a multimodal
theranostics platform for cancer diagnosis, monitoring, and therapy. In this review article, we have
provided an overview of the various applications of magnetic nanomaterials and recent advances
in the development of these nanomaterials as cancer therapeutics. Moreover, the cancer targeting,
potential toxicity, and degradability of these nanomaterials has been briefly addressed. Finally, the
challenges for clinical translation and the future scope of magnetic nanoparticles in cancer therapy
are discussed.

Keywords: magnetic nanoparticles (MNPs); cancer therapy; immunotherapy; toxicity;
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1. Introduction

Cancer is a disease of multiple etiology and described by unrestrained division of atypical cells
in the body [1]. Despite major advancements over the past four decades aimed at improving the
diagnosis and treatment cancer the disease still remains a global healthcare challenge [2]. Recent data
by the American Cancer Society demonstrate that the global cancer burden will increase to 21.8 million
new cases by the year 2030 [3]. The conventional treatment strategies including radiations, surgery,
chemotherapy, photodynamic therapy alone or in combinations possess severe limitations that cause
many side effects and toxicity issues. This has led an urgent need to design and develop an alternative
therapeutic strategy in a targeted manner. In this viewpoint, nanomedicine is a revolutionary platform
to prevailing over the existing challenges and develops a platform to combat cancer [4–8].

Magnetic nanoparticles (MNPs) have gained immense attention for cancer theranostics applications
due to their unique physico-chemical properties, magnetic resonance imaging (MRI) contrast, facile
synthesis, easy surface decorations, low toxicity, and good biodegradability that assist them to serve as
outstanding imaging agents, and delivery vehicles in cancer theranostics [9–23]. MNPs act as capable
(MRI) agents due to their increased magnetization upon application of an outer magnetic field along
with excellent T2/T2* relaxation abilities [24–26]. Hence, MNPs are extensively utilized in various
cancer theranostics applications including MRI imaging, biosensors, theranostics, delivery, magnetic
hyperthermia, photodynamic therapy and photothermal ablation therapy [27–33]. Additionally,
magnetic particle imaging (MPI) was drawing huge attention as an imaging tool using MNPs. The
condition of the applied field, functionalization of magnetic nanoparticles, and particle structure for
MPI was researched extensively by several research groups [12–16]. Importantly, USA Food and Drug
Administration (FDA) has approved various MNPs based drugs including Feraheme®, Endorem®,
Gastromark®, Lumiren®, Ferumoxytol®, Combidex®, Radiogardase®, and Feridex for various
applications in iron deficiency, iron replacement therapy, the lymph node metastases imaging, MRI
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contrast agents or oral antidotes for heavy metal contamination in human [34–36]. Moreover, European
Medicines Agency (EMA) lately approved NanoTherm®for the treatment of intermittent glioblastoma
multiforme [37]. These examples obviously display the immense potential of MNPs in the applications
of cancer therapy and diagnosis.

In the present review, we have focused on to provide a detailed overview about the cancer
therapeutic applications of MNPs including drug delivery, cancer immunotherapy, magnetic
hyperthermia, photodynamic therapy, and anti-cancer agents. Moreover, the toxicity, pharmacokinetics,
bio-distribution, and other challenges of MNPs in clinical translation have been briefly highlighted.
However, we are not focusing on the imaging part including MPI of MNPs to keep our review article
relevant to therapy. For more information on magnetic particle imaging (MPI) of MNPs the following
articles can be referred [12–16]. Further, we encourage the authors to read the following review articles
for additional information on cancer theranostics application of MNPs [17–26].

2. Synthesis, Characterization and Role of Size, Shape, and Surface Coating of MNPs in
Cancer Therapy

Magnetic nanoparticles have been developed utilizing nickel, cobalt, Prussian blue, and
gadolinium, but magnetic iron oxide (usually maghemite γ-Fe2O3 or magnetite Fe3O4) NPs remain the
most extensively researched MNP-based cancer theranostics due to their low systemic toxicity and
strong MRI contrast properties. MNPs generally consist of a magnetic core-shell and a polymer coating.
The MNP surface coating and functionalization enhances colloidal stability, allows for covalent or
electrostatic binding of therapeutic cargo, targeting moieties, and/or additional imaging probes, as
well as play an important role in tuning MNPs properties such as pharmacokinetics, systemic toxicity
and clearance rate, nonspecific protein adsorption or cell interactions, and sustained drug release,
among others. Synthesis of MNPs traditionally includes co-precipitation of salts with stabilizing
polymer, hydrothermal or solvothermal techniques, sonochemistry, reverse microemulsion, and thermal
decomposition. Please refer to the subsequent reviews for more in-depth discussions of these synthesis
techniques [38,39]. Recently, novel synthesis strategies have been developed such as microfluidic and
biogenic synthesis. Microfluidic systems can utilize a wide range of materials such as glass, silicon,
ceramic, polymers, and stainless steel to form geometrically constrained channels for nanoparticles
synthesis. Microfluidic systems provide advantages such as process screening, automation, and
continuous synthesis, increased control over reaction time, temperature, and concentration, as well as
greater control over final nanoparticles size, shape, and homogeneity [40]. For example, Cabrera, et al.
developed a latex-based microfluidic device for the synthesis of both gold and iron oxide nanoparticles
without surfactants, organic solvents, or heat treatment. Both the gold and iron oxide nanoparticles
could then be mixed together at varying iron oxide concentrations to produce 10 nm iron oxide NPs
decorated with 4 nm gold NPs with monodisperse core sizes [41]. To support additional doping of
iron NPs, Simmons et. al. used a commercially available micromixer to synthesize zinc-doped iron
oxide NPs to impart greater magnetic properties for MRI [42]. The authors showed controllable zinc
concentration in the final NP formulation with average < 2 nm core sizes and increased saturated
magnetization. Biogenic synthesis aims to produce size and shape controlled NPs dictated by the
biological processes of the organism, or biomineralization [40,43]. However, biogenic synthesis
strategies still suffer from low yields.

Size, shape, and surface charge can be tuned for multiple cancer therapeutic applications, such as
size-dependent hyperthermia treatment [44] and theranostics [45]. Final surface charge of synthesized
nanoparticles can be used to electrostatically bind nucleic acids [46] or increase systemic circulation
times [47]. Although spherical NPs are mostly used in cancer therapeutics, some research has been
conducted to utilize varied shape nanoparticles such as hollow rod morphologies for drug delivery [48]
and nanocube morphologies for guided chemo-photothermal therapy. Although spherical NPs
are mostly used in cancer therapeutics, some research has been conducted to utilize varied shape
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nanoparticles such as hollow rod morphologies for drug delivery [48] and nanocube morphologies for
guided chemo-photothermal therapy [38].

3. Magnetic Nanoparticles for Cancer Therapeutics

This section discusses the use of MNPs in chemotherapy (chemotherapeutics, biotherapeutics
and radiotherapeutics), gene therapy, photothermal ablation, magnetic hyperthermia, photodynamic
therapy, and direct injection of MNPs [31–33,49].

3.1. MNPs as Cargo Delivery Vehicle

3.1.1. Drug Delivery

Nanoparticle sized drug delivery systems have become a popular approach for drug delivery,
especially in cancer therapeutics, due to their tunable physicochemical properties such as size
distribution and surface modification. These parameters can be designed to impart therapeutic
functionality such as conjugating various biologically active therapeutics or small molecule drugs
covalently or noncovalently, increasing systemic circulation and biocompatibility, as well as employing
passive and active targeting mechanisms to the tumor or therapeutic site [28]. Magnetic nanoparticles
(MNPs) are a distinct class of drug delivery systems owing to their unique magnetic properties that
allow for a wide range of exploitable properties such as in vivo imaging as magnetic resonance imaging
(MRI) contrast agents, controlled and/or sustained drug release through magnetothermal responses, as
well as aided magnetic targeting of the cargo to desired sites [29,50–52].

Biotherapeutics and Chemotherapeutics

Both biotherapeutics and chemotherapeutics aim to inhibit tumor growth through disruption
or inhibition of cell function, such as disruption of DNA replication, protein expression, cell division
processes, or anti-apoptotic mechanisms. Biotherapeutics includes the delivery of biologically active
agents such as peptides, proteins [53], DNA [54], or small interfering RNA (siRNA) [55], where the
delivery of DNA or siRNA can also be known as gene therapy. Chemotherapeutics, on the other hand,
includes the delivery of small molecule drugs, such including paclitaxel [56] and 5-fluorouracil [57],
temozolomide (TMZ) [58], doxorubicin [59]. Several researchers have recently utilized MNPs for
biotherapeutic and chemotherapeutic applications [60–66].

Kievit et al. developed a chitosan-PEG-PEI coated iron oxide nanoparticle formulation
functionalized with chlorotoxin (CTX) and green fluorescent protein (GFP) encoded DNA, referred
to as NP:DNA-CTX [67]. Chlorotoxin is a targeting ligand specific to brain tumors, such as glioma.
After administration of the NP:DNA-CTX in C6 xenograft flank tumor bearing mice, Kievit found
increased NP:DNA-CTX uptake in target tumors compared to the control NP:DNA formulation, with
non-significant off target cellular uptake in clearance organs such as the liver, kidney, and spleen.
Kievit demonstrated the importance of copolymeric coating of iron oxide nanoparticle in order to
stabilize and conjugate both targeting and gene therapy agents [68]. Wang et al. developed rod-shaped
magnetic mesoporous silica nanoparticles (M-MSNs) for suicide gene therapy in which the suicide
gene in situ converts the prodrug into a cytotoxic drug after cancer cell uptake [69]. Rod-like MSNs
showed higher drug-loading efficiency, faster drug release, and increased gene delivery compared
to spherical M-MSNs. Both nanoparticle formulations were injected into HepG2 bearing nude mice,
where the MSNs were magnetically directed electromotive force (EMF) to the tumor site and/or mice
underwent hyperthermia treatment using an alternating current magnetic field (ACMF). Even though
individually EMF and ACMF treatments enhanced efficacy of suicide gene therapy, the combination
of treatments resulted in the highest apoptotic rate of HepG2 cells and reduced tumor sizes. The
evaluation of off target organs demonstrated no pathological changes suggesting little systemic
toxicity. In addition, magnetic nanoparticles can be designed to control drug release in response
to various internal or endogenous stimuli, including pH-, magnetic field, and hypoxia-responsive
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delivery [16,70–72]. However, the specific tumor microenvironment can be difficult to quantify
dependent on cancer type and varies on a patient-to-patient basis, limiting the consistency of internal
stimuli-responsive drug delivery efficacy. External or remote stimuli-based techniques can be used to
further control drug delivery, such as magnetothermally triggered drug delivery. Li et al. designed a
magnetothermally responsive nanocarrier/doxorubicin (MTRN/Dox) using Mn-Zn containing ferrite
magnetic nanoparticles (MZF-MNPs) to form a thermosensitive copolymer coating with absorbed
chemotherapeutic combined with the magnetothermal effect of MZF-MNPs to allow controlled release
of the drug at the tumor site under an alternating magnetic field (AMF) [73]. The authors demonstrated
magnetic targeting of MTRN/Dox increased accumulation in tumor tissues and AMF treatment was
necessary for MTRN/Dox increased cytotoxicity compared to free Dox and MTRN/Dox treatment
without the use of an AMF. After injection of the MTRN/Dox into nude mice bearing tumors, the
MTRN/Dox with combined magnetic targeting and AMF treatment showed the greatest tumor volume
reduction compared to MTRN/Dox with only magnetic targeting or AMF treatments, showing promise
as liver cancer therapy. In another recent paper, Lee et al. reported a unique on-demand drug delivery
using magnetothermally responsive doxorubicin-encapsulated supramolecular magnetic nanoparticles
(DoxSMNPs) [59], fabricated with β-cyclodextrin (CD) motifs or adamantine (Ad) that demonstrate
excellent tumor regression ability at a low dose (2.8 µg kg−1 Dox per injection; 1/1000th of standard
dose) (Figure 1).
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Figure 1. Evaluation of in vivo therapeutic efficacy. (a) Treatment scheme of DoxSMNPs in mouse and
results of the tumor volume change over the course of the treatment (15 days) in DLD-1 xenografted
mice (n = 3) treated with DoxSMNPs (w/and w/o application of AMF) and other controls (AMF only
and PBS only). All injections were done on day 0 (and day 7 for the double injection group) when the
tumor volume reached 100 mm3; AMF application was performed at 36 h post-injection. The best
tumor suppression result was observed in the group treated with a double injection of DoxSMNPs with
AMF application. The group treated with a single injection of DoxSMNPs with AMF and the other
control groups (i.e., treated with DoxSMNPs only, AMF only and PBS) show either a smaller degree or
none of tumor suppression effects (** p ≤ 0.01; *** p ≤ 0.001). (b) Tumor images of groups treated with
DoxSMNPs w/and w/o application of AMF and other controls, before treatment (left panels) and at the
termination point (right panels). * The termination point of the experiment occurred either on day 15 or
when the tumor volume reached 1500 mm3. The figure was reproduced from [59] after permission
from John Wiley and Sons.
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Radiotherapeutics

Nanoparticles are currently being researched for their applications in the delivery of radionuclides,
both α- and β- emitters, and/or radiosensitizers to induce DNA damage to tumor cells through
generation of free radicals or ionic radiation [74–76]. Nanoparticles offer unique advantages over current
radiotherapy techniques by reducing off-target tissue damage due to the non-specific nature of the
treatment through passive and active targeting. Furthermore, combined therapies utilize nanoparticles
for synergistic treatment, such as chemotherapy or gene therapy [77]. Munaweera et al. showed that
magnetic nanoparticles containing both platinum-based chemotherapeutics and neutron-activated
holmium-166 could serve as an effective chemo-radiotherapeutic for the treatment of non-small
cell lung cancer [78]. Even though the study showed that the neutron-activated holmium iron
garnet nanoparticles themselves did not show high cytotoxicity, the combined holmium-platinum
based formulations showed a significant increase in cytotoxicity, most likely due to the fact that
platinum-derived drugs also act as radiosensitizers, increasing tumor sensitivity to radiotherapy. The
authors ultimately demonstrated maximized reduced tumor volumes in vivo using the proposed
holmium-cisplatin nanoparticles in combination with an external alternating magnetic field to
concentrate the nanoparticles. Another major hurdle of radiotherapy is the hypoxic tumor
microenvironment, reducing generation of reactive oxygen species (ROS) necessary for biomolecule
damage [79]. Wu et al. attempt to overcome this issue through the pro-inflammatory manipulation of
myeloid derived suppressor cells (MDSCs) in gliomas, significant due to their pro-tumor production of
arginases that reduce the function of adaptive immune cells [80]. The proposed modified zinc-doped
iron oxide nanoparticles acted as a radiosensitizer and ROS producer while stimulating inflammatory
repolarization of the MDSCs to attack tumor cells as a synergistic radio-immunotherapeutic agent
for glioma treatment, as demonstrated by significantly increased median glioma-bearing mice
survival rates.

3.2. MNPs as Intrinsic Anticancer Agents

3.2.1. Cancer Immunotherapy

Cancer immunotherapy covers the range of therapies that utilize the patient’s own immune
system to identify cancer cells, inhibit their proliferation, and even directly attack solid tumors.
Multiple approaches have been taken to elicit immune responses for therapeutic effect, such as
introducing inhibitory check point molecules (anti-CTLA-4 or anti-PD1/anti-PD-L1) [81], dendritic cell
vaccines [82–84], adoptive cell transfer methods [85], or a combination of these approaches [86–88].
Combining cancer immunotherapy approaches with nanoparticles provides benefits such as a targeted
delivery vehicle that can be precisely tuned to have the requisite size, shape, charge, and surface
modifications to maximize delivery efficiency. Specifically, conjugation of targeting agents [11] and
the use of magnetic navigation [89] can increase the localization of the therapeutic to the target
site. In addition, magnetic nanoparticles can be further designed to impart additional therapeutic
advantages by combining hyperthermia therapies for maximized therapeutic efficacy [90]. Many times,
these nanoparticle immunotherapeutic formulations are functionalized as both a fluorescent probe
and MRI contrast agent for tracking delivery in vivo84. In dendritic cell vaccines, nanoparticles are
generally used to deliver antigens to antigen presenting dendritic cells, where the dendritic cells must
then migrate to lymph nodes to activate antigen-specific cytotoxic T cells to inhibit tumor growth.
Cho et al. developed a Fe3O4-ZnO core-shell nanoparticle formulation that showed efficient dendritic
cell uptake without the need for additional transfection agents [83]. Furthermore, the Fe3O4-ZnO
nanoparticles were observed localizing to draining lymph nodes and inducing anti-tumor immunity,
as demonstrated by tenfold increased frequency of spleen CD8+ T cells secreting interferon gamma
(IFN-γ) compared to control groups. After introduction of the labeled dendritic cells to in vivo
models, the authors demonstrated significant tumor growth inhibition and increased survival rates on
par with conventional protein transduction systems. More recently, nanoparticles combining check
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point inhibitors with either chemotherapeutic agents or cancer cell antigens have been investigated.
Chiang et al. synthesized iron oxide nanoparticles with fucoidan (a polysaccharide shown to have
both antitumor and immunostimulatory properties), check point inhibitor anti-PD-L1, and T-cell
co-stimulatorsanti-CD3/anti-CD28 [88]. After treatment, the mice showed an increase in spleen CD8+

T cell populations, and reduced tumor associated macrophage population in the tumor environment
leading to reduced Treg recruitment. Utilizing magnetic navigation to increase delivery of nanoparticles
directly to the tumor site and reduce off-site effects, the authors were able to show that direct injection
of their combination formulation in vivo inhibited tumor growth, reduced metastasis, and increased T
cell populations required for long-term immune memory. An interesting article by Ito et al. showed the
successful combined immunotherapy using interleukin-2 (IL-2) and granulocyte macrophage-colony
stimulating factor (GM-CSF) with magnetic hyperthermia in mouse melanoma tumor [15].

3.2.2. MNPs as Anti-Cancer Agent

MNPs have also been utilized as an anti-cancer agent by various groups. Zanganeh et al.
showed cancer cell death by manipulating the iron levels by the treatment of ferumoxytol (FDA
approved drug for anemia) in lung, liver and early mammary cancers [91]. Macrophages treated
with ferumoxytol caused increased levels of mRNA connected with pro-inflammatory Th1-type
responses. Ferumoxytol at a dose of 10 mg Fe·kg−1 demonstrated considerable tumor regression
towards aggressive adenocarcinomas in mouse model observed by H&E staining, bioluminescence
imaging, Prussian blue staining. Authors explained that ferumoxytol causes the immune cells adapting
an anti-tumor ‘M1’ phenotype response, confirmed by increased presence of pro-inflammatory M1
macrophages. Moreover, the ferumoxytol treatment induced the production of ROS causing the cancer
cell killing.

3.3. MNPs as a Catalyst for Tumor Ablation Therapies

3.3.1. Magnetic Hyperthermia

Tumor ablation therapies with MNPs are generating major interest including (a) magnetic
hyperthermia (necrotic tumor destruction by heat generated from MNPs upon alternating external
magnetic field); (b) photothermal therapy (cancer cell death by the heat generated from MNPs upon
light) and (c) photodynamic therapy (cancer cell death using cytotoxic singlet oxygen species generated
from MNPs conjugated with photosensitizing agent) (Figure 2a–c) [31,92–95]. J. Kolosnjaj-Tabi, and
coworkers, showed the outstanding tumor regression in mouse epidermoid carcinoma xenograft
model using PEG-coated magnetite NPs after magnetic hyperthermia [96]. In another published report,
Hayashi et al. demonstrated enhanced accumulation and increased magnetic relaxivity using folic acid
(FA) conjugated SPIONs [97]. Moreover, the mice were placed in an external magnetic field (f = 230
kHz; Hf = 1.8 × 109 A/m·s and H = 8 kA/m) generating heat to the local tumor tissues (≈6 ◦C higher
than surrounding tissues) causing notable tumor reduction and higher survivability (Figure 3).
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Figure 2. Tumor ablation therapies with iron oxide nanoparticles (NPs). (a) In magnetic hyperthermia,
an alternating magnetic field causes iron oxide NPs to generate heat, inducing tumor necrosis. (b)
In photothermal ablation, light absorbed by NPs is converted to thermal energy causing cell death
in the vicinity. (c) For photodynamic therapy, photosensitizing agents attached to NPs are activated
by an external light source to create singlet oxygen species that are cytotoxic to cells. The figure was
reproduced from [31] after permission from Elsevier.

Apart from that magnetic hyperthermia is useful for controlled release of cytotoxic agents in the
cancer cells using a heat-labile coating. Hu et al. recently showed the controlled release of dual drugs
(Dox and paclitaxel) from heat sensitive polyvinyl alcohol (PVA) coated SPIONs using an external
magnetic field [98]. Moreover, antibody conjugation with MNPs enhanced the effect of hyperthermia
because of the anticancer effects of the antibody and selectivity of the cancer cells. Examples include
anti-FGFR1 aptamer-tagged MNPs for enhanced magnetic hyperthermia and antibody-conjugated
MNPs for enhanced anti-cancer effects of Cryptotanshinone [92,93]. Magnetic hyperthermia combined
with chemotherapy demonstrated enhanced tumor regression ability. Kossatzet al. showed efficient
tumor regression using combined chemotherapy and magnetic hyperthermia with superparamagnetic
iron oxide nanoparticles conjugated with Nucant multivalent pseudopeptide and doxorubicin in mouse
breast tumor model [94]. Another exciting report demonstrated the use of magnetic hyperthermia
generated with ferucarbotran (Resovist®) to increase chemotherapeutic effects of cisplatin-induced
apoptosis in human oral cancer cells in vitro [95]. For more detailed information please refer to the
following article [16].
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Figure 3. (a) Photograph (left) and thermal image (right) of a mouse 24 h after intravenous injection of
folic acid conjugated pegylated superparamagnetic iron oxide nanoconjugates (FA-PEG-SPION NCs)
under an AC magnetic field with H = 8 kA/m and f = 230 kHz. (b) Tumor-growth behavior and (c)
survival period of mice without treatment and treated by intravenous injection of FA-PEG-SPION NCs,
application of an alternating current (AC) magnetic field, and application of an AC magnetic field 24
h after intravenous injection of FA-PEG-SPION NCs (n = 5). (d) Photographs of mice 35 days after
treatment. The figure was reproduced from [97] after permission from Ivy Spring.

3.3.2. Photothermal Ablation

Photothermal ablation therapy uses gold coated MNPs that utilizes a NIR or visible laser light
source to produce thermal heating through electromagnetic photon absorption causing cells killing
(Figure 2b) [31,99]. Kirui et al. used antibody (targeting the A33 antigen) conjugated bimetallic
nanoconjugates (gold shells-iron oxide core) for the targeted photothermal therapy towards colorectal
cancer cells [100]. It was observed that A33 antigen expressing cells had increased NPs accumulation
and resulting cell killing (~50%) when these are exposed with a NIR radiation (800 nm laser radiations
at 5.1 W cm−2) for 6 minutes. In contrary, the non A33 expressing cells did not die under similar
conditions (~5%) indicating incredible selectivity for cancer cell killing. In another published report,
Larson et al. exhibited the multifunctional applications of gold-coated magnetite NPs for targeted
photothermal therapy of cancer cells and multimodal imaging (MRI and optical imaging agent) [101].
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3.3.3. Photodynamic Therapy (PDT)

Photodynamic therapy (PDT) utilizes a photosensitizing agent to generate cytotoxic singlet
oxygen (1O2) by the excitation of an external light source ensuing free radical damage to cancer
cells within a distance of 20 nm (Figure 2c) [31,102,103]. These agents are conjugated to MNPs
to enhance the therapeutic efficacy. Nafiujjaman, et al. showed the PDT using pheophorbide-A
(fluorescent photosensitizing agent) conjugated SPIONs upon irradiating the MNPs by a 670 nm laser
source. Moreover, the nanoconjugates demonstrated profound bimodal MRI contrast/fluorescence
abilities [104]. Li et al exhibited increased cellular uptake of the chlorin e6 (Ce6; photo-sensitizing agent)
conjugated PEGylated SPIONs compared to pristine Ce6 [105] that were magnetically navigated to the
tumor sites (Figure 4a). Figure 4b–e shows the in vivo fluorescence and MRI imaging of Ce6-conjugated
SPIONs in tumor bearing mice. Additionally, considerable tumor regression was monitored upon
in vivo PDT in vivo mouse model (Figure 4f–g).
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Figure 4. Photodynamic therapy with iron oxide nanoparticles conjugated with photosensitizing agent
Ce6. (a) A schematic drawing to illustrate in vivo magnetic tumor targeting. (b) In vivo fluorescence
image of a 4T1 tumor bearing mouse. (c) In vivo T2-weighted MR images of a mouse taken before
injection (upper) and 24 h post injection (bottom). White and red arrows point to tumors without and
with a magnet attached, respectively. (d) Ce6 fluorescence signal intensities in magnetic field (MF)
targeted and non-targeted tumor regions. (e) T2-weighted MR signals of untreated, MF targeted and
non-targeted tumors. (f) Tumor growth curves of different groups of tumors after various treatments
indicated. Error bars were based on SD of six tumors per group. MF: magnetic field; L: light. (g)
Representative photos of mice after various treatments. White and red arrows point to tumors without
and with magnetic targeting, respectively. The figure was reproduced from [105] after permission
from Elsevier.
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4. Magnetic Nanoparticles: Toxicity, Biodistribution, Pharmacokinetics

Toxicity, pharmacokinetics and biodistribution of magnetic NPs are crucial for their successful
applications in clinics. The hydrodynamic size, surface potential, coating, interaction of NPs with
reticuloendothelial system (RES) plays important role for pharmacokinetics and pharmacodynamics
MNPs inside body [106]. Size also plays noteworthy role for the excretion of MNPs as small NPs
can easily excrete through the renal route whereas the larger particles can be taken up by the
liver and spleen before eventual degradation or excretion through the hepatobiliary route [107].
Physicochemical properties of nanomaterials such as size, structure, composition, surface charge,
and surface modification contribute to the toxicity of developed magnetic nanoparticle (MNP)
formulations [108–110]. Firstly, NPs core sizes less than 10 nm are filtered out of circulation by renal
clearance and core sizes larger than 200 nm are easily sequestered by the spleen [108,111]. Next,
NPs with a neutral surface charge exhibited longer circulation times compared to nanoparticles with
positive or negative surface charges (Figure 5) [110]. Surface coating has demonstrated important role
for the circulation of MNPs. For example, Cole, A.J. and co-workers showed that PEG-modified MNPs
of 170 nm has a half-life of 12 hours [112]. Hence, it is important to carefully manipulate the circulation
of the MNPs that significantly affects the biodistribution of MNPs and its biocompatibility [113]
as accumulation in liver and spleen can cause off-target toxicity. Apart from that in vivo toxicity
depends on the other important factors including, synthesis procedure, purity, size, surface charge,
biodistribution, and pharmacokinetic properties [114].

MNPs can display toxicity by various mechanisms including, a) production of reactive oxygen
species (ROS) by Fenton reaction; b) direct generation of ROS of from nanoparticle surface; c) alteration
of mitochondria and other organelle functions by various affecting different cell signaling pathways.
For that reason, it is crucial to assess the NPs toxicity before clinical use in cancer therapy and
diagnosis [115–117]. Uncoated or dextran-coated superparamagnetic iron oxide nanoparticles (SPION)
were shown to cause cell death in vitro [118] that could directly be attributed to generation of reactive
oxygen species with the SPION as the source [119,120]. However, the extent of measured toxicity and
reactive oxygen species generation was dependent on cell type [121]. Feridex, a clinically approved
dextran-coated SPION formulation shown in Phase I clinical trials to be safe for patient use [122],
demonstrated the limitations of data extrapolation from animal models to clinical trials.

In a biologically relevant environment, nanoparticles adsorption of plasma proteins, or
opsonization, during circulation leads to the formation of a protein corona. This protein corona,
which includes immunoglobulins, components of the complement system, albumins, among others,
can promote receptor-mediated phagocytosis, mitigate the functionality of active targeting agents,
and alter key magnetic properties such as magnetization saturation. The phagocytic uptake of
these NPs by mostly resident macrophages in the liver, kidney, spleen, and lymph nodes leads to
nanoparticles sequestration and clearance from blood circulation [123–128]. Moreover, due to the
rapid protein adsorption on MNP surface and formation of a protein corona upon introduction to
biological media, MNP toxicity in vivo is further complicated by the nano-bio interface and its biological
interactions [111]. The formation of the protein corona is similarly dictated by MNP physicochemical
properties, with larger hydrodynamic sizes, increased, increased surface to area volume, negative
surface charge, hydrophobicity all independently showing protein adsorption [129]. While MNP
surfaces can be modified to aid both passive [130] and active accumulation [131] at target sites with
minimal or no systemic toxicity, considerations must be made towards acute iron overload in the
localized environment causing toxic effects [132,133]. In addition, protein conformation may change
upon adsorption or cause MNP aggregation triggering cellular responses with unintended, adverse
outcomes [134].

Various NP surface coatings have been investigated to reduce protein adsorption and subsequently
increase circulation time, the most common including polymers such as polyethylene glycol
(PEG) [135–137], polysaccharides [138], and zwitterions [139,140]. To date, PEGylation continues
to be a dominant strategy in increasing circulation times of MNPs, such as in magnetic particle imaging
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(MPI). In MPI, both static and alternating magnetic fields are applied to the subject such that a small
volume of interest, the field-free point, containing the MNP tracer can be directly measured without
any background from weakly magnetized materials [12]. Khandhar et al. tested varying loading
capacities and molecular weights of PEG conjugated to poly(maleic anhydride-alt-1-octadecene)
(PMAO) surface coatings of 25 nm SPIO cores. They found that 18.8% loaded, 20 kDa PEG coated
SPIO tracer formulation had a 105-minute blood circulation half-life and persistent intravascular signal
lasting over 3.5 hours in mice, demonstrating greatly improved blood pool imaging capabilities [141].
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Figure 5. Nanoparticle size, shape and surface charge dictate biodistribution among the different
organs including the lungs, liver, spleen and kidneys. (a) Spherical particles, including gold/magnetic
nanoparticles, liposomes and polymeric micelles/NPs can vary in size and display disparate in vivo
fates. Large rigid particles with diameters > 2000 nm accumulate readily within the spleen and liver,
as well as in the capillaries of the lungs. Nanoparticles in the range of 100–200 nm have been shown
to extravasate through vascular fenestrations of tumors (the EPR effect) and escape filtration via
liver and spleen. As size increases further than 150 nm, extra NPs are captured within the liver and
spleen. Small-sized NPs (<5 nm) are filtered out by the kidneys. (b) Novel 'top-down' and 'bottom up'
fabrication tools have allowed the investigation of various geometries of NPs, including cylindrical
and discoidal shapes, which have been shown to demonstrate distinct effects on pharmacokinetics
and biodistribution. Various NPs shapes show exclusive flow characteristics that significantly change
circulating lifetimes, cell membrane interactions and macrophage uptake, which in turn manipulate
biodistribution between the different organs. (c) Charge of NPs stemming from distinct surface
chemistries influences opsonization, circulation times, and interaction with local macrophages of organs
comprising the mononuclear phagocytic system (MPS), with positively charged particles more prone to
sequestration by macrophages in the lungs, liver, and spleen. Neutral and a little negatively charged
NPs have longer circulation lifetimes and lower accumulation in the above mentioned organs of the
MPS. In both b and c, the size of the NPs is in the range from 20–150 nm. Individual panels correspond
to in vivo fates of NPs, taking into account singular design parameters of size, shape, and surface
charge independent of one another, and for this reason, respective scales differ from one panel to the
next. It is vital to note that in vivo biodistribution will vary based on the interaction of various these
parameters. The figure and figure caption was reproduced and adapted from [110] after permission
from NPG, respectively.

Recently, a novel strategy of “stealthing” MNPs from the mononuclear phagocytic system (MPS)
through selective in situ adsorption of specific apolipoproteins to reduce MPS clearance in a similar
manner as PEGylated NPs was shown by Magro et al [142]. The authors developed an iron oxide
nanoparticles formulation with unique crystal organization suitable for specific protein docking,
called surface active maghemite nanoparticles (SAMNs). The SAMNs were loaded with antibiotic
(oxytetracycline) and found to forma protein corona mostly composed of apolipoprotein A1 (Apo
A1) in zebrafish. The bound Apo A1 protein retained its conformational structure, suggesting that
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preservation of bound protein biological identity is necessary for prolonged drug delivery and
avoidance of MPS clearance. Moreover, the bound Apo A1 could be used as an active targeting agent
through Apo A1 transport in developing oocytes in fish ovary, evidenced by the high localization of
both bare and antibiotic loaded SAMNs in zebrafish ovaries. However, more studies conducted in
various animal models must be conducted to further assess the applicability of this stealthing strategy
beyond fish models.

5. Challenges, Future Scopes, and Conclusion

Significant progress has been made with various MNP platforms toward different pre-clinical
cancer theranostics applications. Despite their potential, few MNP formulations have shown success in
clinical trials. Critical information still needs to be researched further to overcome complex challenges
such as understanding nano-bio interactions in humans, crossing physiological and technical barriers
specific to a cancer type, escaping the late endosome/lysosome system into the cytosol within tumor
cells, and long-term toxicity. Nanoparticles, including magnetic NPs, face a variety of biological barriers
that mitigate the localization of therapeutics at the target site, limiting the use of NPs as efficacious drug
delivery vehicles and theranostics. These obstacles include NP opsonization and clearance by the MPS,
nonspecific distribution, cellular internalization, endosomal escape, and drug efflux pumps. Proper
surface coating strategies are required to limit the MNPs aggregation and generating ROS subsequently
causing toxicity. The other challenges include tumor specific targeting to the inflamed/tumor bearing
site, which will help lower dose and better efficacy of MNPs. Conjugation of anti-body, targeted agents,
immunomodulatory ligands helped to increase the tumor targeting. However, less than 10% of NPs
update to the tumor site makes it difficult for long, sustained therapy with low toxicity.

In addition, regulatory and industry barriers provide another set of challenges for the clinical
translation of MNPs, such as adherence to good laboratory practices. A multidisciplinary approach
must be taken in collaboration with regulatory institutions to evaluate the safety and efficacy of
nanotechnology as a whole. MRI monitoring of nanoparticles has proved a promising aspect of
MNP-based platforms in addition to recent advances in improving active targeting, controlled and
sustained drug release, and synergistic multimodal therapies. Considerable contributions using
mathematical modeling of multi-functional complex nanosystems, with the purpose of understanding,
more specifically, the intricate interactions and efficacy, will decide whether, in the concluding analysis,
a certain biomedical strategy can be effectively used. With the trend of research institutes establishing
interdisciplinary nanotechnology centers and regulatory institutions developing standards specific to
NP platforms, an increase in suitable pre-clinical in vivo studies can be expected to escalate to clinical
trials in the coming years for the development of improved magnetic nanoplatforms for the diagnosis
and treatment of cancer.

However, no single MNPs formulation has been approved for cancer therapeutic use till date.
Additionally, after the withdrawal of a few MNPs based products, various regulatory safeguards have
currently been initiated by the regulatory agencies, to assure a secure and efficient fundamental and
translational development of MNPs. We believe the delay in successful MNPs in clinics is driven by
the academic reward system, where much importance has been given to develop a novel formulations
rather than focusing on the clinical translation of the accessible ones. It is important as a community
to address these challenges for fast and hassle-free clinical development of these novel MNPs for
cancer therapy.
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