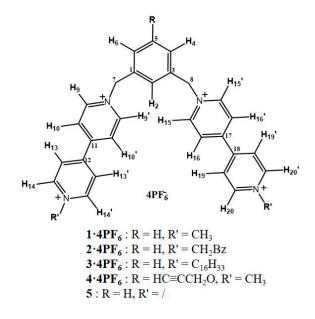
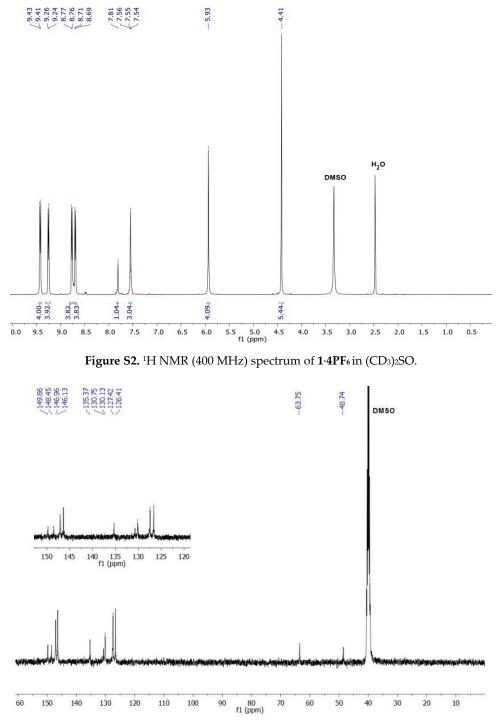
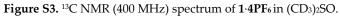


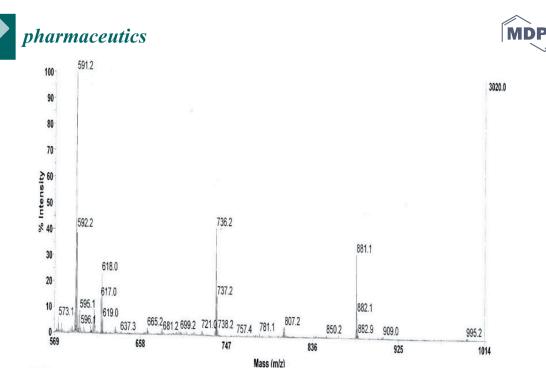
Supplementary Materials: π-Donor/π-Acceptor Interactions for the Encapsulation of Neurotransmitters on Functionalized Polysilicon-Based Microparticles

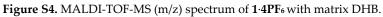
Sandra Giraldo, María E. Alea-Reyes, David Limón, Asensio González, Marta Duch, José A. Plaza, David Ramos-López, Joaquín de Lapuente, Arántzazu González-Campo * and Lluïsa Pérez-García

1. Synthesis and Characterization of Bipyridinium Salts


Figure S1. Numbering of the hydrogen and carbon atoms in the structures of 1.4PF₆-4.4PF₆ and 5.





*1.1. Characterization of 1,3-Bis(1'-methyl-4,4'-bipyridiniummethylene) Benzene-Tetrakis (Hexafluorophosphate) (1-4PF*₆)

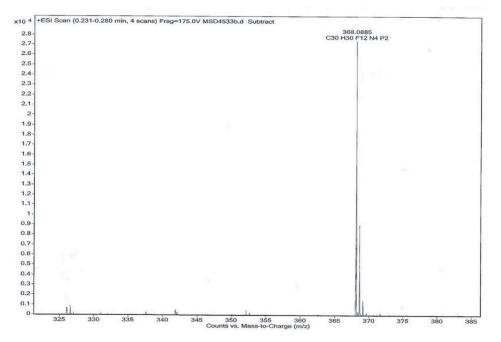


Figure S5. HMRS-ESI (m/z) spectrum of 1.4PF6.

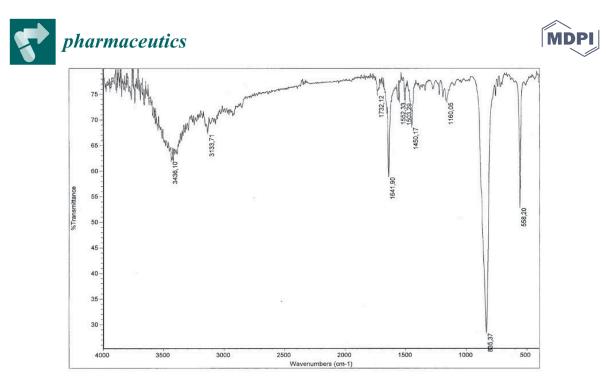
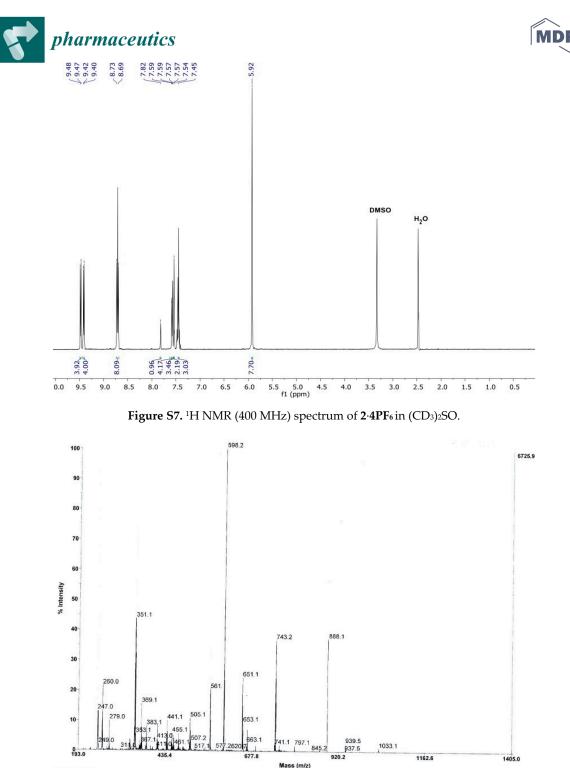
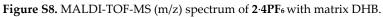
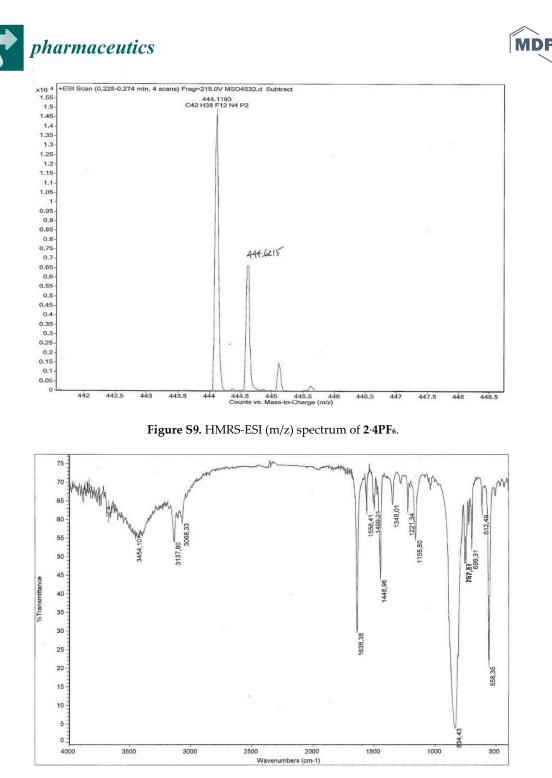
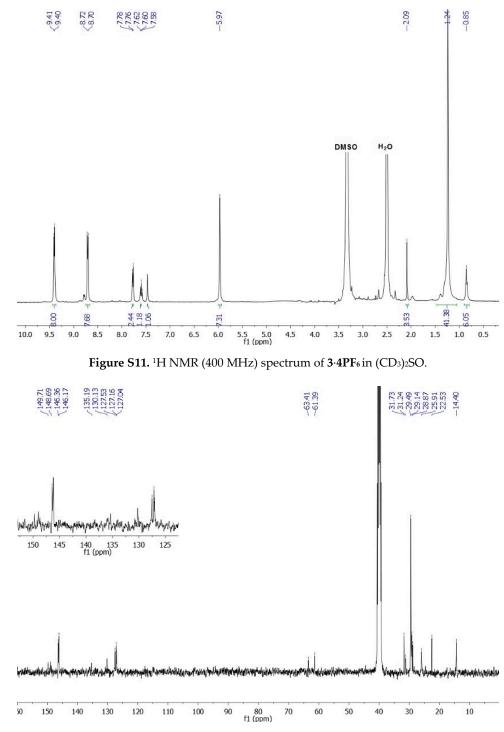
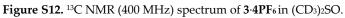




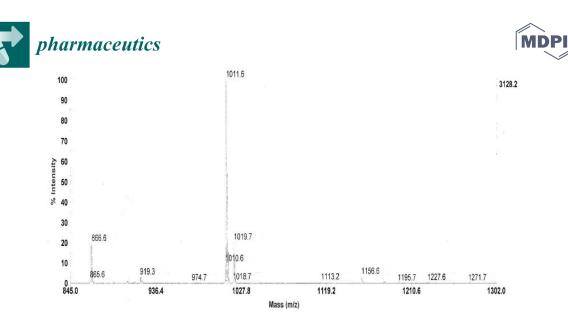
Figure S6. FT-IR transmittance spectrum of 1.4PF6 in KBr.

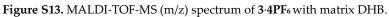
1.2. Synthesis and Characterization of 1,3-Bis(1'-dibenzyl-4,4'bipyridinium methylene) Benzene Tetrakis (Hexafluorophosphate) (**2**•**4PF**₆):

A solution of **5** (0.7 g, 1.1 mmol) in CH₃NO₂ (30 mL) was added to a solution of benzyl bromide (1.2 g, 6.9 mmol) in CH₃NO₂ (4 mL). The mixture was heated at 80 °C for 3 h. After cooling down to room temperature, the solvent was evaporated in vacuum. The yellow residue was then dissolved in H₂O (10 mL), and a saturated aqueous solution of NH₄PF₆ (1.1 g, 6.8 mmol, 3 mL) was added until no further precipitation was observed. The suspension was filtered off and the white solid was washed with H₂O (30 mL), filtered off and dried under vacuum to afford **2·4PF**₆ (0.9 g, 85%). mp = 260 °C (Lit. [1]); ¹H NMR (400 MHz, (CD₃)₂SO, 25 °C): δ 9.48 (d, *J* = 4 Hz, 4H, H-9, 9', 15, 15'), 9.42 (d, *J* = 4 Hz, 4H, H-14, 14', 20, 20'), 8.73 (dd, *J* = 4 Hz, *J* = 4 Hz, 8H, H-10, 10', 16, 16', 13, 13', 19, 19'), 7.82 (s; 1H, H-2); 7.59 (d, *J* = 4 Hz, 4H, H-Bz), 7.57 (d, *J* = 4 Hz, 4H, H-Bz), 7.54 (s; 2H, H-Bz); 7.45 (m;3H, H-4, 5, 6), 5.92 (s; 8H, H-7, 8, -CH₂-Bz). MALDI-TOF–MS m/z: 1033.1 m/z (3%) [M-1PF₆]⁺, 888.1 (40%) [M-2PF₆]⁺, 743.2 (38%) [M-3PF₆]⁺, 598.2 (100%) [M-4PF₆]⁺, 351.1 (45%) [M-(C₁₇H₁₅N₂(4PF₆))]⁺. HMRS (ESI) m/z: (C₄₂H₃₈F₁₂N₄P₂)²⁺ calc 444.13 found 444.11. IR spectrum (KBr, cm⁻¹): 3137-3068 v(C–H) (alkane), 1638 v(C=N) and 834 δ (C=C).


Figure S10. FT-IR transmittance spectrum of 2.4PF6 in KBr.





1.3. Characterization of 1,3-Bis(1'-hexadecyl-4,4'-bipyridiniummethylene) Benzene-Tetrakis(Hexafluorophosphate) $(3.4PF_6)$

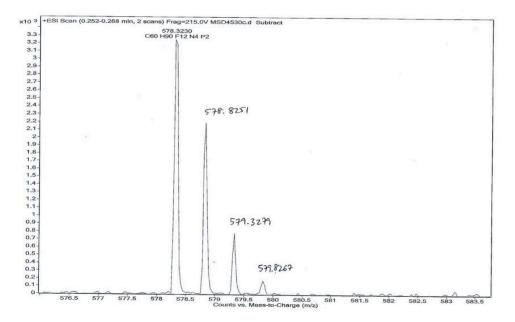


Figure S14. HMRS-ESI (m/z) spectrum of $3.4PF_6$.

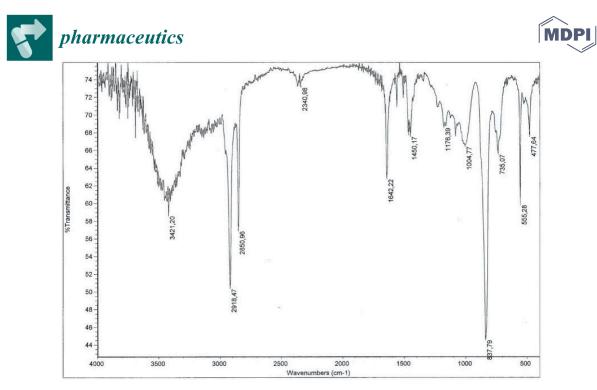


Figure S15. FT-IR transmittance spectrum of 3.4PF6 in KBr.

1.4. Characterization of 1,3-Bis(1'-methyl-4,4'-bipyridiniummethylene)-5-propargyloxy-benzene-tetrakis (Hexafluorophosphate) ($4 \cdot 4PF_6$)

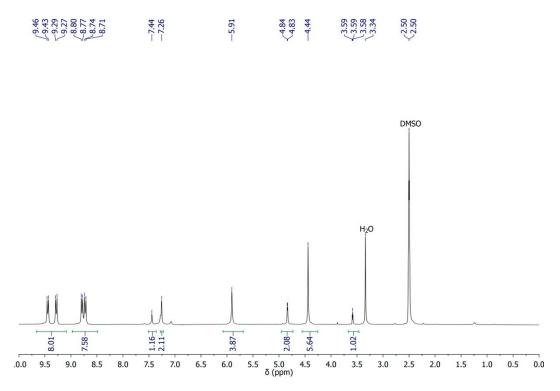


Figure S16. ¹H NMR (250 MHz) spectrum of 4·4PF₆ in DMSO.

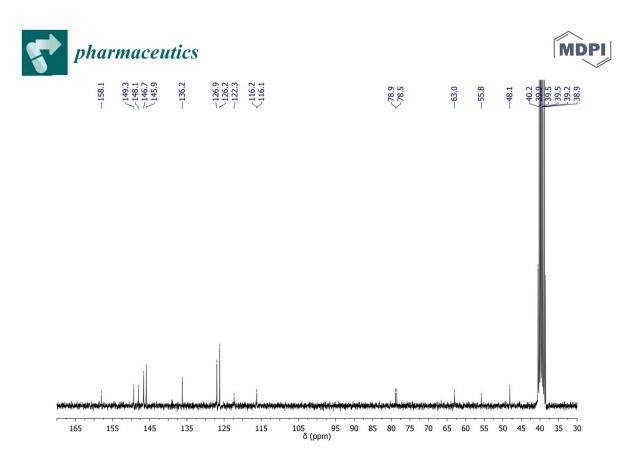


Figure S17. ¹³C NMR (250 MHz) spectrum of 4·4PF₆ in DMSO.

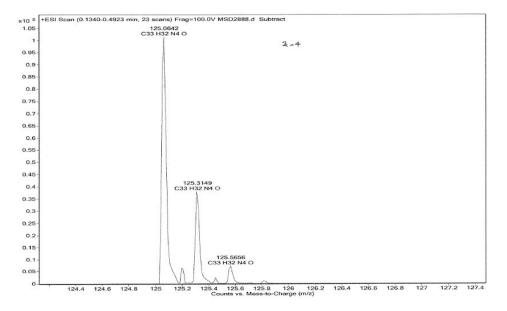


Figure S18. HMRS-ESI (m/z) spectrum of $4 \cdot 4PF_6$.

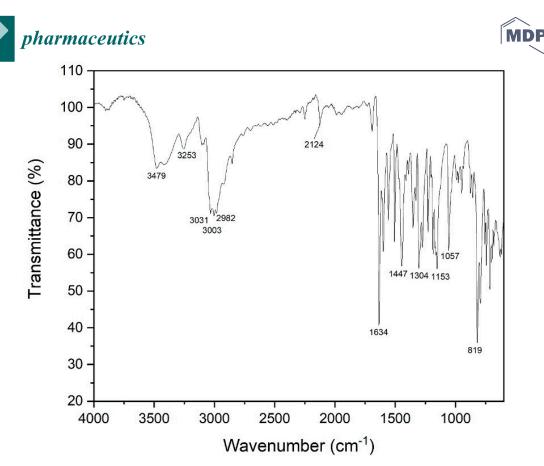


Figure S19. FT-IR (ATR) transmittance spectrum of 4.4PF6.

1.5. Synthesis and Characterization of 1,3-Bis (phenylene-4,4'- bipyridinium methylene) Benzene-Di(bromide) (5)

A solution of 4,4'-bipyridine (3.1 g, 19.9 mmol) in dry CH₃CN (30 mL) was added dropwise during 30 min to a solution of 1,3-bis(bromomethyl)benzene (2.2 g, 8.3 mmol) in dry CH₃CN (40 mL), which was heated under reflux. Heating was continued for 2 h. After cooling down to room temperature, the yellow precipitate was filtered off and washed with CH₃CN (10 mL) and dried under vacuum to afford **5** (4.7 g, 98%). mp = 260 °C (Refs:Lit. [1,2]); ¹H NMR (300 MHz, (CD₃)₂SO, 25 °C): δ 9.35 (d, *J* = 6 Hz, 4H, H-9, 9', 15, 15'), 8.88 (d, *J* = 6 Hz, 4H, H-10, 10', 16, 16'), 8.68 (d, *J* = 6 Hz, 4H, H-13, 13', 19, 19'), 8.03 (d, *J* = 6 Hz, 4H, H-14, 14', 20, 20'); 7.76 (s; 1H, H-2), 7.58 (m; 3H, H-4, 5, 6), 5.91 (s; 4H, H-7, 8). MALDI-TOF–MS m/z: 415.1 (90%) [M-2Br-1H]⁺, 341.0 (45%) [M-(C₁₀H₈BrN₂)]⁺.

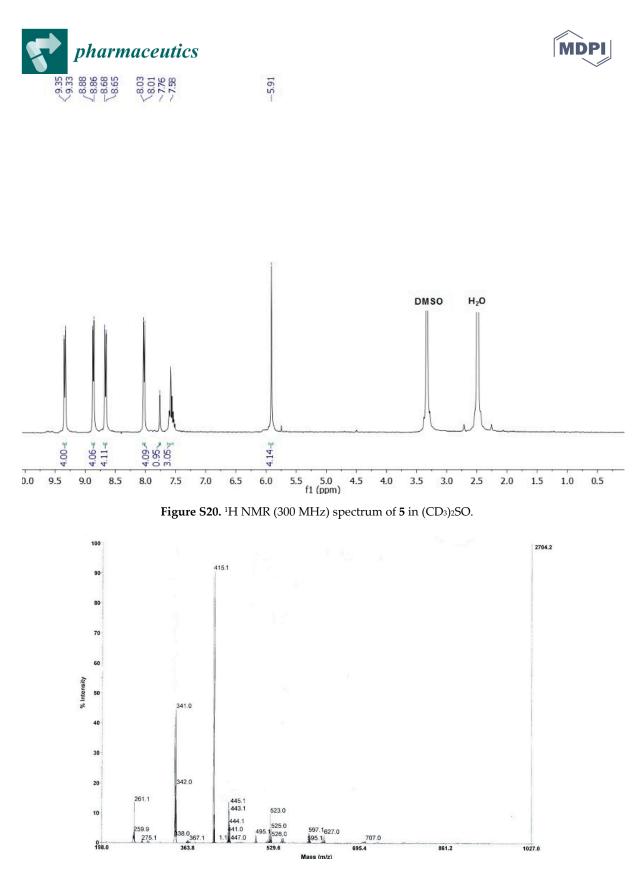
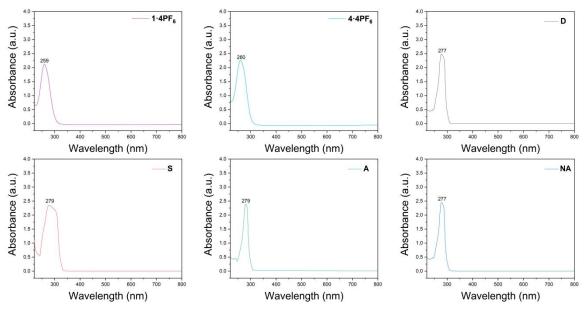
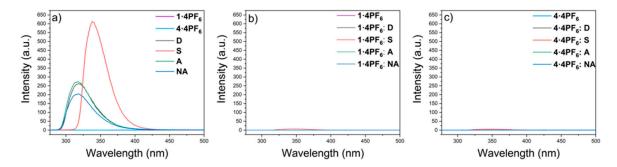
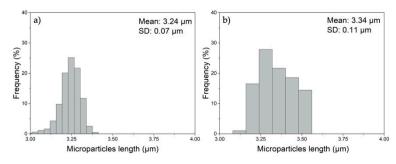


Figure S21. MALDI-TOF-MS (m/z) spectrum of 5 with matrix DHB.

2. UV-Vis Absorption Spectra of 1.4PF6, 4.4PF6 and Neurotransmitters: D, S, A and NA


Figure S22. UV-Vis absorption spectra of 1·4PF6, 4·4PF6, D, S, A and NA in DMSO: H₂O (4:1) at 1 mM.

3. Fluorescence Spectra of 1.4PF₆, 4.4PF₆ and Neurotransmitters: D, S, A and NA and Their Corresponding Complexes

Figure S23. Fluorescence emission spectra of: (a) **1·4PF**₆, **4·4PF**₆, **D**, **S**, **A** and **NA**, respectively; (b) Complex formation of **1·4PF**₆ with **D**, **S**, **A** and **NA**; (c) Complex formation of **4·4PF**₆ with **D**, **S**, **A** and **NA**; All spectra were recorded at 2 mM in DMSO: H₂O (4:1) at $\lambda_{exc} = 259$, 260, 277, 279, 279, 279 nm for **1·4PF**₆, **4·4PF**₆, **D**, **S**, **A** and **NA**, respectively.

4. Size Distribution Histograms of Microparticles

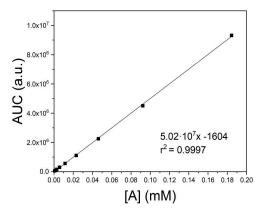


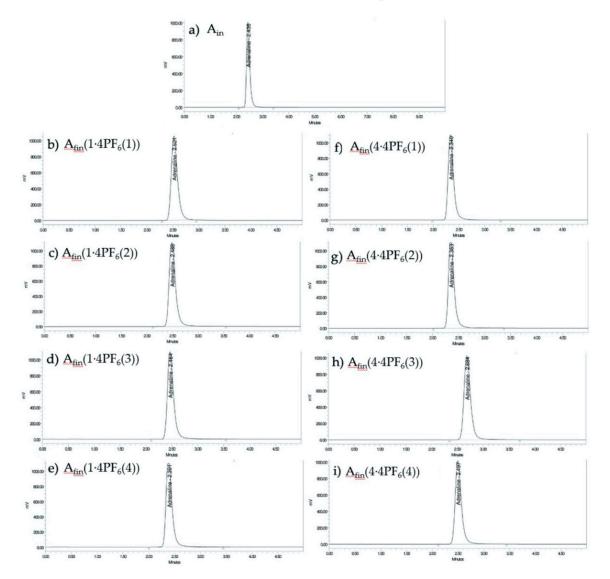
Figure S1. Particle size distribution histograms of: (**a**) Poly-Surfs analysing SEM images and 870 microparticles; (**b**) Poly-Si µPs suspended in solution analysing optical microscope images and 100 microparticles.

5. Calibration Curve of A by HPLC Determination

Figure S25. Calibration curve of **A** by HPLC coupled to a fluorescence detector at $\lambda_{exc} = 280$ nm and $\lambda_{em} = 315$ nm. The concentrations of **A** were: 0.18, 0.09, 0.04, 0.02, 0.01, 5.8 × 10⁻³, 2.9 · 10⁻³, 1.4 × 10⁻³, 7.2 × 10⁻⁴ mM, using deionized H₂O as solvent and taking the area of the fluorescence peak at each concentration.

6. Particles Counting Protocol

Equation S(1) used for particles counting in a Neubauer chamber [3] by ImageJ software [4].


$$N(microparticles) = \frac{X \times 10000}{N^{\circ}square \times dilution}$$
(1)

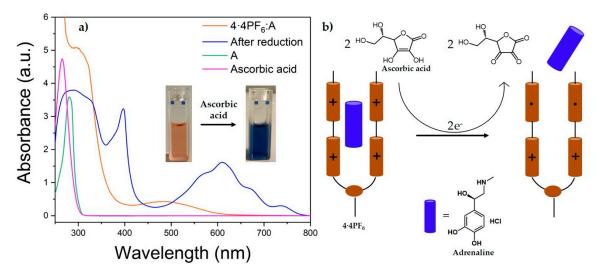
X = microparticles counted by ImageJ (Analyze particles) (2)

7. Fluorescence Chromatograms for Quantification of A Encapsulated in Poly-Si µPs by HPLC

Figure S26. Fluorescence chromatograms of initial (A_{in}) and final solutions (A_{fin}) of **A** from respective 1–4 microtubes, before (**a**) and after the incubation with $1.4PF_6$ functionalized microparticles (**b**–**e**) or $4.4PF_6$ functionalized microparticles (**f**–**i**), by HPLC determination at $\lambda_{exc} = 280$ nm and $\lambda_{em} = 315$ nm.

		RT	AUC (a.u)
	\mathbf{A}_{in}	2.438	10712528
\mathbf{A}_{fin}	(1·4PF ₆ (1))	2.521	8959754
\mathbf{A}_{fin}	(1·4PF ₆ (2))	2.488	9778307
\mathbf{A}_{fin}	(1·4PF ₆ (3))	2.464	9254002
Afin	(1·4PF ₆ (4))	2.391	9413136
\mathbf{A}_{fin}	(4·4PF ₆ (1))	2.340	8359152
Afin	(4·4PF ₆ (2))	2.353	8892739
Afin	(4·4PF ₆ (3))	2.684	9189019
Afin	(4·4PF ₆ (4))	2.497	8551537

Table S1. Values of retention time (RT) and area under the curve (AUC) extracted from the chromatograms at Figure S25.



pharmaceutics

Table S2. Quantification of A encapsulated (A_{encap} .) in 1·4PF6 and 4·4PF6 functionalized microparticles(μP).

	Ain (µmol)	Afin (µmol)	Aencap. (µmol)	Nº Particles	Aencap./Particle (µmol)
µP 1·4PF6	1.71 ± 0.02	1.49 ± 0.01	0.22 ± 0.01	5,064,000 ± 3,275,131	$4.28 \times 10^{-8} \pm 0.01$
µP 4·4PF₀	1.71 ± 0.02	1.39 ± 0.01	0.32 ± 0.01	$4,\!027,\!000 \pm 1,\!927,\!456$	$7.77 \times 10^{-8} \pm 0.01$

8. UV-Vis solution Studies of Complex Formation (4·4PF6:A) and Disassembly Using Ascorbic Acid

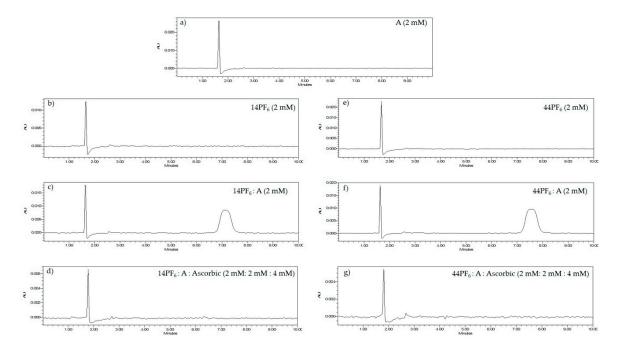


Figure S2. (a) UV-Vis absorption spectra of the complex formation **4**-**4PF**₆: **A** (2 mM: 2 mM) in DMSO: H₂O (4:1) after 24 h (orange line), the spectrum of the same solution after the addition of ascorbic acid (4 mM) (blue line), **A** (2 mM) (green line) and ascorbic acid (4 mM) (pink line); (**b**) Representation of the redox process after reduction of bipyridinium salt using ascorbic acid.

9. HPLC Solution Studies of Complex Formation and Disassembly Using Ascorbic Acid

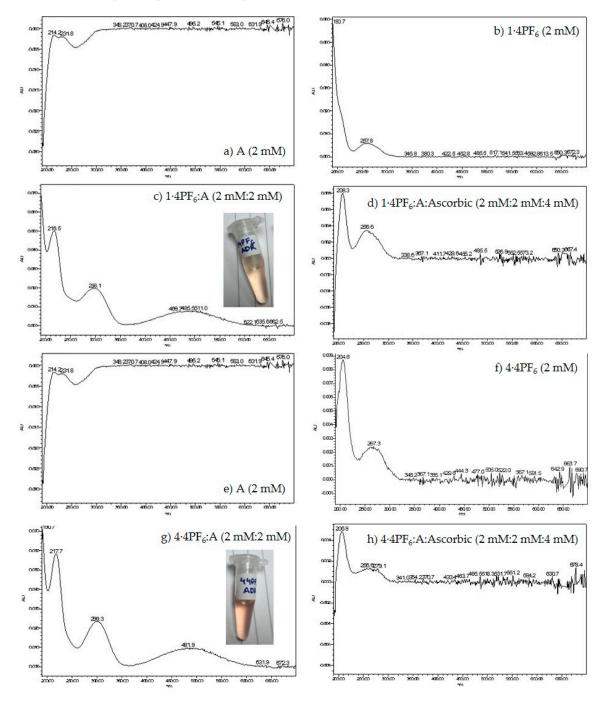


Figure S28. HPLC-UV-Vis chromatograms at absorbance wavelength of 479 nm of: (**a**) **A** (2 mM); (**b**) **1**·4**PF**₆ (2 mM); (**c**) Complex of **1**·4**PF**₆: **A** (2 mM: 2 mM); (**d**) **1**·4**PF**₆: **A**: Ascorbic acid (2 mM: 2 mM); (**e**) **4**·4**PF**₆ (2 mM); (**f**) Complex of **4**·4**PF**₆: **A** (2 mM: 2 mM); (**g**) **4**·4**PF**₆: **A**: Ascorbic acid (2 mM: 2 mM); (**g**) **4**·4**PF**₆: **A**: Ascorbic acid (2 mM: 2 mM); (**g**) **4**·4**PF**₆: **A**: Ascorbic acid (2 mM: 2 mM); (**g**) **4**·4**PF**₆: **A**: Ascorbic acid (2 mM: 2 mM); (**g**) **4**·4**PF**₆: **A**: Ascorbic acid (2 mM: 2 mM); (**g**) **4**·4**PF**₆: **A**: Ascorbic acid (2 mM); (**g**) **4**·4**PF**⁶: **A**: Ascorbic acid (2 mM); (**g**) **4**·4**PF**(**b**) **4**·4**PF**(**b**) **4**·4**PF**(**b**) **4**·4**PF**(**b**) **4**·4**PF**(**b**) **4**·4**PF**(**b**) **4**·4**PF**(**b**) **4**·4**PF**(**b**) **4**·4**P**

10. UV-Vis Absorption Spectra of Complex Formation and Disassembly in Solution by HPLC

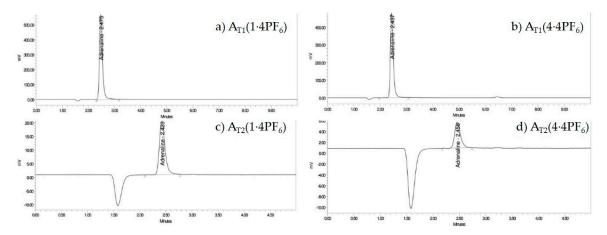


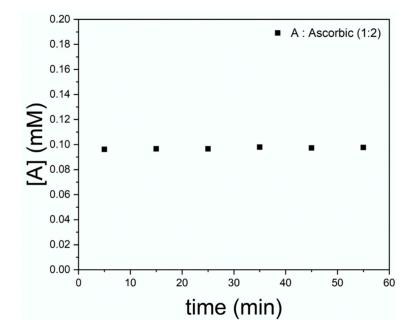
Figure S29. Absorption spectra extracted from the chromatograms at 479 nm from the solution experiments corresponding to retention times at 7.25 min ($1.4PF_6$) and 7.50 min ($4.4PF_6$), obtained by HPLC coupled with a UV-Vis absorption spectroscopy detector.

11. Fluorescence Chromatograms for Quantification of A Released by HPLC

Figure S3. Fluorescence chromatograms of release solutions (T1 and T2) of **A** after the incubation of functionalized microparticles (**1**·**4PF**₆ and **4**·**4PF**₆) with ascorbic acid (4 mM), by HPLC determination at λ_{exc} = 280 nm and λ_{em} = 315 nm.

Table S3. Values of retention time (**RT**) and area under the curve (**AUC**) for functionalized microparticles extracted from the chromatograms at Figure S.29.

		RT	AUC (a.u)
A T1	(1·4PF ₆)	2.437	3667147
Ат2	(1·4PF ₆)	2.423	148759
A T1	(4·4PF ₆)	2.475	4600523
A T2	(4·4PF ₆)	2.458	36665


Table S4. Quantification of A released in functionalized microparticles with $1.4PF_6$ or $4.4PF_6$ using ascorbic acid.

	A _{encap.} (µmol)	Aτ1 (μmol)	At2 (µmol)	A _{released} (μmol)	№ particles	A _{released} / particle (µmol)	Areleased (%)
μP 1·4PF6	0.22 ± 0.01	0.018 ± 0.01	$6.6 \cdot 10^{-4} \pm 2 \cdot 10^{-4}$	0.019 ± 0.01	3,807,000 ± 1,546,197	$5.00 \cdot 10^{-9} \pm 0.02$	9±0.01
μP 4·4PF6	0.32 ± 0.01	0.015 ± 3·10 ⁻³	$2.1 \cdot 10^{-4} \pm 1 \cdot 10^{-4}$	0.015 ± 3·10 ⁻³	3,192,000 ± 892,825	4.67·10 ⁻⁹ ± 6·10 ⁻³	5 ± 0.3

12. Stability Studies of A In Presence of Ascorbic Acid

Figure S4. Stability study of **A** in presence of ascorbic acid in ratio **A**: ascorbic (1:2) using deionized H₂O as solvent.

13. Cytotoxic Studies of 1.4PF6

Table S5. Results obtained for Cell viability and genotoxicity results for $1.4PF_6$ in cell line **3T3**/ NIH, with 500 µg/mL as maximum tested concentration; n/d not determined (viability < 70%).

Compound	Concentration (µg/ mL)	Viability (%) ± SD	Tail moment (%) ± SD	
	Control medium	100.0 ± 0.2	3.9 ± 4.7	
	Control vehicle	63.6 ± 15.2	2.8 ± 3.9	
	500.0	46.8 ± 2.3	n/d	
1 ADE	158.1	15.4 ± 1.6	n/d	
1·4PF6	50.0	8.7 ± 2.2	n/d	
	15.8	79.3 ± 46.4	2.2 ± 1.9	
	5.0	150.5 ± 48.4	1.8 ± 1.7	
	Positive control	3.1 ± 0.3	51.2 ± 7.1	

Table S6. Results obtained for Cell viability and genotoxicity results for $1.4PF_6$, in cell line HepG2, with 500 mg/mL as maximum tested concentration; n/d not determined (viability < 70%).

Compound	Concentration (µg/ mL)	Viability (%) ± SD	Tail moment (%) ± SD	
	Control medium	100.0 ± 0.5	3.1 ± 4.2	
	Control vehicle	77.4 ± 7.4	2.3 ± 2.8	
	500.0	74.7 ± 14.8	23.6 ± 7.0	
4 405	158.1	24.1 ± 9.9	38.4 ± 11.4	
1·4PF ₆	50.0	14.1 ± 4.9	n/d	
	15.8	35.2 ± 20.3	27.5 ± 21.5	
	5.0	107.6 ± 37.5	8.9 ± 14.4	
	Positive control	4.0 ± 2.2	35.5 ± 9.6	

pharmaceutics

Table S7. Results obtained for Cell viability and genotoxicity results for 1.4PF ₆ , in cell line Caco-2,
with 500 μ g/mL as maximum tested concentration; n/d not determined (viability < 70%).

Compound	Concentration (µg/ mL)	Viability (%) ± SD	Tail moment (%) ± SD	
	Control medium	100.0 ± 0.1	1.5 ± 2.0	
	Control vehicle	96.8 ± 8.3	2.4 ± 2.9	
	500.0	8.8 ± 3.6	18.4 ± 11.0	
1.4PF6	158.1	8.5 ± 3.1	n/d	
	50.0	50.5 ± 4.5	18.6 ± 17.1	
	15.8	86.9 ± 16.9	4.7 ± 4.5	
	5.0	113.7 ± 31.7	4.6 ± 5.1	
	Positive control	12.4 ± 2.7	27.1 ± 9.0	

Table S8. Values of the IC₅₀ determined for the compound $1.4PF_6$ tested in the three different cell lines with a maximum tested concentration of 500 µg/mL.

Compound	3T3/ NIH		HepG2	HepG2		Caco-2	
	IC50 (µg/mL)	IC50 (μM)	IC50 (µg/mL)	IC ₅₀ (μΜ)	IC50 (µg/mL)	IC ₅₀ (μΜ)	
1 · 4PF ₆	146	140	152	148	125	122	

References

- 1. Geuder, W.; Hünig, S.; Suchy, A. Single and double bridged viologenes and intramolecular pimerization of their cation radicals. *Tetrahedron* **1986**, *42*, 1665–1677.
- Ashton, P.R.; Pérez-García, L.; Stoddart, J.F.; Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi, M.T.; Prodi, L.; Venturi, M.; Menzer, S.; et al. Molecular Meccano. 4. The Self-Assembly of [2] Catenanes Incorporating Photoactive and Electroactive π-Extended Systems. *J. Am. Chem. Soc.* **1995**, *117*, 11171–11197.
- 3. Bastidas, O. Neubauer Chamber Cell Counting Available online: https://www.academia.edu/13150839/Technical_Note-_Neubauer_Chamber_Cell_Counting-___1_Oscar_Bastidas. (accessed on 12 March2020).

4. Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. *Nat. Methods* **2012**, *9*, 671–675.