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Abstract: CXCR4 is a cytokine receptor used by HIV during cell attachment and infection. Overex-
pressed in the cancer stem cells of more than 20 human neoplasias, CXCR4 is a convenient antitumoral
drug target. T22 is a polyphemusin-derived peptide and an effective CXCR4 ligand. Its highly selec-
tive CXCR4 binding can be exploited as an agent for the cell-targeted delivery and internalization
of associated antitumor drugs. Sharing chemical and structural traits with antimicrobial peptides
(AMPs), the capability of T22 as an antibacterial agent remains unexplored. Here, we have detected
T22-associated antimicrobial activity and biofilm formation inhibition over Escherichia coli, Staphylo-
coccus aureus and Pseudomonas aeruginosa, in a spectrum broader than the reference AMP GWHI. In
contrast to GWH1, T22 shows neither cytotoxicity over mammalian cells nor hemolytic activity and
is active when displayed on protein-only nanoparticles through genetic fusion. Under the pushing
need for novel antimicrobial agents, the discovery of T22 as an AMP is particularly appealing, not
only as its mere addition to the expanding catalogue of antibacterial drugs. The recognized clinical
uses of T22 might allow its combined and multivalent application in complex clinical conditions,
such as colorectal cancer, that might benefit from the synchronous destruction of cancer stem cells
and local bacterial biofilms.

Keywords: antimicrobial peptides; nanoparticles; fusion proteins; inhibition of biofilm formation;
multivalent drugs

1. Introduction

The peptide T22, also known as [Tyr5,12,Lys7]-polyphemusin 11, is a 18-mer derivative
of the horseshoe crab cationic antimicrobial peptide (AMP) polyphemusin I, in which three
amino acid replacements enable it for a precise binding to the cell surface chemokine recep-
tor CXCR4 [1,2]. Since CXCR4 is an HIV co-receptor [3], T22 was developed as an anti-HIV
peptide potentially effective in antiretroviral therapies, blocking the fusion between the vi-
ral envelope and the cell membrane and thus preventing viral infection [1,4]. From another
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point of view and taking advantage of its selective CXCR4 binding, T22 has been largely
exploited as a targeting agent, for precision therapies against diverse CXCR4* human
cancers. Among others, these include leukemia, lymphoma, head and neck and colorectal
cancer [5-14], in which CXCR4 is overexpressed in metastatic cancer stem cells. In this con-
text, when T22 is engineered as an N-terminal peptide in H6-tagged proteins it promotes,
due to its cationic character [15], protein self-assembly into homomeric nanoparticles [16],
which include around 10 monomers positioned in a regular, toroidal architecture [17].
The multivalent display of T22 on the particle surface and the nanometric size of these
constructs (usually ranging from 12 to 30 nm, depending of the domain composition of the
fusion protein) enhances CXCR4 binding and the consequent penetrability into CXCR4*
cells, while preventing the renal filtration of chemically coupled drugs [18]. By a combina-
tion of all these properties, T22 ensures the architectonic stability of the protein material
in the bloodstream and allows a selective intracellular accumulation of T22-empowered
protein-only nanoparticles and associated drugs into CXCR4-overexpressing cancer stem
cells [17-19]. Then, upon the systemic administration of the reporter protein T22-GFP-H6
and derived cytotoxic constructs, a precise in vivo biodistribution is observed, with the
destruction of CXCR4-overexpressing cancer tissues and metastatic foci in the absence of
side toxicities [18].

Despite polyphemusins generically displaying potent antimicrobial activities [4,20-23],
these functionalities and their interactivity with bacterial cell membranes largely depend
on the precise amino acid sequence, which is highly sensitive to even a few amino acid
substitutions [24,25]. This is because even point mutations can alter its amphipathic-
ity and hydrophobicity, features that have been postulated to be pivotal in maintaining
the right balance between toxicity and antimicrobial activity [26-28]. Although several
structural variants of polyphemusin peptides have been tested for antimicrobial proper-
ties [24,25], T22 has been never explored in this regard. Considering the growing need
for new antimicrobial agents and the proved clinical potential of T22 in cell-targeted drug
delivery [11,18,29], the detection of any new antimicrobial activities in this peptide would
be of broad interest and deserves a thorough investigation. More so, these functionali-
ties might be conserved in T22 peptides displayed on multimeric protein nanoparticles,
since antimicrobial activities largely benefit from nanostructured and multivalent presen-
tations [30,31]. Additionally, the combination of anticancer and antimicrobial properties
could be of special relevance in many cancers and cancer-linked conditions in which
bacteria have a predominant or even triggering role [32-36].

2. Material and Methods
2.1. Peptides, Proteins and Protein Nanoparticles

T22 (RRWCYRKCYKGYCYRKCRK(5,6-FAM)) was synthetized by Caslo Aps (Caslo
Aps Kongens, Lyngby, Denmark) and GWH1 (GYNYAKKLANLAKKFANALWC) by
NZYTech (NZYTech, Lisboa, Portugal). An additional C-terminal lysine was included
in the synthetic T22 for potential functionalization. On the other hand, production and
purification of the fusion proteins T22-GFP-H6 [37], T22-PE24-H6 [38], GWH1-GFP-H6 [39]
and GFP-H6 [40] have been precisely described elsewhere. Briefly, these are fusion polypep-
tides consisting of three functional modules (with the exception of the bimodular construct
GFP-H6). In them, the hexahistidine H6 is placed at the carboxy terminus, and the cationic
peptides T22 or GWHI1 at the amino terminus. The core module is either the enhanced
GFP or the de-immunized catalytic domain of Pseudomonas aeruginosa exotoxin A (PE24),
which displays a potent cytotoxic activity. All proteins were produced by the expression of
codon-adapted synthetic genes carried by the expression vector pET22b, in Escherichia coli
Origami B (BL21, OmpT—, Lon—, TrxB—, Gor—, Novagen, Merck, Darmstadt, Germany),
at yields ranging between 3 and 71 mg/L. Proteins were then purified through the H6
domain by Immobilized Metal Affinity Chromatography (IMAC) using a HiTrap Chelat-
ing HP 1 mL column (GE Healthcare, Piscataway, NJ, USA), in an AKTA purifier FPLC
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(GE Healthcare, Piscataway, NJ, USA). The eluted proteins showed a purity level usually
over 95%.

2.2. Bacterial Growth and Determination of the Minimum Inhibitory Concentration

The effects of the different antimicrobial agents were evaluated against E. coli ATCC
25922, S. aureus ATCC 29737 and P. aeruginosa ATCC-27853. The assay was performed using
a broth microdilution method. In 96-well plates, after a two-fold dilution process, each well
contained a specific amount of the corresponding peptide, ranging from 2 to 32 pmol/L for
GWHI1 and 2 to 64 umol/L for T22 in Mueller Hinton Broth Cation-adjusted medium (MHB-
2, Sigma-Aldrich, Saint Louis, MO, USA). Then, 50 uL. of MHB-2 containing 100 colony
forming units per mL (CFU/mL) was inoculated in each well. After inoculation, the plates
were incubated without agitation at 37 °C for 18 h. Bacterial growth was measured by
ODgyo. The effect of protein nanoparticles in bacterial growth was analyzed following the
same protocol with concentrations ranging from 2 to 16 umol/L, in S. aureus ATCC 29737.
Maximal growth was achieved in control wells with no protein and each concentration
was evaluated in duplicate. To determine the minimum inhibitory concentration (MIC)
of the agents, the lowest concentration showing no bacterial growth, evaluated by visual
inspection, was taken. The raw numerical data for all the experimental can be found in the
dataset in the Supplementary Materials.

2.3. Time-Killing Kinetic Assay

Different concentrations of GWHI1 and T22 were distributed in 96-well plates and
incubated with a suspension (in Mueller Hinton Broth Cation-adjusted medium, MHB-2,
Sigma-Aldrich, Saint Louis, MO, USA) containing 10® CFU/mL of E. coli ATCC 25922 or
S. aureus ATCC 29737. Plates were incubated without agitation at 37 °C. At the indicated
times (0, 0.5, 1, 2, 3,4, 5 and 24 h), an aliquot of 10 uL (out of a total of 200 puL per well) was
serially diluted (10-fold) in a different 96-well plate and subsequently seeded in LB plates
to evaluate the bacterial viability by CFU counting. Each concentration was evaluated in
triplicate and each dilution was seeded in duplicate; therefore, a maximum of six individual
counts were used to determine the final CFU for each concentration. A control was included
to evaluate bacterial growth in absence of the peptides.

2.4. Evaluation of Biofilm Formation

Biofilms were formed by addition of 106 CFU mL~! of the bacterial suspension (E. coli
ATCC 25922 or S. aureus ATCC 29737) in sterile, flat-bottomed, 96-well polystyrene micro-
well plates (100 puL per well) and incubated in a static condition for 18 h at 37 °C. To
determine the antibiofilm activity, different concentrations of the peptides GWH1 and T22
were added to the wells to prevent cell adherence. After incubation, the total biomass of
the biofilm was analyzed using the crystal violet (CV) staining method [41]. The contents
of the wells were discarded and washed three times with distilled water to remove the
planktonic bacteria. Then, biofilms formed by adherent sessile bacteria in the plate wall
were fixed by air-drying at 60 °C for 60 min and stained for 15 min with 150 puL of (CV)
solution at 0.1%. The stained biofilms were again washed with distilled water and dried
for 30 min at 37 °C. Finally, the adhered biofilms were extracted with 200 uL of 30% acetic
acid. The biofilm quantification was determined by the photometric measurement of the
CV intensity at 550 nm using the multilabel plater Reader VICTOR3 (PerkinElmer, Inc.,
Waltham, MA, USA). Each concentration was evaluated in duplicate.

2.5. Mammalian Cell Viability Assay

The potential cytotoxicity of peptides was tested in murine embryo (NIH3T3 cells)
and human lung (MRC-5 cells) fibroblasts and in cervical cell line (HeLa). NIH 3T3 ATCC
CRL-1658 cells were maintained in Dulbecco’s Modified Eagle’s Medium (Gibco, Thermo
Fisher Scientific, Waltham, MA, USA) and MRC-5 ATCC CCL-171 cells and HelLa cells
were maintained in Eagle’s Minimum Essential Medium (Gibco, Thermo Fisher Scientific,
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Waltham, MA, USA). All cell lines were supplemented with 10% fetal bovine serum (Gibco,
Thermo Fisher Scientific, Waltham, MA, USA) and incubated in a humidified atmosphere
at 37 °C and 5% of CO,. A total of 5000 cells/well for fibroblasts and 3000 cells/well for
cervical cells were cultured in opaque-walled 96-well plates for 24 h at 37 °C until reaching
70% confluence and were then exposed to peptides at 8, 16, 32 and 64 umol/L for 48 h.
After incubation, CellTiter-Glo® Luminescent Cell Viability Assay (Promega, Madison, WI,
USA) was used to determine the potential peptide cytotoxicity. The luminescent signal,
proportional to the amount of ATP present in the sample, was measured in a conventional
microplate reader VICTOR3 (PerkinElmer, Inc., Waltham, MA, USA). The cell viability
experiments were performed in triplicate.

2.6. Hemolysis Assay

Freshly drawn human erythrocytes were harvested by centrifugation for 5 min at
1500 g and washed three times with PBS (137 mM NaCl, 2.7 mM KCI, 10 mM Na,HPOy,
1.8 mM de KH,POy). Subsequently, a work solution was prepared by diluting the washed
erythrocytes with PBS (1%, v/v). In a 96-well conical bottom plate, the 1% (v/v) erythro-
cyte suspension was incubated for 1 h at 37 °C with different concentrations (16, 32 and
64 umol/L of the GWHI1 and T22 peptides. After incubation, the plates were centrifuged
for 5 min at 1500 g, and the supernatant was transferred to a new 96-well plate to mea-
sure the absorbance at 405 nm in a multilabel plater Reader VICTOR3 (PerkinElmer, Inc.,
Waltham, MA, USA). Two controls were included, PBS as a non-hemolysis control and
Triton X-100 as a 100% hemolysis control. Experiments were performed in triplicate.

2.7. Measurement of the Nanoparticle Size

Size distribution of protein samples was determined by dynamic light scattering (DLS).
Average values were obtained after the independent measurement of protein samples in
triplicate, at 633 nm, in a Zetasizer Nano ZS (Malvern Instruments Ltd., Malvern, UK).

2.8. Structure-Based Calculations and Molecular Modeling

Polyphemusin-I (PM1; Protein Data Bank -PDB- code: 1RKK) [24], Tachyplesin-1
(TL1; PDB code: 1WQO0); http://dx.doi.org/10.2210/pdblwo0/pdb, accessed on 23 July
2021), Arenicin-3 (AR3; PDB code: 5V0Y) [42]; Protegrin-1 (PG1, PDB code: 1PG1) [43],
Gomesin (GM, PDB code: 1KFP) [44], Thanatin (TT, PDB code: 8TFV) [45], PV7 (PM1
synthetic structural variant) [25] and T22 (a polyphemusin II analog) [4] were used as
model 3-hairpin antimicrobial peptides. For each multimodel NMR structure down-
loaded from the PDB, the model closest to the average was selected as representative
(https:/ /swift.cmbi.umcn.nl/servers/html/bestml.html, accessed on 23 July 2021). Foldx
v5 [46] RepairPDB function was applied to all selected structures. PV7 was modeled
from PM1 using the BuildModel function from FoldX v5 (Fundacié Centre de Regulaci6
Genomica, Barcelona, Catalonia, Spain), T22 was modeled from PM1 too, PyMOL builder
tool (The PyMOL Molecular Graphics System, Version 2.0 Schrodinger, LLC. New York, NY,
USA. https:/ /pymol.org, accessed on 4 January 2021) was used to add the extra lysine at the
C-terminus and then FoldX v5 RepairPDB and BuildModel functions were applied. The 3D-
HM web application (Karlsruhe Institute of Technology, Karlsruhe, Baden-Wiirttemberg,
Germany) [47] was used to generate the GWHI1 structure as well as to calculate the net
charge, average absolute electrostatic potential at the peptide’s surface and Hydrophobic
Moment (HM) vector (a representation of the distribution of polar and nonpolar parts in a
molecular surface) for all analyzed structures. VMD version 1.9.4a51 [48] and PyMOL ver-
sion 2.4.2 were used to generate figures with these results. PDB2POR version 3.1.0 [49] was
used to add hydrogen atoms to all structures before submitting them to 3D-HM. PDBparam
(https:/ /www.iitm.ac.in/bioinfo/pdbparam /index.html, accessed on 20 July 2021) [50]
was used to calculate the surface hydrophobicity and what the authors call hydrophobic free
energy (a solvent-accessible-area-based estimate of the non-polar component of the change
in solvation free energy upon folding). Superposition of structures for analysis or represen-
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tation in figures was based on the main chain N, CA, C and O atoms with the McLachlan
algorithm [51] as implemented in ProFit v3.3 (http:/ /www.bioinf.org.uk/software /profit/,
accessed on 22 March 2021) and using residue equivalences as obtained with jCE, the java
implementation of the CE method [52].

3. Results

The generated T22 model reproduces an early NMR structure of T22 [4], which
revealed the conservation of the hairpin structure that promotes the interaction with the
membrane and antimicrobial activity of PM1 and other AMPs [28]. A closer analysis of
the T22 structure (Figure 1) demonstrates a similarity of traits with other AMPs, including
length, hydrophobicity, net charge and amphipathicity, as reflected by the Hydrophobic
Moment (HM) vector. Although the majority of its properties are naturally closer to those
of other 3-hairpin-forming AMPs (Figure 1A, all but GWH]1), in particular and as expected
the close relative PM1 and its derivative PV7 (Figure 1A,B), it stands out that T22 presents
an HM magnitude (a quantity that increases with the unbalance of the distribution of polar
and nonpolar surface areas in the molecule, i.e., amphipathicity) closest to GWH1. When
the corresponding HM vectors are aligned with the membrane normal it is shown that T22
and GWHI1 present very similar tilts (Figure 1C, the alignment of the HM vector and the
membrane normal provides an indication of the orientation that the peptide may adopt
when inserted in the membrane).

A Peptide Len Sequence HM <|Ve|>4s  Net RMSDvs Surface Hydroph AG  FoldX
(aa) (ktAJe)  (kT/e)  chg(e) T22(A) hydroph  (Kcal/mol) ene
GWH1 20 GYNYAKKLANLAKKFANALW 12.99 5.56 4.47 NA 0.64 -17.01 0.14
T22 19 ———-RRWCYRKCYKGYCYRKCRK- 10,98 9.97 9.00 0.00 0.34 -0.61 33.57
18 ———-RRWCFRVCYRGFCYRKCR—- .17 8.16 7.00 0.23 0.37 0.16 31.99

18 ~~~~RRWCFRVCYKGFCRYKCR-- 822 8.31 7.00 0.23 0.41 -2.64 33.79
17 ——-—KWCFRVCYRGICYRRCR-- 379 7.11 6.00 2.55 0.40 -2.13 10.39

21 ~~-GFCWYVCVYRNGVRVCYRRCN 2 44 5.44 4.00 2.05 0.53 -8.99 9.71
17 - CRRLCYKQRCVTYCRGR-  4.64 7.21 6.00 2.43 0.32 1.18 10.58
18 -~~~ -RGGRLCYCRRRFCVCVGR-- 875 6.56 6.00 1.93 0.31 2.31 12.70
21 GSKKPVPIIYCNRRTGKCQORM-—— 5.31 7.06 6.00 294 0.48 -8.56 15.00

T22

Figure 1. Structure of GWH1, T22 and related AMPs. (A) Columns contain the following data: peptide name (p-hairpin-
forming peptides with background colored as in (B); length in number of amino acids; peptide sequence aligned with T22 (all

but GWH]1), residues used for superposition in bold; hydrophobic-moment-vector magnitude; average absolute electrostatic

potential on the peptide’s surface; net charge; RMSD from T22 superposition; surface hydrophobicity; hydrophobic free
energy (see methods for definition); FoldX total energy after repair. (B) Superposition of all 3-hairpin AMPs used in this
study and their calculated HM vectors against model T22 (RMSD and colors for each peptide given in (A). (C) Superposition

of the calculated HM vector for T22 and GHW1, oriented parallel to the membrane normal. (D) Representation of the
surface electrostatic potential for T22 and GWHI (scale: top red = —10, top blue = 10).
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In view of these AMP-like physicochemical properties, T22 was tested for its antimi-
crobial activity over liquid cultures of three bacterial pathogens, namely Escherichia coli,
Staphylococcus aureus and Pseudomonas aeruginosa. GWHI, of similar length (Figure 1A), was
used as control. GWHLI is a non-natural peptide, developed as AMP [53,54], that adopts an
amphipathic helical structure when bound to a membrane and its GFP fusion construct
(GWH1-GFP-H6) self-assembles similarly to T22-GFP-H6 [55]. Upon exposure to bacterial
cultures, both peptides promoted a clear drop of optical density in a dose-dependent
manner (Figure 2A), with E. coli and S. aureus being the most sensitive species. GWH1
was superior to T22 in terms of its antibacterial activity, with lower MIC values in all cases
(Figure 2B). While the biological impact of GWH1 was immediate, T22 required longer
times to reach comparable disruptive effects over bacterial cells (Figure 3A,B). In addition,
both peptides inhibited biofilms formed by E. coli and S. aureus (Figure 3B), which we value
as a promising feature regarding the potential applicability of T22 as an AMP.

Due to their interaction with biological membranes, many AMPs show hemolytic
or cytotoxic activities over mammalian cells, bottlenecking a widespread use of these
materials as safe drugs [56,57]. In this context and as expected, GWH1 showed a mild
cytotoxicity (Figure 4A) and a dose-dependent hemolysis (Figure 4B) that compromise its
clinical use. In contrast, T22 shows only a moderate or absent cytotoxicity in several cell
lines (Figure 4A) and a complete absence of hemolytic activity up to the very high doses
tested here (Figure 4B), which represents a clear competitive advantage over the control
peptide GWHI1.

>

GWH1 T22

120 120 -o- FEscherichia coli

- Staphylococcus aureus
-8 Pseudomonas aeruginosa

-
o
o

|

-

(=

o

]

o
(-]
o

% Bacterial growth
N
o
1

% Bacterial growth
(=2
o
1

40+ 40—
*
20 } 20-
0 J T ) 1 0 T T T 1 1 }
2 4 8 16 32 2 4 8 16 32 64
B Concentration (umol/L) Concentration (umol/L)
GWH1 MIC (umol/L) T22 MIC (umol/L)
Escherichia coli 8 Escherichia coli 64
Staphylococcus aureus 16 Staphylococcus aureus 32

Figure 2. Impact of peptides T22 and GWH1 on bacterial growth in liquid culture. (A) Bacterial growth of E. coli, S. aureus
and P. aeruginosa cultures, measured by their optical density at 620 nm, treated with T22 and control GWH1 peptides in
serial 2-fold dilutions at 37 °C for 18 h. Each point represents an average of at least two different values and error bar
indicates standard deviation. (B) Minimum inhibitory concentration (MIC) of the peptides for E. coli and S. aureus. The
lowest concentration showing no bacterial growth (evaluated by visual inspection) in the broth microdilution method was
taken as the MIC. Significant differences between groups are indicated as * p < 0.01, one-way analysis of variance (ANOVA)
followed by Tukey’s multiple comparisons test.
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Control

T22 32

T22 64
GWH1-C 8
GWH1-C 16

(Hmol/L)

bitod

T 1
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Control
T22 16
T22 32
GWH1-C 16
GWH1-C 32

(Hmol/L)
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T 77T
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o
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80 -5~ GWH1 E. coli

4.'-.
60— GWH1 S. aureus

% Biofilm inhibition

0-¥ I I I
2 4 8 16 32

Concentration (umol/L)

Figure 3. Time- and concentration-dependent impact of the peptides on bacterial growth and biofilm
formation, respectively. (A) Time-kill kinetics of E. coli (up) and S. aureus (down) exposed to T22 and
GWHI1 peptides at different concentrations for 0, 0.5, 1, 2, 3, 4, 5 and 24 h. Each point represents an
average of at least two different values and error bars indicate standard deviation. Control represents
the bacterial growth without peptide exposure. Figures indicate concentration in pmol/L. (B) Effect
of peptide concentration on biofilm formation on the surface of the microtiter wells. Significant
differences over bacterial control are indicated as * p < 0.05, one-way analysis of variance (ANOVA)
followed by Tukey’s multiple comparisons test.
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Figure 4. Cytotoxicity of peptides T22 and GWH1 on mammalian cells. (A) Cell viability in the presence of peptides over
cultured mammalian cells, recorded 48 h after exposure. (B) Hemolytic activity associated with peptides over human
erythrocytes. Significant differences over cell control are indicated as * p < 0.01, one-way analysis of variance (ANOVA)
followed by Tukey’s multiple comparisons test. Figures indicate concentration in umol /L.

If T22 would keep its antimicrobial activities when presented in assembled, protein-
only nanoparticles, it would have a potential dual application as a CXCR4-targeting agent
and AMP. It is widely recognized that bacterial infections not only represent further
complications in solid tumors [58—60] but that they also participate in tumor formation
or as triggering agents in several human neoplasias [32,33]. Such triggering effects are
specially suspected in organs such as colon that are continuously exposed to microbiome
components that might largely contribute to, or modulate, the initiation and progression of
colorectal cancer [61-65]. Particularly, the formation of E. coli biofilms has been recently
pointed out as an oncogenic driver in colorectal cancer development [66], and as shown
above (Figure 3B), T22 is a good inhibitor of E. coli biofilm formation. On the other hand,
T22, in the form of fusion proteins assembled as nanoparticles, has proved to be highly
effective in the targeted delivery of antitumoral drugs. In this context, the P. aeruginosa
exotoxin A has been genetically inserted in a T22-based protein construct, thus generating
the build-in cytotoxic, CXCR4-targeted nanoparticle T22-PE24-H6. In animal models of
metastatic human cancers, T22 confers selectivity for CXCR4-overexpressing cancer stem
cells while the bacterial toxin PE24 causes cell death and cancer remission [6,8]. The
combination of the toxin and T22 is then a clinically promising concept [18,67].

Envisaging a dual role of T22 in protein constructs, the T22-empowered fusions T22-
GFP-H6 and T22-PE24-H6, assembled as regular nanoparticles (Figure 5A), were tested for
their potential activity as antibacterial agents against S. aureus (Figure 5B). Interestingly, the
display of T22 in oligomers (Figure 5C) is not only maintained but it also tends to enhance
the antibacterial capacity of the free peptide, particularly for T22-PE24-H6 (compare data
from Figures 2A and 5B). In the oligomers, 10 copies of the T22 loop are predicted to be
exposed to the solvent with their HM pointing in perfect sense and direction to allow
interaction with the membrane (Figure 5C). In this orientation, T22 would keep the 3-
hairpin structure associated with AMP activity (Figure 5D). The observation of AMP
activity linked to T22 in the form of multimeric nanoparticles, in which the peptide is
genetically fused to the building block, opens interesting routes for the engineering of
antimicrobial peptides in more effective formulations easily reachable through simple
genetic engineering.
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Figure 5. Antibacterial activity and possible structure of a recombinant T22 displayed on protein nanoparticles. (A) Volume
size distribution of T22-PE24-H6, T22-GFP-H6 and GWH1-GFP-H6 nanoparticles and unassembled GFP-H6, as determined
by dynamic light scattering. Data are represented as mean =+ standard error on the mean (SEM). (B) Bacterial integrity of

S. aureus measured by the
nanoparticles and GFP-H6

optical density at 620 nm, after incubation of GWH1-GFP-H6, T22-GFP-H6 and T22-PE24-H6
in serial 2-fold dilutions at 37 °C for 18 h. Protein concentration at the X axis refers to monomers.

Significant differences over GFP control protein are indicated as * p < 0.01, one-way analysis of variance (ANOVA) followed
by Tukey’s multiple comparisons test. (C) A proposed model for the T22-GFP-H6 nanoparticle according to a previous
approach [17]. Each T22 peptide has been colored differently and its calculated HM vector has been drawn in black. (D) Left:
detail of (C) for a single nanoparticle monomer. Right: Closeup of the T22 region with PM1-selected model superposed
(RMSD 1.34 calculated with PyMOL's “super” function).

4. Discussion

The therapies for solid cancers are based on the resection of the primary tumor
and further chemotherapy with cytotoxic, low-molecular weight drugs, administered
systemically. The lack of drug targeting is associated with severe side effects [68,69] limiting
the usable doses and minimizing the local drug concentration, which usually remains
insufficient to prevent recurrence and metastasis [70,71]. Tumor-targeted nanomedicines
are pointed out as innovative ways to enhance drug selectivity, increase the local drug
concentrations and minimize side effects [72-77]. This should result in a higher efficacy at
low drug doses, which should concomitantly enhance life quality and survival expectancy.
The expression levels of the cytokine receptor CXCR4 are associated with invasiveness
and aggressiveness in more than 20 human neoplasias [78-89], including colorectal cancer
and breast cancer. This makes this cell-surface protein, occurring in metastatic cancer
stem cells, a good target for precision therapies [2,10,11,14,84,90,91]. Colorectal cancer is
among one of the highly prevalent CXCR4" cancers in men and women, with growing
incidence and worldwide spread [92-95]. Early and advanced lesions in the colon mucosa
are endoscopically detected [96-98] and resected [97-100], and the treatment is completed
with systemically administered chemotherapy, which exploits the cytotoxic activities of
several low-molecular weight drugs such as irinotecan, 5-fluorouracil and capecitabine,
among others [101-104].
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T22 assists the protein self-assembly of given constructs in the form of regular protein-
only nanoparticles [15,17]. This peptide, as an amino-terminal protein fusion, also targets
these constructs to selectively bind and penetrate CXCR4-overexpressing cancer cells [15].
Therefore, we have adapted T22-empowered nanoparticles to deliver Floxuridine [18],
Auristatin E [11,29] or several protein toxins [8,13] for the selective destruction of colorectal
cancer tissues. In the present study, we have demonstrated that T22 also shows a modest
antimicrobial activity (Figures 2 and 3) and a capacity to inhibit biofilm formation broader
to that of other conventional AMPs such as GWH1 and over Gram-negative and Gram-
positive species. GWH1 and T22 are both amphipathic peptides, that is, with hydrophilic
and hydrophobic sides. However, the distribution of charges in their surfaces is completely
different, a fact that generates a much clearer difference between sides in GWH]1 than in
T22 (Figure 1D). The magnitudes of their hydrophobic moment (HM) vectors, a measure
of amphipathicity, are in both cases high, which has been correlated with the membrane
pore-formation capacity [27], a common feature of AMPs. Amphipathicity, however,
is also related to toxicity over mammalian cells [105-107]. It has been postulated that
a right balance between amphipathicity and hydrophobicity is the key to attaining a
high antimicrobial activity and low toxicity [28], although it has also been described that
detailed surface electrostatics [108] and the HM angle [47,109] highly influence the outcome.
On the other hand, it has been proposed that an HM-vector-magnitude threshold, also
modulated by the other factors mentioned, could exist that defines the onset of toxicity [27].
Thus, while T22 and GWHI1 share features expected in many AMPs, such as a high HM-
vector magnitude and a certain tilt angle relative to the membrane normal, the slightly
lower amphipathicity, higher net charge and lower hydrophobicity of T22 may result in
the absence of generic toxicity and hemolysis (Figure 4B), while retaining a moderate
antibacterial activity (Figure 2) and potent biofilm inhibition capacity (Figure 4). This set
of properties would be kept in complex macromolecular structures as long as the peptide
remains accessible on the surface (Figure 5).

These results are relevant not only when considering T22 and its fusion construct as an
AMP but also the combination of the AMP activity with its functionality as a targeting agent
in advanced nanomedicines to treat colorectal cancer. In this type of cancer, chemotherapy
upon resection is applied by intravenous infusion. However, a recent study [110] proposes
the administration of 5-fluorouracil-loaded nanoparticles against colorectal cancer via
intestinal mucosa. The concept of surface chemotherapy of colorectal cancer lesions via
gastric administration is supported by independent studies stressing the possibility of
mucosal treatment of this type of cancer through various categories of polymeric mate-
rials [111-115]. In contrast to systemic administration, such an approach would allow,
using appropriate agents, a combined treatment to kill cancer cells and concomitantly
inhibit participating bacterial biofilms at the local level. If tumor cell-targeted, such a dual
treatment would have localized effects on damaged mucosal areas with enhanced precision
and effectiveness. Since attaching small chemical drugs to T22-empowered protein-only
nanoparticles does not interfere with the targeting abilities of this peptide [29,55], the set of
findings presented here opens a new line of exploratory research addressed to combine
targeted drug delivery and overlapping biofilm inhibition at the local level through the mu-
cosal delivery of nanoparticles [110]. This possibility is exemplified here by the pleiotropic
character of T22 as a structural agent for nanoparticle formation, as a targeting agent and
as an AMP.

These notions are relevant in the context of the expanding recognized roles of bacterial
biofilms in colorectal cancer development and progression [66,116,117], and regarding
the progressive identification of involved bacterial species and consortia [118], which
highlights E. coli as one among the relevant contributor species through several virulence
factors [66,119,120]. Importantly, and due to a distinctive microbiota composition [121-123],
biofilm formation appears to be specifically relevant in the right-sided colorectal can-
cer [121], for which antibiofilm drugs could be specially effective. As the microbiota
components involved cancer development and progression are more precisely identified,
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highly focused studies about the potency and real efficacy in vivo of dual-acting protein
agents such as T22 should be conducted.

5. Conclusions

A biologically significant antimicrobial activity with associated biofilm destruction
has been found, for the first time, associated with T22, a short peptide used to selectively
target nanomedicines for CXCR4* human cancers. Such activity is maintained in the
nanostructured forms of the peptide, ideal for drug delivery, in the absence of toxicity
over human cells. Even being moderate, the antibacterial capacity of T22 is superior to
that shown by other reference antimicrobial peptides. This discovery and the supporting
general concepts open the possibility to design nanomedicines for human neoplasias, such
as colorectal cancer, that show an important bacterial component. In this context, a local
dual performance combining the selective (or even broad) antimicrobial impact and highly
selective antitumoral activity could be extremely interesting as a new way to develop more
effective, multifunctional anticancer therapies or preventive approaches from the mucosal
side of the tumor that might complement the currently applied systemic therapies.
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