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Abstract: Liposomes have been utilized as a drug delivery system to increase the bioavailability of
drugs and to control the rate of drug release at the target site of action. However, the occurrence
of self-aggregation, coalescence, flocculation and the precipitation of aqueous liposomes during
formulation or storage can cause degradation of the vesicle structure, leading to the decomposition
of liposomes. To increase the stability of liposomes, post-processing techniques have been applied as
an additional process to liposomes after formulation to remove water and generate dry liposome
particles with a higher stability and greater accessibility for drug administration in comparison with
aqueous liposomes. This review covers the effect of these techniques including freeze drying, spray
drying and spray freeze drying on the stability, physicochemical properties and drug encapsulation
efficiency of dry liposomes. The parameters affecting the properties of liposomes during the drying
process are also highlighted in this review. In addition, the impact of using a protective agent to
overcome such limitations of each process is thoroughly discussed through various studies.

Keywords: post-processing techniques; liposome stability; freeze drying; spray drying; spray
freeze drying

1. Introduction

Drugs and bioactive compounds have an enormous potential for curing diseases,
relieving pain, preventing disease or maintaining health. However, the administration of
drugs or bioactive compounds through oral, topical, parenteral, rectal and nasal routes
could be problematic due to unpredictable drug absorption and drug bioavailability at the
site of action [1]. In order to overcome these problems, the application of drug delivery
systems, which are well known as the method or process of transporting drugs or bioactive
compounds to achieve the medicinal effects in humans, is very attractive especially in
the pharmaceutical field of study [1,2]. Currently, many kinds of drug delivery systems
have been developed by the encapsulation of drugs or bioactive compounds in various
carriers such as liposomes [3,4], nanoemulsions [5], nanostructured lipid carriers [6,7] and
micelles [8], aiming to increase drug bioavailability, control the drug release rate at the
target organ and improve the safety and stability of the delivery systems themselves [1,9,10].
Among these carriers, liposomes, which are long circulating macromolecular carriers, have
become the most interesting carriers because of their potential to deliver both hydrophilic
and hydrophobic substances to cell membranes [2,11]. Even though the problems of
stability and the physicochemical properties of conventional liposomes have been reported,
the modification of liposomes by using biopolymers or the application of a few drying
techniques to liposomes after formation have emerged as effective approaches to improve
the stability and physicochemical properties of liposomes [1,11,12]. In comparison with
the biopolymer modification of liposomes, which has been summarized in a previous

Pharmaceutics 2021, 13, 1023. https://doi.org/10.3390/pharmaceutics13071023 https://www.mdpi.com/journal/pharmaceutics

https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://doi.org/10.3390/pharmaceutics13071023
https://doi.org/10.3390/pharmaceutics13071023
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pharmaceutics13071023
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics13071023?type=check_update&version=2


Pharmaceutics 2021, 13, 1023 2 of 16

study [11], the literature reviews related to the production of dried liposomes using drying
techniques are limited. Therefore, this review paper aims to summarize the impact of
commonly-used drying techniques such as freeze drying, spray drying and spray freeze
drying on the stability and functionality of liposomes. The parameters affecting the
properties of liposomes after drying and the current studies on the application of post-
processing techniques to drug-encapsulated liposomes are also discussed.

2. Liposome Formulation

Liposomes are amphiphilic vesicular structures composed of an internal aqueous
phase surrounded by one or several bilayer membranes of phospholipids. This amphiphilic
nature allows liposomes to encapsulate both hydrophilic and hydrophobic substances into
their structures without any association with surfactants [4]. The major constituents of
liposomes—in general, phosphatidylcholine and cholesterol—do not convey surfactant
characteristics, making liposomes the safest and most suitable drug delivery system for hu-
mans because of their biocompatibility, biodegradability and low toxicity [9,10]. The ability
of liposomes to encapsulate unstable compounds such as drugs, vitamins, antioxidants
and antibacterial agents has been reported to have numerous advantages such as a high
encapsulation efficiency, high solubility and high protection capability with an increased
bioavailability of active compounds. Those advantages also ultimately increase the ability
of liposomes as delivery systems with an effective control-release feature at the site of
action [9,13–15].

Liposomes can be manufactured by various methods such as thin film hydration
techniques [16,17], ethanol injections [15,18], freeze drying [19,20], spray drying [21], mi-
crofluidization [22,23], heating [24], high shear dispersion [25], sonication [26], a superficial
method [27,28] and the Mozafari method [29,30]. These methods can be used to prepare
liposomes based on parameters such as the chemical and physical characteristics of ac-
tive compounds, the average size, the polydispersity index, the stability of the prepared
liposomes, the properties of liposome-dispersed medium and additional processes [31,32].
Recent studies on liposome preparation methods are summarized in Table 1.
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Table 1. Preparation techniques and recent studies of liposomes.

Liposome
Formulation

Liposome Preparation
Technique Core Materials Shell Materials Protectant Main Result Ref.

Liquid State

Thin Film Hydration
(+ Extrusion/Sonication)

Curcumin Soybean lecithin, cholesterol Chitosan Improved stability of curcumin-loaded liposomes [16]

Fish hydrolyzed collagen Soy phosphatidylcholine with
cholesterol or glycerol - Enhanced bioactivities and stability of hydrolyzed

collagen [17]

Ethanol Injection

Ethanolic coconut husk
extract

Phosphatidylcholine,
cholesterol - Enhanced antibacterial properties, improved dark color [15]

Cinnamaldehyde Egg yolk lecithin, Tween 80 Chitosan Increased encapsulation efficiency, antibacterial activity
and storage stability [18]

Microfluidization

Branched-chain amino acids
Phosphatidylcholine,
cholesterol, palmitic acid,
hexadecylamine

Chitosan, pectin Improved colloidal and intestinal stabilities of
encapsulated branched-chain amino acids [22]

Green tea extract Soybean lecithin Gum arabic, Whey protein,
lysozyme, chitosan Increased storage stability of liposomes [23]

Heating
(+ Sonication)

Rutin, glycerol,
cellulose nanofibers Soybean lecithin HPMC Improved appearance, increased apparent viscosity,

decreased cohesive energy of the coating suspension [24]

High Shear Disperser Black mulberry
(Morus nigra) extract Lecithin Chitosan, maltodextrin Protected anthocyanin content, enhanced in vitro

bioaccessibility of anthocyanins [25]

Sonication Shrimp oil Phosphatidylcholine - Improved stability and nanoencapsulation efficiency,
minimized fishy odor [26]

Superficial Olive pomace extract L-α-Phosphatidylcholine - Increased encapsulation efficiency of polyphenol
compounds [27]

Limonene L-α-Phosphatidylcholine - Increased encapsulation efficiency of limonene [28]

Mozafari
Green tea extract Lecithin, glycerol - Improved stability and antioxidant activity of green tea

extract [29]

Algal extract Soybean lecithin - Increased stability, maintained the antioxidant activity of
algal extract [30]

Solid State
Freeze Drying

Calcein, 5-fluorouracil,
flurbiprofen

Soybean phosphatidylcholine,
cholesterol Sucrose, lactose, mannitol Increased encapsulation efficiency [19]

Glycyrrhetinic acid Soybean phosphatidylcholine,
cholesterol

Lactose, sucrose,
trehalose, mannitol Increased water solubility and encapsulation efficiency [20]

Spray Drying Lopinavir Phospholipon 85G®,
cholesterol

- Increased stability and % entrapment efficiency [21]
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As shown in Table 1, although general liposomes have several advantages as effective
delivery systems, they may exhibit fatal disadvantages such as liposome self-aggregation,
flocculation, coalescence and particle fusion, resulting in the gradual formation of larger
vesicles and precipitation [33,34]. Liposomes can also be unstable due to temperature, pH
and the presence of other components such as sugars and salts in a few food matrices [33].
Under these conditions, as the bilayer structure of liposomes loosens, the size increases due
to aggregation and the stability of the liposome decreases. In addition, if the bilayer struc-
ture of the liposome is further widened, the encapsulated substances are lost. Therefore, the
efficacy of liposomes as drug delivery system at the target point decreases. In severe cases,
the bilayer structure of the liposome can be destroyed, resulting in a breakdown of safety.
The encapsulated core material of liposomes can be leaked, degraded or decomposed due
to the destabilization processes. As a result, the core material can deteriorate rapidly in the
gastrointestinal tract and finally removed from the blood circulation [11,31,34,35]. Based on
those reasons, the designed formation of liposomes is necessary to overcome the stability
shortcomings of liposomes. Previous studies have reported the improvement of liposome
stability by modifying the process of liposome preparation [11,36,37]. For instance, coating
biopolymers on the surface of liposomes in order to adjust the particle size, particle mor-
phology, surface charge, membrane fluidity and lipid chain ordering could increase the
stability and time-circulation property of liposomes [11]. The incorporation of biopolymers
into the structure of liposomes and the encapsulation of liposomes in hydrogels, films or
nanofibers are such techniques that improve the stability and characteristic properties of
liposomes [34,38]. However, even though the stability-enhancing effect of various kinds of
biopolymer have been reported [11], critical challenges including the disruption of the lipo-
some integrity, the agglomeration and coalescence of a biopolymer-coated liposome and
the destabilization of the liposome bilayer may occur in the aqueous liposomes depending
on the types of biopolymer and surrounding conditions [11].

Apart from the formation of biopolymer-associated liposomes, another promising
way to improve the stability, bioactivity and bioavailability of liposomes is to perform
additional processes, referred to as “post-processing techniques”, to the prepared aqueous
liposome. In the next section of our review, the effectiveness of post-processing techniques
on the stability and properties of dried liposomes are discussed.

3. Post-Processing Techniques for Liposomes

The purpose of applying post-processing techniques to the prepared liposomes is, in
general, to develop dried liposomes with a higher stability and a great accessibility for drug
administration in comparison with aqueous liposomes [12]. In this section, the effects of
common post-processing techniques including freeze drying, spray drying and spray freeze
drying on the stability and bioavailability of liposomes are summarized according to the
current studies (Figure 1). This review not only introduces the advantages and limitations
but also discusses effective solutions to overcome the limitations of each drying technique.

3.1. Freeze Drying Process

Freeze drying or lyophilization is a water removal process that involves three major
steps: 1. freezing (of a liposome-cryoprotectant mixture); 2. primary drying (where
sublimation occurs) and 3. secondary drying (to reduce the residual moisture content) [39].
This process is one of the most widely used techniques for increasing the long-term stability
of liposomes and preventing the degradation of sensitive substances encapsulated in the
structure of liposomes [12,40,41]. However, the elimination of water through the freeze
drying process may cause several adverse effects on the liposome such as changes in the
vesicle size, a loss of membrane integrity, a loss of the encapsulated substance and an
alteration of the rheological properties. These phenomena are caused by the interaction
between the water molecules and hydrophilic head groups of phospholipids to form
liposome bilayers [14,40,42]. According to Lopez-Polo et al. [14], the effect of the freeze
drying process was investigated based on the physicochemical properties and rheological
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properties of rutin-loaded liposomes made from soy phospholipids. Even though the
results in this study showed an increase in the storage stability of lyophilized rutin-loaded
liposomes as well as the antioxidant capacity of rutin in comparison with those of non-
lyophilized ones, a significant increase in the diameter and changes in the rheological
parameters of liposomes caused by lyophilization were also reported.
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Parameters such as the rate of freezing, liposome preparation method, bilayer com-
position and residual moisture content have been reported as critical factors involved in
the stability and physicochemical properties of lyophilized liposomes [43]. For example,
Franzé et al. [3] described that a rapid freezing rate, which involves the formation of small
ice crystals, can reduce the disruption of the bilayer structure of liposomes. However, a
slow freezing rate can have a negative effect on altering the liposome structure. A few
studies have reported damage to the lipid bilayer due to the formation of large ice crystals
as a result of the slow freezing process but a few studies, in contrast, reported the recovery
of the bilayer membrane from deformations caused by mechanical stresses and osmotic
pressure, which occurred due to less formation of ice crystals as a result of the slow diffu-
sion of molecules across the bilayer when the external phase became concentrated due to
freezing [3,41].

Concerning the effect of the preparation technique on the stability of liposomes,
Sebaaly et al. [44] prepared liposomes with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD)
and encapsulated eugenol as a core active material. The effect of the preparation methods,
namely, (1) drug in cyclodextrin in liposomes (DCL) and (2) drug in cyclodextrin in
liposomes prepared by a double loading technique (DCL2) (Figure 2), on the stability of
lyophilized liposomes was then determined after a reconstruction in ultrapure water. In
this study, the results showed that while DCL could maintain the stability of lyophilized
liposomes, an increase in the average size and polydispersity index (PDI) as well as a
loss of vesicle structures were observed in the lyophilized liposomes prepared by DLC2
after the reconstruction. According to the formulation of DCL2, where the drug was
added to the organic phase whereas the inclusion complex was added to the aqueous
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phase of the liposome, this finding occurred because the presence of eugenol in the bilayer
could interfere with the interaction between β-CD and the liposome; hence, leading to the
rearrangement of the liposome structure [44].
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In order to overcome the negative phenomena that occur during the freeze drying pro-
cess of liposomes, adding a lyoprotectant to the liposome formulation has been extensively
reported to inhibit vesicle aggregation, prevent the leakage of the encapsulated material
and protect the phospholipid membrane from damage caused by ice crystals [41,42]. A
variety of carbohydrates (monosaccharides, disaccharides, polysaccharides and synthetic
saccharides), proteins (amino acids) and several alcohols that can interact with phospho-
lipids could act as lyoprotectants (Table 2). To date, two lyoprotective mechanism-based
disaccharides, the water replacement model and the vitrification model, have been pro-
posed in the field of freeze-dried liposomes [41,42,45]. As shown in Figure 3, the former
model explained the ability of sugar to replace water by interacting with phospholipids
thereby maintaining the space between the phospholipid head groups (loose state) during
freezing and reducing the van der Waals forces among the acyl chains of the phospholipids
during drying. It is believed that the decrease in the phase transition temperature (Tm) of
the bilayer as a result of the decrease in the van der Waals forces contributes to an increase
in the stability and encapsulation efficiency of dry liposomes [42]. This mechanism is
triggered by the presence of a lyoprotectant. However, the mechanism does not differ
depending on the type of lyoprotectant or the glass transition temperature. The latter
model describes the formation of a stable sugar glass matrix that can capture dry liposomes
during freeze drying [41,45]. In this model, the presence of cryoprotectants between the
bilayers, the glass matrix, with a high viscosity but low mobility, is believed to reduce
the contact of membranes in proximity thus preventing the aggregation and damage of
liposomes caused by ice crystals [41,45].

Currently, Toniazzo et al. [46] revealed that the use of sucrose as a lyoprotectant could
maintain the average hydrodynamic diameter and zeta potential of lyophilized quercetin-
loaded liposomes. The concentration of quercetin in the lyophilized liposomes also did not
change significantly during storage for 100 days. In addition, the liposomes exhibited a
low hygroscopicity and a low propensity for water adsorption. These results confirmed
the efficacy of sucrose in protecting the lipid membrane and prolonging the stability of the
dried liposomes.
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Table 2. Classification of lyoprotectants.

1. Carbohydrate 2. Protein [39] 3. Polyol [39]

1.1. Mono and disaccharides [39,41] 1.2. Oligo and polysaccharides [39] Glycine Mannitol
Glucose (dextrose) Raffinose Gelatin Sorbitol

Fructose Hydroxypropyl-β-cyclodextrin
(HP-β-CD) Proline Glycerol

Mannose Chitosan Glutamine Ethylene glycol
Maltose Maltodextrin Betaine Propylene glycol
Sucrose Inulin Arginine Polyvinyl alcohol

Trehalose Dextran Lysine
Cellobiose Hyaluronan Histidine

Lactose
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Although lyoprotectants offer several benefits for the stability of lyophilized liposomes,
it should be noted that the use of lyoprotectants always requires the optimal set temperature
for lyophilization because liposomes are naturally sensitive to stress caused by changes in
temperature and pressure. Depending on the type of lyoprotectant, a suitable freeze drying
temperature should be optimized to maintain the bilayer integrity and avoid the collapse
of the liposome structure [35]. To this end, consideration of the collapse temperature (Tc)
and the glass transition temperature (Tg’) of the freeze-concentrated solution, which refers
to the temperature at which visible or full collapse occurs and the temperature at which
the heat capacity of the freeze-concentrated solution changes significantly, respectively, is
necessary [47]. The optimal set temperature for the primary drying process can be lower
than Tc but higher than Tg’ [47]. To gain an insight into the collapse temperature of the
liposome lyoprotectant sample during the freeze drying process, the collapse of ovalbumin-
loaded liposomes influenced by sucrose was observed in real time by Hussain et al. [35]
using a freeze drying microscope (FDM). In this study, the liposome sample was frozen
at −50 ◦C at a rate of 10 ◦C/min. The morphology alteration of the ovalbumin-loaded
liposome by adding a sucrose sample was performed when the sample temperature reached
freezing point (−18.6 ◦C). In this study, the collapse of the sample was observed during
the primary drying process when the sample temperature rose to −34 ◦C under a 0.1 mBar
vacuum [35]. The optimal freeze drying condition for ovalbumin-loaded liposomes and
the sucrose mixture was selected at 4 ◦C to −45 ◦C for freezing, −30 ◦C for primary drying
and 30 ◦C for secondary drying (under a vacuum of 0.1 mBar), respectively.
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3.2. Spray Drying Process

Owing to the disadvantages of the freeze drying process such as being time-consuming
and expensive [34], the spray drying process is the most often used method in drug deliv-
ery systems for converting aqueous materials into a dried and powdery form [12,48–50].
Compared with freeze drying, the spray drying process is faster, cheaper and more suitable
for the production of defined particles [12]. However, the main issue in the spray drying
of liposomes is the occurrence of liposome aggregation, which leads to an increase in the
particle size distribution and a leakage of the loaded active material during storage. To
limit this aggregation, biopolymers with opposite charges such as proteins and carbohy-
drates have been utilized as protectants through spray drying to improve the kinetics and
mechanical stability of liposomes [51,52]. Spray drying parameters including tempera-
ture, biopolymer type, biopolymer amount and spray gas flow affect the characteristics
and morphology of the final powder [53–55]. The temperature of spray drying is related
to the evaporation rate of moisture, the higher temperature and the faster evaporation
rate. The temperature, in addition, also affects the state of the vacuole (a vapor bubble)
formed with the particles. Under high temperature conditions (inlet/outlet temperature:
200 ◦C/125 ◦C), the vapor pressure in the vacuole rises and expands, leading to the forma-
tion of vacuoles within the particles. As the moisture is evaporated very quickly at the high
temperature of spray drying, the surface of the particles becomes dry and hard. Therefore,
the particles do not shrink; the shape is maintained and the surface of the particles ap-
pears smooth. On the other hand, when the spray drying temperature is low (inlet/outlet
temperature: 120 ◦C/80 ◦C), the vapor condenses within the vacuole causing the particles
to contract. In addition, the surface area of the particles is moist and flexible due to the
slow moisture evaporation. Therefore, as the temperature decreases further, the vacuole
becomes hollow and contracts, forming a wrinkled shape on the surface [51,54,56]. As the
state of the vacuoles changes depending on the spray drying conditions, post-processing
should be performed under appropriate conditions depending on the biopolymer used.
Considering the effect of the biopolymer type, Khatib et al. [53] found an increase in the
drug encapsulation efficiency of liposomes (hydrogenated soy phosphatidylcholine and
cholesterol; HSPC) containing ciprofloxacin nanocrystals when using sucrose and lactose
as protectants in comparison with trehalose. In this case, the ability of sucrose and lactose
to maintain the liposome integrity was reported to be associated with the interactions,
mainly hydrogen bonds, between those disaccharides and HSPC, decreasing the number
of water molecules in the liposomes and, thus, stabilizing the liposome bilayer during the
spray drying process [53,57]. However, depending on the composition of the liposome,
trehalose or other biopolymers could also be considered appropriate protectants to interact
and stabilize liposomes during spray drying.

Regarding the effect of the amount of biopolymer, Khatib et al. [53] also found that only
the intermediate level of sucrose (41% w/w) had an impact on the increase in the particle
size of liposomes whereas an amount greater or less than that did not. As a number of
factors such as particle-particle interactions, osmotic pressure and lipid properties affect the
structural rearrangement of liposomes during spray drying, a possible mechanism of this
phenomenon has been described based on the interaction between sucrose and liposomes
during spray drying [53]. In short, the high amount of sucrose retains the particle size of
liposomes by two incidences: (1) by reserving the spaces between the adjacent liposomal
vesicles through the interaction with phospholipids and (2) by maintaining the osmotic
pressure between the liposomal membranes during drying, subsequently decreasing the
amount of sucrose and thereby decreasing the protection ability, increasing the interaction
between phospholipids, allowing drug leakage and increasing the liposomal aggregation
upon rehydration. Once the amount of sucrose is lower than a certain level, drug leakage
causes a difference in the osmotic pressure between the inside and outside of the droplets,
thereby reducing the particle size of the liposome upon rehydration as a result of water
diffusion (diffuse-out).
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The utilization of biopolymers with spray drying has been confirmed to enhance the
stability of liposomes [52,54]. For instance, according to a study by Gómez-Estaca et al. [52],
the protective effect of alginate was observed to improve the stability of a soy phosphatidyl-
choline liposome during spray drying and storage. The study by Akgün et al. [54] also
revealed that spray drying of liposomes containing a sour cherry extract with maltodextrin
could protect the liposome membrane thereby maintaining the loaded phenolic compounds
and their antioxidant activity.

However, a few antagonistic results regarding the effect of spray drying with protec-
tants on the encapsulation efficiency of liposomes have also been reported because the
degradation of the membrane integrity and leakage of the loaded active compounds can be
caused by heat and dehydration during spray drying [34]. In this respect, coating an active
compound-loaded liposome with chitosan or sodium alginate prior to mixing with the
protectant and spray drying has been revealed to be an effective approach to improve the
rigidity of liposomal membranes against heat. Following the study by Sarabandi et al. [34],
coating nanoliposomes (phosphatidylcholine) containing a flaxseed peptide with chitosan
before spray drying with maltodextrin could preserve the encapsulation efficiency of
nanoliposomes after spray drying (with maltodextrin) and storage when compared with
that of an uncoated nanoliposome. As chitosan interacts with the polar head of phospho-
lipids through electrostatic interactions [58], the pores on the surface of the nanoliposomal
membranes are then covered by chitosan, which in turn retard the release of the loaded
flaxseed peptide during storage and after rehydration. In addition, a chitosan coating
preserved the antioxidant capacity of a flaxseed peptide during spray drying [34]. In
a study by Altin et al. [51], the spray drying of chitosan-coated liposomes containing a
phenolic extracted from cacao hull waste also enhanced the bioaccessibility of phenolic
compounds extracted in terms of the total phenolic and total flavonoid contents after the
in vitro digestion.

3.3. Spray Freeze Drying Process

Freeze dying and spray drying processes have been widely used to improve the
stability and encapsulation efficiency of liposomes. The advantages and disadvantages of
each method are summarized in Table 3. The main advantage of the spray drying process
is the production of defined and powdery forms of particles but loaded active compounds
can be degraded owing to the impact of heat. Although the freeze drying process is
suitable for preserving thermolabile substances, it is time consuming and, depending on
the nature of the materials, the dry cake form of the final product can be very hygroscopic;
hence, it may need to be kept in a specific container to prevent moisture sorption. To
combine these advantages and compensate for the limitations of these methods, a spray
freeze drying process was developed to provide dry products with a high stability [59].
The spray freeze drying process consists of three major steps: atomization, freezing and
freeze drying [60]. As schematically illustrated in Figure 4, atomization is the first step in
the conversion of the prepared feed solution into spherical droplets through an atomizer.
Subsequently, the freezing and freeze drying steps are performed to solidify the droplets
using a cryogenic agent (or cold fluid) and sublimate the ice at a low temperature and
pressure, respectively [59]. The physicochemical properties of the final product after spray
freeze drying such as the particle size, particle morphology, density and porosity have been
found to vary depending on the type of atomizer, freezing time and the composition and
concentration of the feed solution.
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Table 3. Advantages and disadvantages of three post-processing techniques.

Post-Processing Technique Step Advantages Disadvantages

1. Freeze Drying

(1) Freezing
(2) Primary drying
(3) Second drying

• Simple technique
• Suitable for thermolabile substances

• Time-consuming
• Expensive
• Lyoprotectant required
• Aggregation often occurs

2. Spray Drying
(1) Atomization
(2) Drying

• Convenient and most used
• Time and cost-efficient
• Suitable for the production of

defined particles

• Delicate temperature
control

• Biopolymers required
• Not suitable for

thermolabile substances

3. Spray Freeze Drying

(1) Atomization
(2) Freezing
(3) Freeze drying

• Time and cost-efficient
• No additives required
• Suitable for thermolabile substances
• High stability

• Cryogenic required
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The type of atomizer has been reported to be the most important factor that determines
the particle size and size distribution of the final product [1,59]. Depending on the expected
particle size, various nozzles have been utilized such as a hydraulic nozzle (120–250 µm in
size) and a two/four-fluid pneumatic nozzle (5–100 µm in size). In addition, ultrasonic
nozzles and piezoelectric droplet-stream generator nozzles have also been used [60]. The
spray freeze drying technique is considered to be a time-efficient technique when compared
with the conventional freeze drying process where the spherical droplets generated from
an atomizer have a large surface area and are therefore rapidly solidified by direct contact
with the cryogenic agent during freezing. Unlike conventional freeze drying, the cryogenic
agent used in the spray freeze drying process does not crystallize and the agent is removed
in the sublimation step [60]; thus, phase separation does not occur in the final products.
The freezing time relates to the types of cryogenic agents, which can be liquid nitrogen,
liquid carbon dioxide and liquid argon [61]. Among these types of cryogenic agents, liquid
or gas nitrogen is frequently used because of their inertness, density and low boiling
point [60]. Liquid nitrogen provides a supercooling condition to the droplets and allows
the formation of fine ice crystals [59], which are subsequently sublimated at low temper-
atures and pressures. After sublimation, a product with a high porosity characteristic is
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generated [62]. The solid content in the feed solution is also important for maintaining the
particle morphology of the formed droplets. In this assertion, Vishali et al. [1] reported that
an insufficient solid content in the feed solution could interrupt the spherical morphology
of the droplets due to the mechanical instability of the individual particles.

The spray freeze drying process can be classified into three categories according to
the physical state of the cryogen used in the spray freezing step. As shown in Figure 5,
the three categories are classified as: (1) spray freezing into vapor over liquid (SFV/L), (2)
spray freezing into liquid (SFL) and (3) spray freezing into vapor (SFV) [60]. The SFV/L
technique (Figure 4) is one of the most commonly-used techniques for spray freeze drying
of pharmaceutical substances. In this technique, the droplets obtained from an atomization
step begin to freeze slowly once they pass through the cold vapor gap above the boiling
point of the cryogenic liquid. The droplets are then completely frozen after coming into
contact with the liquid cryogen [60].Pharmaceutics 2021, 13, x 11 of 15 
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The SFL technique (Figure 5) uses an insulated spray nozzle, which is directly con-
nected to the cryogenic liquid. Hence, the droplets begin to freeze immediately upon
contact with the cryogenic agent [60]. Lastly, the SFV technique provides the freezing of
droplets when they come into contact with a gaseous cryogenic medium in the chamber
(Figure 5).

Compared with the conventional freeze drying method, the products from the spray
freeze drying process are smaller and have a narrower size distribution owing to the rapid
freezing and nucleation rate. Important characteristics such as spherical morphology, high
porosity (Figure 6) and high solubility result in the final products being reconstituted
without agglomeration after rehydration [62,63]. The rehydration and agglomeration
results of freeze drying and spray freeze drying are different. This is because the freezing
steps of the two methods are different. During the freezing step of freeze drying, it is
divided into a phase containing ice and a phase containing a cryoprotectant. However,
when they are frozen together, a thin crust is formed, which causes aggregation and slows
the reconstitution of the product [64]. In addition, it interferes with the movement of the
water vapor, resulting in the heating of the product and its fusion. On the other hand,
spray freeze drying freezes into fine droplets, which freeze efficiently and quickly due to
the large surface area. Rapid cooling causes thin interstitial regions. The presence of thin
interstitial regions characterized by very small dendrite-shaped crystals results in a rapid
reconstitution, the prevention of aggregation and improved stability in the freezing step of
spray freeze drying [65,66].
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The spray freeze drying process offers several advantages to the liposome particles as a
drug delivery system. For example, powders dried through the spray freeze drying process
can be stably and continuously released through various routes such as pulmonary and
oral administration [1]. According to the study of Ye et al. [67], clarithromycin liposomal
powder (CLA-Lips-DPIs) was successfully developed using an ultrasonic spray freeze
drying technique. In this study, an ultrasonic nozzle was used to generate the spherical
liposomal droplets, which were immediately frozen once in contact with liquid nitrogen.
After the freeze drying step, the small (micron size) and highly porous liposomal particles
were obtained. The effect of lyoprotectants (sucrose, trehalose and mannitol) on the
particle size and morphology, moisture absorption, drug content uniformity, encapsulation
efficiency and aerosolization performance of the clarithromycin liposomal powder were
also investigated in this study [67]. The results found that the type and concentration of
lyoprotectants affected the particle size and encapsulation efficiency of the dry liposomes.
Liposomes formulated with sucrose (15%) contained the smallest particle size, the most
uniform distribution and the highest encapsulation efficiency when compared with those
formulated with trehalose and mannitol. However, liposomes formulated with sucrose also
quickly absorbed moisture; therefore, this was not suitable for long-term stability. In order
to improve the moisture protection ability, mannitol (15%) was added to the formulation
due to its high crystallinity. Lyophilized liposome powder generated from the formulation
of sucrose (5%) and mannitol (15%) was small, spherical and highly porous. The powder
exhibited 92.14% and 0.09% of drug recovery and drug content uniformity, respectively. In
addition, the powder also remained stable for at least three months with a high aerosol
efficiency (emitted dose N, 85%; fine particle fraction 43–50%) [67]. Based on the scanning
electron microscope (SEM) study, both the surface and inside structure of the dried powder
containing 5% sucrose and 15% mannitol were filled with liposome particles. This result
was reported to be associated with the breaking of the skeleton of the lyoprotectants into
liposome-containing fragments, which increased the aerosol dispersion of the liposome
during testing. Overall, these important characteristics including a small size, high porosity,
high moisture protection ability, high drug recovery, high aerosolization performance and
high stability indicated the suitability of that lyophilized powder as an effective drug
delivery system for pulmonary administration (inhalation) [67].

According to Fukushige et al. [68], hyaluronic acid also exhibited a lyoprotective
effect on the increasing stability and decreasing cytotoxicity of a liposome-protamine-DNA
complex (LPD) encapsulated with small interfering RNA (siRNA) after spray freeze drying.
Liposome particles approximately 30 µm in size were highly porous and highly stable
because the change in their particle size was negligible after redispersion. This finding can
be related to the suppression effect of hyaluronic acid on the aggregation of particles as a
result of steric hindrance [68,69].
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4. Conclusions

The destabilization of aqueous liposomes through self-aggregation, coalescence, floccu-
lation and precipitation can shorten the shelf life and eventually lead to the decomposition
of liposomes. The primary purpose of applying post-processing techniques such as freezing
drying, spray drying and spray freeze drying to liposome formulations is to enhance the
stability of the liposomes, which in turn increases the drug encapsulation efficiency of the
liposomes. Freeze drying is suitable for liposomes composed of heat-sensitive substances
but the stability of lyophilized liposomes can be lost depending on several factors such as
the freezing rate, liposome preparation method, bilayer composition and residual moisture
content. The optimization of these factors or the utilization of appropriate lyoprotectants
has been shown to improve the stability and encapsulation efficiency of lyophilized li-
posomes. Owing to a few disadvantages of the freeze drying process, the spray drying
technique is the most practical technique used for the production of defined liposome
particles. Even though the agglomeration of dried and powdery liposomes after spray
drying could result in an increase in the particle size and leakage of the loaded active
material during storage, applying biopolymers with opposite charges (against liposomes)
to the formulation of liposomes or coating liposomes with chitosan before spray drying
has been confirmed to enhance the stability and maintain the vesicle structure of liposomes.
The application of the spray freeze drying process to liposomes was also discussed in this
review paper. The process in which the unique features of freeze drying and spray drying
are combined resulted in final liposome particles with important properties such as spheri-
cal morphology, a high porosity and a high solubility. Spray freeze drying is mainly used
in the pharmaceutical field at present but is increasingly being applied to the food industry.
The delivery system was also started in the pharmaceutical field as a drug delivery system
but now it is a technology that is widely used in the food industry as well. In pharmacy
and food, research to increase the solubility of poorly soluble/insoluble substances that are
not well soluble in water and to have a maximum efficiency in the body and ultimately to
increase the stability of substances is being conducted in common. Therefore, spray freeze
drying will also be used more often than now to improve the stability of liposomes in the
future and it is predicted that it will be the primary technique.
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