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Abstract: This article describes the synthesis and characterization of two nanocarriers consisting of
β-cyclodextrin-based nanosponges (NSs) inclusion compounds (ICs) and gold nanorods (AuNRs)
for potential near-infrared II (NIR-II) drug-delivery systems. These nanosystems sought to improve
the stability of two drugs, namely melphalan (MPH) and curcumin (CUR), and to trigger their
photothermal release after a laser irradiation stimulus (1064 nm). The inclusion of MPH and CUR
inside each NS was confirmed by field emission scanning electron microscopy (FE-SEM), Raman
spectroscopy, Fourier transform infrared spectroscopy, (FT-IR) differential scanning calorimetry
(DSC), transmission electron microscopy (TEM), and proton nuclear magnetic resonance (1H-NMR).
Furthermore, the association of AuNRs with both ICs was confirmed by FE-SEM, energy-dispersive
spectroscopy (EDS), TEM, dynamic light scattering (DLS), ζ-potential, and UV–Vis. Moreover, the
irradiation assays demonstrated the feasibility of the controlled-photothermal drug release of both
MPH and CUR in the second biological window (1000–1300 nm). Finally, MTS assays depicted
that the inclusion of MPH and CUR inside the cavities of NSs reduces the effects on mitochondrial
activity, as compared to that observed in the free drugs. Overall, these results suggest the use of NSs
associated with AuNRs as a potential technology of controlled drug delivery in tumor therapy, since
they are efficient and non-toxic materials.

Keywords: β-cyclodextrin-based nanosponges; curcumin; melphalan; gold nanorods; photothermal
drug release; near-infrared laser light; second biological window; tumor therapy

1. Introduction

β-Cyclodextrins (β-CDs) are water-soluble macrocyclic oligosaccharides, consisting of
seven glucopyranose units bonded by an α-1,4 glycosidic linkage. β-CDs stand out because
of their cavity dimensions (7.8 A), which can form complexes with benzyl compounds.

As such, β-CDs have been widely investigated to increase drug bioavailability due to
their well-defined structure, moderate toxicity when administered locally or orally, and
their stability with crosslinking agents, such as carbonyl compounds, carboxylic acids, and
epoxides to form nano-porous formulations [1–6]. In this context, β-CD-based nanosponges
(NSs) emerge as carriers with a sponge-like morphology and lipophilic nanochannels,
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formed through the cross-linking of β-CD monomers. NSs are the material of choice over
β-CDs due to their higher stability, biocompatibility, encapsulation efficiencies, and control
over their particle size and solubility [7–11]. Moreover, NSs increase the permeability of
dermal formulations, control the drug release rate, and lessen drug degradation [12–17].

Among the different molecules that have been studied in the context of their potential
anti-tumor effects, polyphenols and nitrogen mustards have shown to be effective against
various types of tumor cell lines, such as lung, multiple myeloma, ovarian, breast and gastric
cancer, among others [18–21]. Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-
heptadiene-3,5-dione) is a naturally occurring polyphenol phytoconstituent obtained from
Curcuma longa. In recent decades, curcumin (CUR) has received increasing attention due to its
biofunctional properties [22–25]. On the other hand, melphalan (4-[bis(2-chloroethyl)amino]
-L-phenylalanine) is a derivative of nitrogen mustard with antineoplastic activity [18,26,27].

Despite their potential beneficial effects, these therapeutic agents have some limita-
tions, which hinder their therapeutic efficacy. Both CUR and melphalan (MPH) exhibit
poor bioavailability, very low aqueous solubility and undergo photodegradation. To over-
come these limitations, and to minimize potential side-effects, several strategies have been
studied, such as the development of liposomal, biopolymeric and polysaccharide-based
formulations.

In this scenario, β-CDs-based NSs are an interesting alternative to solve these disad-
vantages. NSs may form inclusion compounds (ICs) with different molecules, by using
the multiple supramolecular sites that are formed in the cross-linking reaction, and can be
used as drug-delivery systems, as previously reported [5,28–31]. In recent years, several
studies have shown that the decoration of NSs with metal nanoparticles can improve the
usefulness and properties of the polymer, namely magnetite [10,32,33], silver [34,35], or
gold nanoparticles [36].

Among the latter, the use of gold nanorods (AuNRs) as potential nanocarriers for
controlled drug release has been widely reported [37]. AuNRs show both transversal and
longitudinal surface plasmon absorption peaks; while the former generally appear around
530 nm, the latter may appear in the near-infrared (NIR) region, thus creating the possibility
of penetrating deep inside biological tissues. Furthermore, since the modification of the
AuNRs aspect ratio changes the longitudinal plasmon band’s wavelength, this may be used
to shift the plasmon band to the NIR-II region. It is here, in the NIR-II region, or so-called
second biological window (1000–1300 nm), where AuNRs have proven to have better tissue
penetration, low photon scatter, low background signal and higher allowable exposure
with respect to the NIR-I region (650–950 nm) [38–41]. Therefore, AuNRs may be irradiated
to generate localized heat in their proximity and trigger the controlled release of drugs by
means of local photothermia. Taking this into account, AuNRs might be associated with
inclusion complexes (Ics) if the guests present functional groups, such as thiols, amines, or
hydroxyls. NSs associated with AuNRs might promote the release of the included guests
by means of NIR-II, due to the plasmon effect of AuNRs.

This report describes the inclusion complexes of NSs–CUR and NSs–MPH associated
with AuNRs, with plasmon centered at the NIR-II region (Figure 1). The inclusion of MPH
and CUR inside each NS was confirmed using a battery of physicochemical characteriza-
tions, and the association of AuNRs with both ICs was also analyzed.

The drug release of both guests via plasmonic photothermia was assayed using
a continuous laser irradiation stimuli of 1064 nm, which showed that the controlled-
photothermal drug release of both MPH and CUR inside the cavities of NSs reduces the
cytotoxic effect as compared to that of free drugs. To the best of our knowledge, a controlled
drug-delivery system consisting of AuNRs and NSs ICs has not been reported to date. Our
results show that NSs–AuNRs complexes are efficient and non-toxic materials that might
eventually be considered as a potential technology for tumor therapy.
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Figure 1. Schematic representation of the NSs–drug complexes associated with AuNRs. Laser light
stimuli of 1064 nm is absorbed by AuNRs and transformed into local heat, which induces the release
of MPH and CUR (represented in green circles) from the cavities of NSs.

2. Methods
2.1. Materials

Anhydrous β-cyclodextrin, C42H70O35, ≥97%, 1134.98 g/mol; melphalan,
C13H18Cl2N2O2, ≥90%, 305.2 g/mol; curcumin, C21H20O6, 99%; diphenyl carbonate,
C6H5O, 99%, 214.2 g/mol; tetrachloroauric acid, HAuCl4, ≥99.9%, 339.7 g/mol; polyethy-
lene glycol (PEG), H(OCH2CH2)nOH; sodium hydroxide, NaOH, ≥99%, 39.9 g/mol;
cetyltrimethylammonium bromide (CTAB), C19H42BrN ≥ 98%, 364.45 g/mol; hydro-
quinone, C6H6O2, ≥99%, 110.11 g/mol; sodium borohydride, NaBH4, ≥99%, 37.83 g/mol,
and nano-pure water are commercially available from Merck (Merck, Darmstadt, Germany).
All glassware was washed thoroughly with aqua regia (3 HCl:1 HNO3) and Milli-Q water.

2.2. Synthesis of AuNRs

The AuNRs were synthesized using a modified seed-mediated method [42]. The seed
was prepared by mixing 4.915 mL of CTAB (0.1 M) with 85 µL of HAuCl4 (29.4 mM) on a
small flask with constant stirring for 5 min; then, 460 µL of NaBH4/NaOH solution was
added (10 mM/0.01 M) to the mix and stirred for 0.5 h. Preparation of the growth solution
was performed by adding 170 µL of HAuCl4 (29.4 mM) to 9.83 mL of a CTAB solution
(0.1 M) and stirring for 10 min. Then, 1000 µL of AgNO3 (10 mM) were added to the mixed
solution, and, after stirring for 30 s, 500 µL of hydroquinone (100 mM) were added, stirring
for another 30 s. Finally, 160 µL of the seed solution were mixed with the growth solution,
stirred for 30 s, and left to rest overnight.

The AuNRs were centrifuged, resuspended in Milli-Q water, and stabilized with PEG
to remove the CTAB from the nanoparticles. The synthesis was carried out at 27 ◦C on a
water bath to prevent the CTAB from crystallizing.

2.3. Synthesis of the NSs

NSs were synthesized with minor modifications from previously reported
methods [10,43], using β-CD and diphenyl carbonate (DPC) as precursors. Anhydrous
β-CD (1.5 g) and DPC (0.856 g) were homogenized in a solid state, placed in a conical flask,
and heated from 90 to 100 ◦C under constant stirring for 5 h. The reaction mixture was
left at room temperature until it cooled down, and the obtained solid was ground with an
agate mortar. Double distilled water and acetone separated the product from the unreacted
precursors. Afterward, the solid was washed with Soxhlet extraction with ethanol and
acetone for 48 h to remove phenol, which formed as a by-product of the cross-linking
reaction. Finally, the solid was dried at 100 ◦C for 48 h and stored at room temperature for
further use. Figure 2 illustrates the synthetic route of NSs.
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2.4. Preparation of NSs–MPH and NSs–CUR Complexes

Each compound, namely, MPH and CUR, were loaded into the cavities of NSs using
reported methods [29,44,45]. A total of 20 mg of NSs were immersed in 50 mL of double-
distilled water and kept under constant agitation. Afterward, 20 mL of MPH 0.1 mM or CUR
0.1 mM solution were added to the dispersed NSs. Both mixtures were sonicated for 10 min.
and left under constant stirring for 1 day. The uncomplexed drugs were separated from the
suspensions using centrifugation at 3000 rpm for 30 min. The obtained supernatants were
freeze-dried at −81 ◦C and 0.001 mbar. The dried powders corresponding to the NSs–MPH
and NSs–CUR complexes were stored in a desiccator for further use.

2.5. Association of AuNRs into the ICs

The association of AuNRs with the NSs–MPH or NSs–CUR complexes was carried
out by immersing 30 mg of the ICs in 0.5 mL of AuNRs. After settling for 20 min., the
mixture was centrifuged at 20.000 rpm for 30 min. The AuNRs associated with the ICs
were separated from the supernatant and dried under vacuum. AuNRs concentration after
association with the NSs drug complexes was determined using UV-Visible spectroscopy.

2.6. Proton Nuclear Magnetic Resonance (1H-NMR) Spectroscopy
1H-NMR characterization was performed using a Bruker Advance 400 MHz spectrom-

eter (Bruker, Billerica, MA, USA) at 30 ◦C. Tetramethyl silane (TMS) was used as an internal
standard. Stock solutions of NSs, the drugs, and the ICs were prepared using deuterated
dimethyl sulfoxide (DMSO)-d6 as solvent due to the low solubility of NSs in deuterated
water/chloroform, as reported previously [13,46–48]. Data processing was carried out
using the Mestre nova program.

2.7. Field Emission Scanning Electron Microscopy (FE-SEM)

The surface morphology features of NSs, MPH, CUR, and the ICs were analyzed using
a Zeiss LEO Supra 35-VP scanning electron microscope equipped with EDS. Acceleration
voltages of 2.0 and 5.0 kV were used. The samples were deposited onto a carbon tape stuck
to an aluminum stub, following gold coating using a magneton sputtering (pressure of
0.5 mbar, argon atmosphere, and current of 25 mA, for 15 s) to minimize charging effects.

2.8. Ultraviolet and Visible Absorption (UV–Vis) Spectroscopy

UV-Visible spectra of the AuNRs and the ICs associated with AuNRs were measured
using a Jasco V-760 UV-Visible spectrometer. Measurements were conducted in the range
of 200–1100 nm, using deionized water as a reference. The UVProve 1.10 program was
used for data processing.
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2.9. Raman Spectroscopy

Raman spectra of the samples were acquired using a WI Tec SNOM/Raman mi-
croscopy model Alpha 300 equipped with a 785 nm laser line and employing the
50× objective. The Raman spectra (200–1700 cm−1) of the samples were registered setting
the conditions as follows: 10 acquisitions with 10 s of integration time per spectrum. the
intrinsic fluorescence of samples was quenched by using a thin sheet of gold prepared by
metal sputtering method.

2.10. Fourier Transform Infrared Spectroscopy (FT-IR)

FT-IR spectra of the samples were acquired using a Jasco spectrometer model
4600 equipped with a Deuterated L-alanine Doped Triglycine Sulphate (DLATGS) de-
tector. A total of 150 scans per sample (400–4000 cm−1) were performed by placing each
sample on a micro-ATR (ATR pro one) accessory using a ZnSe crystal.

2.11. Transmission Electron Microscopy (TEM)

TEM analyses of AuNRs, NSs, ICs, and the ICs associated with the AuNRs were per-
formed using a Hitachi model HT-7700 microscope, operating at 120 kV. The ICs associated
with AuNRs were dispersed in ethanol (30% v/v). After sonication for 5 min., 10 µL of the
formulations were deposited onto a copper grid with a Formvar film. In the case of AuNRs,
10 µL was deposited directly on a copper grid with a Formvar film. All samples were dried
overnight for resolution enhancement.

2.12. Differential Scanning Calorimetry (DSC)

MPH, CUR, NSs, NSs–MPH, and NSs–CUR complexes were analyzed on a Differential
Scanning Calorimeter DSC 8000 Perkin Elmer to obtain their respective DSC thermograms.
Aluminum pans were used to place, weigh, and seal the samples. Measurements were
carried out over a temperature range of 0–600 ◦C under a continuous nitrogen flow rate of
10 ◦C/min.

2.13. Determination of Drug Content in NSs

The encapsulation efficiency (EE) of NSs–MPH and NSs–CUR complexes can be
defined as the concentration of the complexed drug over the initial concentration of the
drug. EE values were obtained using Equation (1), as follows:

EE (%) =
[Drug] in NSs
initial [Drug]

× 100% (1)

The loading capacity (LC) of NSs–MPH and NSs–CUR was obtained from the total
weight of NSs and the weight of entrapped drugs using Equation (2):

LC (%) =
Drug weight in NSs

Weight of NSs
× 100% (2)

2.14. DLS and ζ-Potential

Size distribution, polydispersity index, and ζ-potentials were determined using a
DLS Zetasizer NanoS series, Malvern. Proper dilution of all samples with double-distilled
water was carried out before measurements were performed at 25 ◦C using disposable zeta
cells. The size distribution and ζ-potentials were calculated using the cumulants fit and the
Smoluchowsky approximation, respectively. A total of 12 measurements were acquired,
expressing the results as their average. For NSs–based samples, measurement conditions
were set as follows: refraction index: 1.49, k:0; whereas, for AuNRs, measurements were
performed using a refraction index of 1.33 and k:0.
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2.15. Laser Irradiation Assays

For laser irradiation assays, a laser at 1064 nm, with a light power of 150 mW and beam
diameter of 1 mm, was used. A total of 200 µL of the NSs–MPH and NSs–CUR complexes
conjugated with the AuNRs were added to a 500 µL Kahn test tube. The ternary systems
were exposed to laser irradiation at different times (intervals of 1 min until reaching a
maximum of 20 min). The release of both MPH and CUR was measured using UV-Vis
spectroscopy. ICs without AuNRs were irradiated for control assays to determine whether
the AuNRs were responsible for the release of the guest molecules.

Maximum absorbances of the released drugs were expressed as release percentages
and then compared with the initial amount of the drug. All assays were carried out in
triplicate. Percentages of the released drug (DR) were calculated using the following
Equation (3):

DR (%) =
released [Drug]

initial [Drug]
× 100% (3)

2.16. Mitochondrial Activity Assays

Mitochondrial activity was measured by MTS using the CellTiter 96 AQueous one
solution cell proliferation assay (Promega). The experiments were conducted as recom-
mended by the manufacturer. In brief, 5000 cells per well were seeded on 96-well plates
in 100 µL of complete Dulbecco’s Modified Eagle Medium (DMEM). The medium was
incubated at 37 ◦C and was subsequently removed after 1 day. Further, cells were incubated
for another day with a titration (1 to 1 serial dilutions) of MPH, CUR, NSs–MPH, and
NSs–CUR (all samples ranging from 0.1, 0.05, 0.025, and 0.01 mM in 1% DMSO, and then
the volume was completed with DMEM medium). Afterward, phenol red-free DMEM
medium (Gibco) containing the MTS/PMS reagent was added to replace the medium and
incubated for 1 h at 37 ◦C. Absorbance measurements of all samples were carried out with
a microplate reader at 490/655 nm (Synergy Mx, Biotek). For each experiment, fluorescence
was corrected by subtracting the average fluorescence from a triplicate set of control wells
without cells. Mitochondrial activity was calculated with respect to a non-treated control
(medium). Each experiment was performed in 3 technical and 2 biological replicates.

2.17. Data Analysis

All the results are presented as mean ± SD, determined by at least three independent
experiments. Statistical analyses were conducted using GraphPad Prism 9 Software Inc.
(San Diego, CA, USA). A one-way ANOVA, followed by Tukey’s Test, was performed to
determine significance between results, which were considered as such if **** p < 0.0001,
*** p < 0.001, and * p < 0.05.

3. Results and Discussion
3.1. Characterization of the ICs

3.1.1. 1H-NMR Spectra of the ICs

The inclusion of MPH and CUR inside the cavities of the NSs was confirmed using
1H-NMR spectroscopy. The changes in the chemical shifts in the protons of both NSs and
the drugs provided evidence for the formation of the NSs–MPH and NSs–CUR complexes.
The acquired spectra of NSs, MPH, CUR, and the ICs are shown in Figure 3 (adapted
from [36]) and Figure 4.
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Figure 4. 1H-NMR spectra (400 MHz, DMSO-d6) of CUR, NSs, and NSs–CUR.

Proton signals of both guest molecules showed high-field chemical shifts, possibly due
to screening effects caused by the change in the environment of the drugs, as they ended
up entrapped inside the multiple interstitial sites of the NSs. The spatial restriction of MPH
and CUR also contributed to the chemical shifts shown by the protons of both guests.

Notably, the protons within the hydrophobic cavities of the NSs (H3, H5 and H6) and
the OH2 and OH3 hydroxyl groups displayed the most pronounced chemical shifts among
the protons of NSs, which strongly suggests complexation of the drugs. Chemical shifts
can also be observed for the protons located in the external cavities of the NSs (H1, H2,
H4), implying that the complexation of MPH and CUR occurs in both the cavities of the
β-CD monomers and the supramolecular sites that are produced in the polymerization, in
accordance with previous studies of NSs inclusion compounds [10,36,49–52]. The largest
chemical shifts in both drug molecules correspond to the protons present in the benzyl ring
structure, indicating their preferential inclusion inside the multiple β-CD cavities of NSs.
Chemical shifts in MPH and CUR before and after inclusion are shown in Table 1 (adapted
from [36]) and Table 2, respectively.
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Table 1. Proton assignments and chemical shifts for NSs, MPH and NSs–MPH.

System H1 H2 H3 H4 H5 H6 OH2 OH3 OH6

NSs 4.828 3.300 3.628 3.361 3.579 3.655 5.705 5.673 4.440

NSs–MPH 4.825 3.297 3.611 3.359 3.568 3.645 5.720 5.683 4.443

∆δ 0.003 0.003 0.017 0.002 0.011 0.010 −0.015 −0.010 −0.003

System H′1 H′2 H′3 H′4 H′5 H′6

MPH 3.447 3.738 7.135 6.798 2.835 3.117

NSs–MPH 3.444 3.733 7.127 6.789 2.828 3.111

∆δ 0.003 0.005 0.008 0.009 0.007 0.006

Table 2. Proton assignments and chemical shifts for NSs, CUR and NSs–CUR.

System H1 H2 H3 H4 H5 H6 OH2 OH3 OH6

NSs 4.828 3.300 3.628 3.361 3.579 3.655 5.705 5.673 4.440

NSs–CUR 4.823 3.293 3.609 3.358 3.566 3.644 5.722 5.680 4.445

∆δ 0.005 0.007 0.019 0.003 0.013 0.011 −0.017 −0.013 −0.005

System H′1 H′2 H′3 H′4 H′5 H′6 H′7

CUR 3.835 6.071 6.752 6.798 7.153 7.317 7.544

NSs–CUR 3.828 6.063 6.743 6.789 7.140 7.301 7.533

∆δ 0.007 0.008 0.009 0.009 0.013 0.016 0.011

3.1.2. FE-SEM Analyses of the ICs

The formation of the NSs–MPH and NSs–CUR complexes can also be confirmed by
FE-SEM analyses. Figure 5 shows SEM micrographs of NSs, MPH, CUR, and the ICs.

FE-SEM images of NSs confirm their highly rough surface and sponge-like morphol-
ogy, which might be suitable for the inclusion of the guest molecules, in agreement with
previous studies [13,29,32,36,53]. Both MPH and CUR show crystalline morphology. After
drug loading, the ICs maintain the morphological features of native NSs, suggesting the
formation of an inclusion compound rather than a physical mixture, as co-precipitation of
the free drugs was not observed.
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3.1.3. TEM Analysis of the ICs

The morphology of free NSs, NSs–MPH and NSs–CUR can be elucidated using TEM
analyses. As seen in Figure 6A,B, NSs have a spherical nature, with an average size of
90 nm. The NSs–MPH and NSs–CUR complexes also show a spherical structure, and
an increase in size to 150 nm after drug loading, with respect to native NSs. This could
probably be attributed to intermolecular interactions occurring in the NSs–drug complexes,
as reported in previous studies [33,46,47].
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3.1.4. Raman and FT-IR Spectra of the ICs

The obtained NSs were characterized by Raman and FT-IR spectroscopy, as can be
seen in Figure 7, and the assignment and discussion of the signals were determined based
on related published data [10,54–57]. Spectrums were compared to observe their changes
when the NSs were obtained.
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In the Raman spectral comparison, the disappearance and decrease in the relative
intensity of some bands can be observed in the NSs profile, as a direct consequence of
obtaining nanoparticles. The decrease in the relative intensity of the signal observed at
478 cm−1 in the NS profile allowed for us to infer a vibration of the compound’s skeletal
structure, which was now restricted because of the new structure; the same can be stated
for the signal observed at 950 cm−1. Related to this, the 576 cm−1 band is absent in the
Raman profile of NSs, being consistent with the observed spectral facts explained above.
Finally, significant spectral data were observed in the FT-IR spectrum of NSs as a new band
at 1755 cm−1, attributed to the C=O vibration. This signal confirms that we obtained the
nanosponge because of the presence of the C=O stretching from the linker.

The ICs systems were also characterized by Raman and FT-IR. In this case, it is impor-
tant to mention that FT-IR spectra gave us more molecular information than Raman because
the latter has a low cross-section, even more so considering the low molar concentration of
the CUR and MPH in each system. In the Raman profile of NSs–CUR (see Figure 8), a strong
band observed at 672 cm−1 and another signal with medium relative intensity located at
703 cm−1 were ascribed to an out-of-plane deformation of the ring in CUR. However, the
preparation of the NSs–CUR system was confirmed by the FT-IR spectrum (see Figure 8)
from the signals observed at 1446, 1408, and 949 cm−1, ascribed to in-plane deformation
of −CH3 groups, stretching of C=CH, and in-plane deformation of the ring, respectively.
Furthermore, the interaction of CUR in the NSs is supported by additional signals observed
in the FT-IR spectrum at 2912, 3009, 3263, and 3378 cm−1.
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Figure 8. Raman (left) and FT-IR spectra (right) of NSs, CUR and NSs–CUR.

Finally, the Raman and FT-IR profiles of the NSs–MPH system offered us information
about the interaction of the species. The Raman spectrum (see Figure 9) displays two
bands at 442 and 481 cm−1, corresponding to the NNC and CCN bending mode in MPH,
respectively. The FT-IR spectrum of NSs–MPH (see Figure 9) is dominated by the profile
of the NSs; however, there are some shifts in specific signals. Some bands observed at
1027, 1099, 1074, 1644 and 1755 cm−1 show the mentioned shift because of the interaction
between the species. A new band appeared at 1779 cm−1 and is ascribed to C=O vibrations
from MPH.
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3.1.5. DSC Thermograms of the ICs

The NSs–MPH and NSs–CUR complexes were characterized through DSC. Thermal
analyses of NSs, the ICs, and the free drugs were performed to confirm the formation
of an inclusion compound between the guests and the NSs matrix rather than a phys-
ical mixture. Figure 10 depicts the thermograms of MPH, CUR, NSs, NSs–MPH, and
NSs–CUR. NSs exhibit an endothermic peak at 350 ◦C, representing the melting point of the
crosslinked polymer, as reported previously [43,58,59]. DSC thermogram of MPH shows a
sharp endothermic peak at around 203 ◦C, corresponding to the melting point of the free
drug [60].
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Free CUR showed an endothermic peak at 183 ◦C, which, according to the literature,
corresponds to its intrinsic melting point [25,61]. Furthermore, the thermograms of the ICs in-
dicate the disappearance of the characteristic peaks in the drugs, suggesting the complexation
of the guests inside the cavities of NSs, while excluding the possibility of a physical mixture.
Similar results have been observed for other NSs–drug complexes [43,45,62–66].
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3.2. Characterization of ICs Associated with the AuNRs
3.2.1. TEM, UV-Vis, DLS, and ζ-Potential of AuNRs

The characterization of AuNRs was carried out by TEM, UV-Vis, DLS and ζ-potential.
Figure 11A shows the TEM micrograph of the AuNRs, and its size distribution was esti-
mated. Both the length and width of the nanoparticles were plotted (Figure 11C,D) and
their average sizes were 55 nm and 8.6 nm, respectively. The UV-Vis spectra of AuNRs
confirmed the presence of its characteristic plasmon band in the NIR-II window, showing a
maximum absorbance for the longitudinal plasmon at 1070 nm (Figure 11B), making them
suitable for biological and photothermal applications [67]. The aspect ratio (length/width)
for the synthesized AuNRs was 6.4. This agrees with the reported values, which indicate
that AuNRs absorb in the second biological window [42,68,69].
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The hydrodynamic diameter (Dh) of AuNRs provided by DLS is shown in Table 3,
along with the ζ-potential. The Dh was 9.02 ± 4.1 nm and 84.7 ± 46.7 nm, which can
be attributed to the rotational and translational light dispersed by the nanoparticles, re-
spectively. The polidispersity index (PDI) was 0.47, thus indicating that the nanoparticles
exhibited good monodispersity (PDI < 0.7). Furthermore, the ζ-potential was estimated
to be −30 ± 3.9 mV, suggesting good colloidal stability and that the AuNRs would not
undergo aggregation over time.

Table 3. DLS, ζ-potential and PDI of AuNRs before and after stabilization with PEG.

System DLS (Transversal nm) DLS (Longitudinal nm) ζ-Potential (mV) PDI

AuNRs-CTAB 2.5 ± 0.9 46.5 ± 32.9 +33 ± 6.5 0.41

AuNRs-PEG 9.0 ± 4.1 84.7 ± 46.7 −30 ± 3.9 0.47
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3.2.2. FE-SEM and EDS Mapping Analyses of the ICs Associated with the AuNRs

The AuNRs attached to the ICs are shown in Figure 12. The ICs retained their porous
morphology after their association with the AuNRs. The FE-SEM images indicate that the
AuNRs are homogeneously distributed all over the organic matrix, with no evident changes
in their aspect ratio nor morphology, thus confirming that the NSs–drug complexes are
optimum substrates for stabilizing the AuNRs.
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impurities ascribed to spherical gold nanoparticles.

The micrographs also show a third component in the ICs, corresponding to spherical
gold nanoparticles, which constitutes an inherent impurity of AuNRs synthesis.

EDS analysis provided information of the ICs associated with the AuNRs regarding
their elemental composition, as seen on Figure 13. The elemental mapping shows the
presence of C, O, N, and Cl in the AuNRs–NSs–MPH complex, where N and Cl can
be attributed to the amine and chloroethylamine functional groups of MPH. Elemental
mapping of AuNRs–NSs–CUR evidenced the presence of C and O on the supramolecular
matrix, corresponding to the functional groups of both NSs and CUR. The EDS analyses
also showed the detection of Au, thus confirming the association of AuNRs and the ICs.
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3.2.3. TEM Analyses of the ICs Associated with the AuNRs

TEM micrographs of the ICs associated with AuNRs are shown in Figure 14. Immo-
bilization of AuNRs in the polymeric matrix does not seem to affect their integrity and
aspect ratio, indicating that the formation of the AuNRs-NSs–MPH and AuNRs-NSs–CUR
systems contribute to the nanoparticles’ stability, which is consistent with the FE-SEM
images shown in Section 3.2.2. The micrographs also show that the impurities assigned to
spherical gold nanoparticles are minimal.
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3.2.4. UV-Vis Spectra of the ICs Associated with the AuNRs

Deposition of AuNRs in the NSs–drug complex can also be confirmed using UV-Vis
spectroscopy. Absorption UV-Vis spectra of the ICs associated with AuNRs are shown
in Figure 15. The characteristic plasmonic bands of AuNRs were observed at 520 nm
and 1060 nm, which correspond to the transversal and longitudinal absorption peaks,
respectively.

A hypsochromic shift in the plasmon bands from 1070 nm to 1060 nm was observed,
due to the proximity and environmental changes around the AuNRs, after their deposition
in the NSs–drug complexes. Notably, the shift of the plasmon resonance peaks increases
when the AuNRs concentration decreases. The presence of the plasmonic bands in the
ICs-AuNRs provided evidence that the polymeric matrix provides stability to the nanopar-
ticles, as reported by previous studies [36,70,71].
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3.2.5. DLS and ζ-Potential of the ICs Associated with the AuNRs

Table 4 depicts the hydrodynamic diameters (DLS), ζ-potentials, and polydispersity
indexes (PDI) of AuNRs, the NSs–drug complexes and the ICs associated with AuNRs.

Table 4. DLS, ζ-potential and PDI of NSs–drugs complexes and ICs-AuNRs.

System DLS (nm) ζ-Potential (mV) PDI

NSs 177 ± 15 −37 ± 1.8 0.28

NSs–MPH 243 ± 19 −31 ± 1.3 0.31

NSs–CUR 261 ± 21 −35 ± 1.5 0.38

AuNRs–NSs–MPH 273 ± 27 −22 ± 0.3 0.43

AuNRs–NSs–CUR 288 ± 33 −21 ± 0.7 0.47

DLS provided information about the hydrodynamic diameters of the ICs and the
ICs-AuNRs. The NSs, NSs–MPH, NSs–CUR and the ternary systems depicted values
over 200 nm, thus confirming the nanometric size of the supramolecular systems. Upon
immobilization with the ICs, the ζ-potential of the AuNRs changed due to their stabilization
by the NSs–drug complexes. All nano-formulations showed ζ-potentials ranging from −21
to −35, confirming their stability (for further information see Figure A1 and Table A1).
The PDI values of all samples indicated that the NSs, the NSs complexes, and the ternary
systems are stable and homogeneous in nature (PDI < 0.7).

3.3. Guest Photothermal Release by Laser Irradiation
3.3.1. Encapsulation Efficiencies and Loading Capacities

The encapsulation efficiencies (EE%) and loading capacities (LC%) of the NSs–MPH
and NSs–CUR complexes were determined using Equations (1) and (2), respectively. As
described in Table 5, MPH showed a higher encapsulation efficiency and loading capacity
than CUR, indicating that the structure of the guest strongly influences the complexation
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efficiency and molecular binding [72]. This suggests that MPH might be more aptly sized
than CUR to be included in the supramolecular sites of NSs. The encapsulation efficiency
and loading capacity values for NSs–CUR and NSs–MPH complexes increased, compared
to native β-CD, where the calculated values were 30% (EE%) and 20% (LC%) for β-CD–
CUR [65,73], and 70% (EE%) and 61% (LC) for β–CD–MPH [74].

Table 5. EE% and LC% of the NSs–MPH and NSs–CUR systems.

System Encapsulation Efficiency (%) Loading Capacity (%)

NSs–MPH 89.5 ± 0.33 70.1 ± 0.22

NSs–CUR 63.7 ± 0.28 57.7 ± 0.15

3.3.2. Laser Irradiation Assays

The ICs were associated with the AuNRs to form a ternary system capable of inducing
the release of both MPH and CUR by means of local photothermia using NIR-II irradia-
tion. To achieve this objective, drug released phenomena were studied by adding the ICs
conjugated to the AuNRs in a Kahn test tube. Then, the systems were irradiated using a
continuous laser of 1064 nm for 20 min. The drug release percentages (%) were determined
using the Lambert-Beer equation and Equation (3). The molar attenuation (ε) of both
drugs was calculated with UV-Vis spectroscopy using a set of MPH and CUR solutions.
Molar attenuation was 10.15 mM−1 cm−1 for MPH and 4.37 mM−1 cm.1 for CUR. Drug
release percentages in the ternary systems were compared with those calculated in the
control systems: ICs without AuNRs, ICs-AuNRs without irradiation, and physiological
temperature (37–42 ◦C) to determine if the guests migrated from the supramolecular sites
through diffusion. Figure 16 shows the percentages of released drug at 20 min.
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n = 3 (*** p < 0.001).

After irradiation, the ternary systems showed the highest drug release percentages
of MPH and CUR (about 80% and 60%, respectively). In contrast, the amount of drug
released from the AuNRs-ICs at physiological temperature (37–42 ◦C) was less than 10%.
AuNRs exhibit high photothermal efficiencies and effectively diffuse heat to the surround-
ing media upon exposure to a laser tunable with the AuNRs NIR-II surface plasmon
resonance [42,67,68,75]. AuNRs absorb photons, which exchange energy in the metal lattice
through electron–phonon coupling and phonon-to-phonon relaxation. This produces an
increase in the temperature of the metal surface while also increasing the surrounding
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local temperature [37,38,42,67]. Thus, the 1064 nm-red laser, with a light power of 150 mW,
generated enough local heat in the supramolecular systems to disassemble the AuNRs-ICs
complexes and, subsequentially, trigger drug release from the NSs cavities. This confirms
that the local photothermal effect produced by AuNRs in the NIR-II window promotes the
release of both guests. On the other hand, the drug release percentages were drastically
reduced in the control systems, compared to the ICs–AuNRs systems after irradiation. Both
anti-tumor drugs migrated from all systems by means of passive diffusion. In summary,
the irradiation of the ICs–AuNRs systems allowed a faster and more efficient release of the
guests, proving that NIR-II irradiation of the ternary systems may open many opportunities
for biological and tumor therapy applications.

3.4. MTS Assays

MTS assays were conducted to evaluate the effects of MPH, CUR and the NSs–MPH
and NSs–CUR complexes on mitochondrial activity. The aim of this experiment was to
evaluate if the inclusion of the drugs inside the NSs reduced their effects on cell viability,
since the formulations should not produce cellular toxic effects if they are to be used as
therapeutic agents.

The effects of MPH, CUR, and their corresponding ICs on the mitochondrial activity
of HeLa cells were compared at equivalent concentrations (Figure 17). In the case of MPH,
both the free drug and its ICs did not show significant effects up to 0.05 mM of drug.
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Figure 17. Effects of MPH, CUR, NSs–MPH and NSs–CUR on mitochondrial activity, determined
with the MTS assay. The results are expressed as percentages compared with untreated cells (medium)
and represent the mean ± SD of n = 3 (a = **** p < 0.0001, b = * p < 0.05). c represents the comparison
between MPH 0.1 mM and NSs–MPH 0.1 mM (c = *** p < 0.001).

However, at the highest concentration assayed, the free drug (**** p < 0.0001) and
NSs–MPH (* p < 0.05) presented a significant difference compared to the medium control.
Despite this, it is important to note that there was a significant difference in the mitochon-
drial activity observed between free MPH and NSs–MPH at 1 mM (*** p < 0.001), with the
being former 25-fold lower than the latter (2.4% vs. 59.1%).

This is relevant because most alkylating agents, such as MPH, have shown to produce
adverse side effects when they are used as free drug, despite their uses as anti-tumoral
drugs [20,27,76].
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On the other hand, free CUR depicted low cytotoxic effects, being only significantly
different from the medium at 1 mM. Moreover, the effects of CUR on mitochondrial
activity were reduced when the drug was encapsulated (NSs–CUR), showing no significant
differences at any assayed concentration.

Furthermore, we observed that there were not significant effects on HeLa cells when
lower concentrations were assayed both for free drugs and their respective complexes forms
(Figure A2). These results are very promising because they indicated that the incorporation
of MPH or CUR into the NSs significantly reduced their toxic effects on HeLa cells.

Finally, considering the possibility of controlling drug release from the NSs through
irradiation (Figure 16), and taking into consideration that the developed nano-formulations
proved to be safer in comparison to the free guests (Figure 17), the potential applications of
these drug delivery systems are auspicious.

4. Conclusions

We successfully included both MPH and CUR inside the cavities of NSs, as proven
by 1H-NMR, FE-SEM, TEM, DSC, FT-IR, and Raman characterization. The encapsulation
percentages were 89% for MPH and 63% for CUR, confirming that NSs can efficiently form
an inclusion complex with the drugs. The synthesized AuNRs showed an aspect ratio
(length/width) of 6.4, which is consistent with the UV-Vis absorption band in the NIR-II
optical window. FE-SEM, EDS, UV-Vis, TEM, DLS and the ζ-potential provided evidence
that the NSs–MPH and NSs–CUR systems are appropriate substrates to stabilize AuNRs
nanoparticles, as the latter retained their characteristic absorption band in the second
biological window (1000–1300 nm), making them suitable for biological and photothermal
drug release studies. Cellular studies performed through MTS assays were used to evaluate
the inherent cytotoxicity of the drugs before and after encapsulation inside the supramolec-
ular sites of NSs. The mitochondrial activity assays confirmed that the NSs–MPH and
NSs–CUR complexes are safer formulations than the free drugs, which is promising in
terms of potential biological applications in drug delivery. Finally, via plasmonic heating
of the AuNRs associated with the ICs, the ternary systems easily outperformed all the
control systems regarding the controlled release of the guests. Drug release percentages
were drastically reduced in the control systems in comparison to the ICs–AuNRs after
NIR-II irradiation. NSs conjugated to anisotropic gold nanoparticles have been considered
in future perspectives, as they are safe, efficient, and non-toxic materials.
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Appendix A

Stability of the Ternary Systems after 2 Months of Storage

Colloidal stability of NSs–MPH, NSs–CUR, and the AuNRs–ICs was evaluated after
2 months of storage at 4 ◦C by means of UV-Vis, DLS, ζ-potential, and PDI. The characteris-
tic plasmon bands, the hydrodynamic diameters and surface charges of the supramolecular
systems did not show any significant changes, demonstrating that the formulations main-
tained their nanometric size, negative ζ-potential and PDI > 0.7 following storage at 4 ◦C
for 2 months, as depicted in Figure A1 and Table A1.

Table A1. DLS, ζ-potentials, and PDI values of NSs–drugs complexes and AuNRs–ICs.

System DLS (nm) ζ-Potential (mV) PDI

NSs–MPH 256 ± 21 −30 ± 2.1 0.39

NSs–CUR 277 ± 22 −33 ± 2.3 0.41

AuNRs–NSs–MPH 285 ± 31 −25 ± 1.1 0.52

AuNRs-NSs–CUR 297 ± 37 −27 ± 1.5 0.53
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Appendix B

MTS Assays of NSs, MPH, CUR, NSs–MPH, and NSs–CUR at Different Concentrations
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Figure A2. Effects of MPH, CUR, NSs–MPH and NSs–CUR on mitochondrial activity, as determined
with the MTS assay. The results are expressed as percentages compared with untreated cells (medium)
and represent the mean ± SD of n = 3 (a = **** p < 0.0001).

Appendix C

Appendix C.1. 1H-NMR of NSs, DPC, and Phenol

The removal of by-product phenol and the cross-linker diphenyl carbonate was an-
alyzed using 1H-NMR. Figure A3 shows the 1H-NMR spectra of NSs, DPC, and phenol.
None of the characteristic peaks in DPC (H1, 7.40 ppm; H2, 7.29 ppm; H3, 7.25 ppm) nor
phenol (−OH, 5.35 ppm; H1, 7.20 ppm; H2, 6.93 ppm; H3, 6.83 ppm) were observed in
the 1H-NMR spectra of NSs, thus confirming the elimination of by-products and residual
cross-linker. Table A2 shows the proton assignments and the respective chemical shifts for
DPC and phenol.

Table A2. Proton assignments and chemical shifts for DPC and phenol.

System H1 H2 H3 −OH

DPC 7.401 7.298 7.253 -

Phenol 7.203 6.933 6.837 5.351



Pharmaceutics 2022, 14, 2206 22 of 28Pharmaceutics 2022, 14, x FOR PEER REVIEW 23 of 29 
 

 

 
Figure A3. 1H-NMR (400 MHz, DMSO-d6) of NSs, DPC, and phenol. 

Appendix C.2. FT-IR of NSs and Phenol 
The removal of the phenol was also analyzed using FT-IR. Figure A4 shows the FT-

IR spectra of NSs and phenol. The NSs bands were observed at 3388 cm−1 (−OH, stretch-
ing), 2929 cm−1 (C-H stretching), 1030, and 1079 cm−1 (C-O stretching), 1368, 1235, and 1155 
cm−1 (−OH bending), and 1760 cm−1 (C=O stretching). The fact that the most characteristic 
bands ascribed to phenol, namely 3230 cm−1 (−OH stretching), 1410, and 1320 cm1- (C-O 
stretching), were not detected in the NSs spectra suggests that the by-product was re-
moved successfully. 

 
Figure A4. FT-IR spectra of NSs and phenol. 

  

Figure A3. 1H-NMR (400 MHz, DMSO-d6) of NSs, DPC, and phenol.

Appendix C.2. FT-IR of NSs and Phenol

The removal of the phenol was also analyzed using FT-IR. Figure A4 shows the
FT-IR spectra of NSs and phenol. The NSs bands were observed at 3388 cm−1 (−OH,
stretching), 2929 cm−1 (C-H stretching), 1030, and 1079 cm−1 (C-O stretching), 1368, 1235,
and 1155 cm−1 (−OH bending), and 1760 cm−1 (C=O stretching). The fact that the most
characteristic bands ascribed to phenol, namely 3230 cm−1 (−OH stretching), 1410, and
1320 cm−1 (C-O stretching), were not detected in the NSs spectra suggests that the by-
product was removed successfully.
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Appendix D

Appendix D.1. Swelling Degree of NSs

The swelling studies of NSs were carried out using previously reported methods [77–79].
In brief, 100 mg of NSs were immersed in 10 mL of deionized water. Afterward, an aliquot
of Na2CO3 (10% w/w) was added. After 48 h, a layer of water-bound NSs was obtained by
centrifugation. The weight of the hydrated NSs was measured, and the swelling degree was
estimated using the following equation:

Sw (%) =
NSs (h)− NSs (d)

NSs (h)
× 100% (A1)

where NSs (d) is the initial weight of the dry polymer (mg), and NSs (h) is the weight of the
swollen sample (mg) at a determined time. Following 48 h, the swelling degree obtained
for the NSs synthesized with a (1:4) β-CD: DPC molar ratio was (58.7 ± 6.3%), which is in
agreement with previous studies [80].

Appendix D.2. Solubility Tests of NSs

Solubility tests were conducted to determine whether NSs are soluble or insoluble
in organic and inorganic solvents. The results are summarized in Table A3. Increasing
aliquots of solvent were added to a fixed amount of NSs (10 mg) at room temperature.

Table A3. Solubility of NSs in inorganic and organic solvents.

Solvent Solubility (25 ◦C)

Milli-Q water (18 MΩ cm−1) <1 (mg/mL)

Ethanol (≥99.8%) <5 (mg/mL)

DMSO-d6 (99.8%) 10 (mg/mL)

Chloroform-D (99.8%) <5 (mg/mL)

D2O (99.8%) <1 (mg/mL)

CD2Cl2 (99.8%) <1 (mg/mL)

Appendix E

Release Profiles of MPH and CUR from the Cavities of NSs

Release profiles of the drugs were analyzed following previously described
methods [53,65,78]. Drug formulations containing 1 mg of MPH or CUR were suspended
in 3 mL of release medium and sonicated. Then, the NSs–MPH and NSs–CUR complexes
were each placed in a dialysis membrane tube, inserted in 100 mL of ethanol: phosphate
buffer of pH 7.4 (1:1), and placed in a water bath shaker fixed at 37 ◦C and 100 rpm. At
determined intervals, 1 mL aliquots were changed with an equivalent amount of release
medium, replacing hist with fresh medium at a predetermined time. Spectrophotometric
analyses were carried out at different times for MPH or CUR content. The release profile
studies were performed in triplicate, plotting the mean values as a cumulative percent
of released drug versus time. Release profiles of both MPH and CUR are illustrated in
Figure A5.
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Appendix F

Photothermal Efficiency of AuNRs

The photothermal efficiency of AuNRs and the ICs–AuNRs systems are shown in
this section, as reported by previous studies involving AuNRs (for further details on the
methodology, see references [42,67,81]). Photothermal efficiency indicates the system’s
ability to convert incident light into thermal energy. The increase in temperature and the
calculated photothermal efficiencies for AuNRs and the ICs–AuNRs are summarized in
Figure A6 and Table A4, respectively. The decrease in the photothermal efficiencies in the
ICs-AuNRs systems can be ascribed to the effect of the organic matrix in heat dissipation.
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Table A4. Photothermal efficiencies of AuNRs, ICs–AuNRs, and ICs without AuNRs.

System T Max (K) Initial T (K) ∆T (K) τs (seg) Photothermal Efficiency (%)

AuNRs 317.1 304.6 12.5 204.7 69.1

ICs– 314.1 304.3 9.8 227.4 25.3
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