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Abstract: Cancer with all its more than 200 variants continues to be a major health problem around
the world with nearly 10 million deaths recorded in 2020, and leukemia accounted for more than
300,000 cases according to the Global Cancer Observatory. Although new treatment strategies are
currently being developed in several ongoing clinical trials, the high complexity of cancer evolution
and its survival mechanisms remain as an open problem that needs to be addressed to further
enhanced the application of therapies. In this work, we aim to explore cancer growth, particularly
chronic lymphocytic leukemia, under the combined application of CAR-T cells and chlorambucil as a
nonlinear dynamical system in the form of first-order Ordinary Differential Equations. Therefore,
by means of nonlinear theories, sufficient conditions are established for the eradication of leukemia
cells, as well as necessary conditions for the long-term persistence of both CAR-T and cancer cells.
Persistence conditions are important in treatment protocol design as these provide a threshold below
which the dose will not be enough to produce a cytotoxic effect in the tumour population. In silico
experimentations allowed us to design therapy administration protocols to ensure the complete
eradication of leukemia cells in the system under study when considering only the infusion of CAR-T
cells and for the combined application of chemoimmunotherapy. All results are illustrated through
numerical simulations. Further, equations to estimate cytotoxicity of chlorambucil and CAR-T cells
to leukemia cancer cells were formulated and thoroughly discussed with a 95% confidence interval
for the parameters involved in each formula.

Keywords: cancer; CAR-T cells; chlorambucil; cytotoxicity; in silico; leukemia; ODEs

1. Introduction

Leukemias are non-solid tumors usually known as cancer of the blood. These hemato-
logic malignancies can be classified as acute or chronic depending on the time-evolution
of the disease, and as myelogenous or lymphocytic as they arise from the dysfunctional
proliferation of developing leukocytes (white blood cells). Hence, the main classifications
are as follows: Acute Myelogenous Leukemia (AML), Chronic Myelogenous Leukemia
(CML), Acute Lymphocytic Leukemia (ALL), and Chronic Lymphocytic Leukemia (CLL) [1].
However, regardless of the case, the lifespan of leukemia cancer cells is longer than normal
cells and they do not have the ability to fight pathogens as effectively as a normal white
blood cell could.

Concerning overall statistics, the Global Cancer Observatory (GLOBOCAN) estimated
474,519 new leukemia cases in 2020 with 311,594 deaths in that year. Here, it should be
noted that GLOBOCAN groups leukemias from C91 to C95 (according to the International
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Classification of Diseases) [2,3]. Nonetheless, lymphocytic (C91) and myelogenous (C92)
are the most worrying, where ALL is most common in pediatrics, CLL in the elderly, AML
in adults, and, although CML remains the least common, it typically affects older adults
and rarely occurs in children.

In the particular case of CLL, since it is the topic of interest in this research, is
most frequently diagnosed among people aged 65–74, with a median age at diagnosis
of 70 years old, it is rarely seen in people under the age of 40, and is extremely rare in
children [4,5]. The diagnosis is established by blood counts with at least 5000 monoclonal
lymphocytes per mm3 (or µL) for a minimum of three consecutive months; blood smears
to look for abnormalities in appearance, number, and shape in these white blood cells;
and immunophenotyping of circulating B-lymphocytes, which identify a clonal B-cell
population carrying tumor-specific antigens as well as typical B-cell markers [4,6]. CLL is
a disease whose progression responds to a clinically heterogeneous picture, making the
existence of a curative treatment difficult as the affected individuals have comorbidities
due to their advanced age. The latter also implies the appearance of periodic sequences of
both response and relapse in many patients. Five-year overall survival rate is estimated in
the range of 23–93%, with an overall survival of 2 to more than 20 years. However, survival
statistics are based on large groups of people, they cannot be used to predict exactly what
will happen to one individual as treatment and response can vary greatly between two
patients [5,7,8].

As of today, CLL remains incurable with conventional therapies, and disease pro-
gression is inevitable. Concerning chemotherapy treatment regimens for CLL, this may
be conducted by several drugs, most notably chlorambucil in the elderly as it is not as
toxic as fludarabine, cyclophosphamide, and rituximab. Although chlorambucil remains
the treatment of choice for this disease it has shown limited efficacy [8]. Recent clinical
advances are aiming for personalized therapy strategies as the new path to follow in cancer
treatment. In patients with certain hematologic malignancies such as ALL and CLL, the use
of autologous T cells genetically modified to express chimeric antigen receptors (CARs),
such as the CD-19, has led to unprecedented clinical responses opening the door to a new
era of personalized cancer therapy. Anti-CD19 CAR-T cells may be manufactured from
both CD4+ and CD8+ T cell subsets to treat adults with relapsed or refractory CLL [9–11].

Despite the excitement around CAR-T cells for the treatment of hematologic malig-
nancies, this therapy has come under criticism for its cost, which in the case of the most
recently CAR T-cell therapy approved by the Food and Drug Administration (FDA) is
more than USD 450,000 [12]. Nonetheless, clinical trials around the world have been de-
veloped to better understand and optimize the application of CAR-T cells [13–17]. On the
latter, mathematical and computational modeling coupled with in silico experimentation
and nonlinear dynamical systems theories may be a powerful tool in designing person-
alized chemoimmunotherapy treatment strategies, computer simulations are intended to
replace the laborious efficacy testing in real humans and reduce the likelihood of drug
failure [18–20].

Mathematical models composed of first-order Ordinary Differential Equations (ODEs)
have been formulated to describe cancer growth and the effects of therapies such as
chemotherapy and immunotherapy, one can see [21,22] for prostate cancer, refs. [23,24] for
breast cancer, refs. [25–29] for leukemias, ref. [30] for lung cancer, refs. [31–33] for glioma,
and many more to explore the overall dynamics between cancer cells and immune-effector
cells [34–39]. Mathematical models could be tested against the patient clinical information
and when additional information about the system becomes available, equations may be
reformulated or parameters adjusted accordingly [18].

In recent years, nonlinear system theories such as the Localization of Compact In-
variant Sets (LCIS) method, the direct and indirect methods of Lyapunov, and in silico
experimentation have been applied to gain some insights in the designing of personal-
ized schedules for the administration of chemotherapy and immunotherapy. However,
combined application strategies are still to be explored, which is the main objective of
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this work. The latter is performed in a mathematical model composed of four first-order
ODEs describing the dynamics of alive and dead leukemia cancer cells, CAR-T cells as the
immunotherapy treatment, and chlorambucil as the chemotherapy drug. We were able
to develop and illustrate diverse protocols of chemoimmunotherapy treatment to control
cancer growth and achieve the complete eradication of the leukemia cells in the proposed
mathematical model.

The remainder of this paper proceeds as follows. In Section 2, the mathematical model
of leukemia and chemoimmunotherapy is formulated, values and units of the parameters
are given, and both biological and mathematical assumptions are described. In Section 3,
we formulate two equations to estimate cytotoxicity to cancer cells of the chlorambucil
chemotherapy drug and the CAR-T cells immunotherapy, as well as how to compute the
number of molecules from chlorambucil dose in mg, its concentration in the blood system,
and its decay rate by assuming a first-order pharmacokinetics. Further, we present the
localizing domain, following with global asymptotic stability conditions that imply the
leukemia cells eradication, and persistence of both CAR-T cells and cancer cells. In Section 4,
results are illustrated by means of the in silico experimentation, where different cases with
treatments and without treatments are explored. In Section 5, both mathematical and
numerical simulation results are discussed. Finally, in Section 6, we present the conclusions
of our work.

2. Mathematical Model: Leukemia and Chemoimmunotherapy

The leukemia and chemoimmunotherapy mathematical model is formulated by consid-
ering the dynamics between CLL cancer cells [A(t)], dead leukemia cells [Ad(t)], chemother-
apy as chlorambucil [C(t)], and immunotherapy in the form of CAR-T cells [T(t)] in the
blood circulatory system by the following four first-order ODEs:

Ȧ = ρA A
(

1− A
b

)
− µA AAd −

µAC AC
a + C

− αT AT, (1)

Ȧd = −µd Ad + µA AAd +
µAC AC
a + C

+ αT AT, (2)

Ċ = −µCC− µCA AC
a + C

− µCTCT
a + C

+ ϕC, (3)

Ṫ = ρT(A + T)T − µTT − αTT2 − µTCCT
a + C

+ ϕT , (4)

where the time unit is considered as days; A(t), Ad(t) and T(t) are given in cells; and
C(t) is measured in molecules. The concentration of cells and molecules in the system
is computed when assuming 5 L of blood in a human adult. Further, all solutions with
non-negative initial conditions will be located in the non-negative orthant (see Section II.A
in [40]):

R4
+,0 = {A(t), Ad(t), T(t), C(t) ≥ 0}.

Interactions among live and dead leukemia cells as well as the chemotherapy units in
molecules were introduced by Guzev et al. in their work concerning the experimental vali-
dation and in silico experimentation to describe cytotoxicity of three different chemotherapy
compounds in leukemia cells [25]. Pérez et al. [27] and León et al. [28] formulated and
explored the dynamics of CAR-T cells in the treatment of T-cell and B-cell leukemias,
respectively. The latter was further discussed by Valle et al. in [29].

Now, let us discuss interactions in each ODE as follows. The growth of CLL cancer
cells [A(t)] in the blood circulatory system is defined by the logistic law in the first term
of Equation (1), whereas eradication of these cells is considered by the law of mass action
when interacting with dead leukemia cells in the second term; cytotoxicity to leukemia cells
from the chemotherapy drug and the CAR-T cells is modeled by the Michaelis–Menten
kinetics and the law of mass action in the third and fourth terms, respectively. Further,
the maximum tumor carrying capacity is estimated by considering that lymphocytes rep-



Pharmaceutics 2022, 14, 1396 4 of 32

resent 1.6% of the total amount of cells in a human adult with around 4.5× 1013 total
cells [41,42]. The evolution of leukemia dead cells [Ad(t)] is described by Equation (2),
the first term represents dissolution of these cells in the system; remaining terms of this
equation indicate accumulation by the eradication of living leukemia cells, the second
term describes apoptosis or necrosis as a result of living cells competing for nutrients in
the blood circulatory system, while the third and fourth terms are the lysed leukemia
cells due to the log-kill effect of the chemotherapy and the CAR-T cells immunotherapy,
respectively. Pharmacokinetics of the chemotherapy drug [C(t)] is given in Equation (3),
where the first term is the decay rate of the drug, this is computed and further explained
in Section 3 from its reported biological half-life, term two was introduced by Guzev et al.
when considering the total number of molecules attacking each cancer cell; therefore, we
incorporated the third term by assuming that the chemotherapy will inevitably have a
cytotoxicity effect on the CAR-T cells when combining these two treatments. Constant
or periodic administrations of the chemotherapy can be considered by the fourth term.
The dynamics of CAR-T cells [T(t)] are formulated in Equation (4), the first term repre-
sents stimulation to mitosis, i.e., activation and proliferation, due to encounters with the
target antigen in leukemia cancer cells and other CAR-T cells; the second term indicates
natural death and/or exhaustion; fratricide or self-inhibition is formulated by the third
term; the fourth term considers the cytotoxicity of the chemotherapy in the case that both
treatments are present in the system at the same time; and further infusions of the therapy
are considered with the fifth term. Description and values of parameters of the leukemia
and chemoimmunotherapy mathematical model (1)–(4) are shown below in Table 1.

Table 1. Parameter information for the leukemia and chemoimmunotherapy mathematical model.

Parameter Description Values Units

ρA Leukemia cells growth rate 0 < r ≤ 1.68 days−1

b Maximum leukemia cells carrying capacity 7.2× 1011 cells
µA Death rate of leukemia cells due to necrosis 1.63199× 10−12 (cells× days)−1

a Chemotherapy dose that produces 50% maximum effect 1× 107 molecules
µAC Chemotherapy cytotoxicity rate on cancer cells See Equation (8) days−1

αT Killing efficacy rate (cytotoxicity) of CAR-T cells See Equation (12) (cells× days)−1

µd Dissolution rate of dead leukemia cells 0.408 days−1

µC Deactivation/decay rate of the chemotherapy drug 11. 090 days−1

µCA Deactivation rate of chemotherapy due to killing leukemia cells 10µAC
molecules

cells× days
µCT Deactivation rate of chemotherapy due to killing CAR-T cells 10µTC

molecules
cells× days

ϕC Chemotherapy drug (chlorambucil ) ϕC ≥ 0 molecules
days

ρT Mitosis stimulation/proliferation rate of CAR-T cells 0 < ρT < αT (cells× days)−1

µT Death rate/exhaustion of CAR-T cells 1
14
≤ µT ≤

1
30

days−1

µTC Chemotherapy cytotoxicity rate on CAR-T cells 0 < µTC < µAC days−1

ϕT CAR-T cell therapy ϕT ≥ 0 cells
days

Now, by the cells eradication threshold assumption [20,29,43] that establishes the
following: “If a solution describing the growth of a cell population goes below the value of 1 cell,
then it is possible to assume the complete eradication of such population”, one can formulate the
next constraints for all solutions of the leukemia and chemoimmunotherapy system (1)–(4):

Live CLL cancer cells : A(t) = 0 ∀ A(t) < 1,

Dead leukemia cells : Ad(t) = 0 ∀ Ad(t) < 1,

Molecules of the chemotherapy drug : C(t) = 0 ∀ C(t) < 1,

CAR-T cells : T(t) = 0 ∀ T(t) < 1.
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Concerning the overall dynamics of CAR-T cells, it should be noted that the parameters
regarding their killing efficacy rate (αT) and the mitosis/activation rate (ρT) have the
following constraint

αT > ρT , (5)

providing a mathematical restriction on their proliferation once infused into the system,
see [27–29]. This condition is directly related to the ultimate bounds of the localizing
domain and the leukemia eradication by the immunotherapy treatment. Further, there is a
threshold for the numerical value of ρT that implies either depletion or persistence of the
CAR-T cells, and as it is shown below, this value is given by a condition in terms of the
death rates of both leukemia (µA) and CAR-T cells (µT), and the dissolution rate of dead
leukemia cells (µd) in the blood circulatory system

Depletion : ρT <
µAµT

µd
, (6)

Persistence : ρT >
µAµT

µd
, (7)

mathematical background on these conditions will be provided and discussed in Section 3.
Regarding the depletion/persistence phenomenon, both circumstances have been reported
in in vivo clinical studies. Lee et al. [44] analyzed peripheral blood by flow cytometry and
qPCR in 21 patients and reported that CAR-T cells were no longer detected (fewer than
104 absolute cells) by day 68 after the last infusion. Porter et al. [7] detected, also by means
of flow cytometry and qPCR, persistence of CAR-T cells in the range of 14 to 49 months
in the four patients who achieved CR (complete response). However, we have identified
that recent studies are leaning to the side of CAR-T cells long-term persistence as new
generations of these cells are being developed [11,45–47].

3. Materials and Methods
3.1. Estimating Cytotoxicity of Chemotherapy and CAR-T Cells to Cancer Cells

In this section, nonlinear functions are formulated to estimate the cytotoxicity to
cancer cells from different doses of chlorambucil chemotherapy drug and the environment
surrounding CAR-T cells immunotherapy. First, let us take the results shown in Table A.1
in Guzev et al. [25]; particularly, chlorambucil concentration (presented in µM), and its
corresponding cytotoxicity rate (denoted as µAC) on CLL cells. As one can see below in
Table 2, increasing the drug concentration also increases cytotoxicity. Further, concentration
was converted from µM (10−6 mol/L) to mg/L, and cytotoxicity rate from h−1 to days−1

to standardize the time units of the mathematical model under study in this work.

Table 2. Chlorambucil concentration and its computed and approximated cytotoxicity rates (µAC)

on leukemia cancer cells. Data from columns ‘Concentration in µM’ and ‘Experimental cytotoxicity
in h−1’ were extracted from Appendix A in Guzev et al. [25].

Concentration Concentration Experimental Experimental Fitted Cytotoxicity
in µM in mg/L Cytotoxicity in h−1 Cytotoxicity in Days−1 [µAC(κ)] in Days−1

0 0 0 0 0
1.5625 0.4753 0.0030 0.0720 0.0651
3.125 0.9507 0.0040 0.0960 0.0974
6.25 1.9013 0.0060 0.1440 0.1447
12.5 3.8026 0.0088 0.2112 0.2128
25 7.6053 0.0126 0.3024 0.3066
50 15.2106 0.0180 0.4320 0.4284

It is evident that chlorambucil cytotoxicity rates are not increasing linearly. Thus,
by following the log-kill hypothesis, which states that when cancer volume is increasing
by a constant fraction of itself every fixed unit of time and it is in the presence of effective
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anticancer drugs, then it will shrink by a constant fraction of itself [48]. In other words,
a therapy dose eradicates a constant proportion of a tumor cell population rather than
a constant number of cells. Further, the total amount of eradicated cells will be given
by a logarithmic function in base 10. Hence, inspired by the “log” part of the log-kill
hypothesis we formulate the next nonlinear function to fit the µAC values from the column
‘Experimental cytotoxicity in days−1’ in Table 2,

µAC(κ) =
[
log10(1 + ε1κ)

]1/ε2 , (8)

where κ is the chlorambucil concentration in mg/L, and µAC(κ) represents its approxi-
mated cytotoxicity rate in days−1. Experimental and fitted data is illustrated in Figure 1,
and the corresponding values are shown in the column ‘Fitted cytotoxicity [µAC(κ)] in
days−1’ in Table 2 with a coefficient of determination R2 = 0.999. Further, parameters ε1
and ε2 from Equation (8) were computed with a 95% confidence interval (CI) as it is shown
in Table 3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Concentration [mg=L]

0.1

0.15

0.2

0.25
0.3
0.35
0.4
0.45
0.5

C
y
to

to
x
ic

it
y

(7
A

C
)
[d

a
y
s!

1
]

Experimental F itted

Figure 1. Chlorambucil cytotoxicity rate (µAC) to leukemia cancer cells. The solid green line repre-
sents the experimental data obtained from Guzev et al. and the red ‘×’ marker is the estimated value
given by Equation (8).

Table 3. Parameters and 95% CI for the chlorambucil cytotoxicity rate (days−1) of Equation (8) from
its concentration in mg/L.

Parameter Units Value 95% CI

ε1 L/mg 4.799× 10−2 (
4.145× 10−2, 5.454× 10−2)

ε2 Dimensionless 1.693 (1.599, 1.786)

The mathematical model constructed by Guzev et al. [25] describes the dynamics of
the chemotherapy drug in molecules per unit of time. Therefore, let us determine the total
number of molecules from its usual dose given in mg as follows [49–51]:

N.Molecules =
Chlorambucil dose [mg]×Avogadro’s number

[
molecules

mol

]
Chlorambucil average molecular weight

[ mg
mol

] , (9)

where
Avogadro’s number = 6.02214076× 1023 molecules

mol
,
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and
Chlorambucil average molecular weight = 304.212× 103 mg

mol
.

Now, let us explore results shown above by considering the usual protocol of chlo-
rambucil dosing in previously untreated adult patients with CLL. According to the Access
Pharmacy Educational Resource [52], off-label dosingis given as indicated below

0.4 mg
kg× day

1 every 2 weeks to a maximum of
0.8 mg

kg× day
with 24 cycles.

Thus, by assuming a weight of 80 kg (although, in a real-life scenario, the particu-
lar weight of each patient can be used) for a CLL adult patient with an average age of
∼70 years [5,53,54], then,

Chlorambucil dosing = 80 kg× 0.4 mg
kg× day

= 32
mg
day

,

therefore, the total number of molecules can be computed by Equation (9) as follows

N.Molecules =
32 [mg]× 6.02214076× 1023

[
molecules

mol

]
304.212× 103

[ mg
mol

] ,

and by simplifying the latter

N.Molecules = (32)
(

1. 97958685× 1018
)

molecules,

the next constant is identified

ς = 1. 97958685× 1018, (10)

representing the total number of molecules in 1 mg of chlorambucil. At this step, Equation (9)
may be simplified

N.Molecules = Cmg × ς, (11)

where Cmg is the chlorambucil dose in mg. Hence, for 32 mg we have the following result

N.Molecules = 32× ς = 6. 33467792× 1019 molecules.

Regarding Equation (8), it is important to remember that chlorambucil cytotoxicity was
investigated by Guzev et al. in micromolar drug concentrations, see column ‘Concentration
in mg/L’ in Table 2. Hence, given that an adult has about 5 L of blood [42], in order
to properly apply this equation one needs to compute the concentration in the blood
circulatory system in mg per liter of blood by dividing as indicated below

Chlorambucil concentration, κ =
Cmg

5 L
=

32 mg
5 L

= 6.4
mg
L

,

therefore, one can estimate the cytotoxicity of this concentration of chlorambucil to leukemia
cells as follows

µAC(κ) =
[
log10

(
1 +

(
4.799× 10−2

)
(6.4)

)]1/1.693
= 0.2806 days−1.
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Now, given that the biological half-life (t1/2) of chlorambucil has been reported as
0.0625 days [50,51], one can determine its deactivation/decay rate (denoted as µC) from
the first-order pharmacokinetics Equation [55]

ẋ = −µCx,

with the following solution
x(t) = Cmge−µCt,

for the initial condition x(0) = Cmg. Thus, from the latter we have the following

Cmg

2
= Cmge−µCt1/2 ,

where Cmg/2 represents 50% of the initial dose at t1/2. Therefore, by isolating µC we obtain
the next deactivation/decay rate for chlorambucil

µC =
ln 2
t1/2

=
ln 2

0.0625 days
= 11. 090 days−1.

Concerning cytotoxicity of CAR-T cells, Kiesgen et al. [56] made a review study
on CAR-T cell-mediated cytotoxicity and concluded that the antitumor efficacy of this
‘living drug’ is influenced by their activation, proliferation and inhibition, as well as their
exhaustion. The first three are directly related to their consecutive encounters with cancer
and other CAR-T cells, whereas T-cell exhaustion has been reported in many chronic
diseases such as human cancer [57]. Furthermore, we were able to estimate cytotoxicity
rate values from the Lee et al. [44] phase 1 dose-escalation trial on CAR-T cells for the
treatment of leukemia on 21 patients by also considering cancer growth rates. Our results
from Table 2 in [29] are summarized below.

Fitted cytotoxicity values of CAR-T cells from column ‘Fitted cytotoxicity [αT(ρT , µT , ρA)]’
in Table 4 were computed with a coefficient of determination R2 = 0.995 by applying the
next Equation

αT(ρT , µT , ρA) = γ1 +
µTρT

γ2 + µTρT
+

ρAρT
γ3 + ρAρT

, (12)

which was formulated by taking into account both the mitosis stimulation rate (ρT) and
natural death rate of CAR-T cells (µT), as well as the leukemia growth rate (ρA). Further
discussion on these parameters is provided in Table 1 in Section 2. Parameters γi, i = 1, 2, 3;
were computed with a 95% CI as it is shown in Table 5.

Table 4. CAR-T cells cytotoxicity rates (denoted as αT and given in days−1) estimated by
Valle et al. [29] from the Lee et al. [44] phase 1 dose-escalation trial on 21 leukemia patients.
Column ‘Fitted cytotoxicity [αT(ρT , µT , ρA)]’ shows the approximated values with Equation (12).

CAR-T Cells Mitosis CAR-T Cells Natural Leukemia Cells Experimental Fitted Cytotoxicity
Stimulation Rate [ρT ] Death Rate [µT ] Growth Rate [ρA] Cytotoxicity [αT ] [αT(ρT , µT , ρA)]

2.786× 10−8 1/30 1/60 1.393× 10−7 1.401× 10−7

2.880× 10−8 1/30 1/40 1.440× 10−7 1.441× 10−7

3.170× 10−8 1/30 1/20 1.585× 10−7 1.577× 10−7

3.022× 10−8 1/14 1/60 1.511× 10−7 1.507× 10−7

3.120× 10−8 1/14 1/40 1.560× 10−7 1.554× 10−7

3.392× 10−8 1/14 1/20 1.696× 10−7 1.705× 10−7
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Table 5. Parameters and 95% CI for the CAR-T cytotoxicity rate Equation (12).

Parameter Units Value 95% CI

γ1 Dimensionless 1.256× 10−7 (
1.219× 10−7, 1.294× 10−7)

γ2 (days2 × cells)−1 1.221× 10−1 (
9.366× 10−2, 1.506× 10−1)

γ3 (days2 × cells)−1 6.777× 10−2 (
5.628× 10−2, 7.925× 10−2)

However, accurately estimating cytotoxicity of CAR-T cells remains as an open prob-
lem. Additional clinical data is needed to either validate and/or reformulate Equation (12).
Following this statement, we provide in the Supplementary Material the necessary code
to perform this task in Anaconda 3 with the Jupyter Notebook 6.4.5 (using Python 3.9.7),
as all parameters from Equations (8) and (12) were fitted by applying the curve_fit function
from scipy.optimize [58] with the SciPy Version 1.7.1.

3.2. Localization of Compact Invariant Sets

Below, we provide the mathematical background that allows us to determine the
localizing domain in the non-negative orthant R4

+,0 where all compact invariant sets of the
leukemia and chemoimmunotherapy system (1)–(4) are located. These compact invariant
sets can include equilibrium points, periodic orbits, limit cycles and chaotic attractors,
among others as illustrated in [59] at Section 3. The so-called General Theorem concerning
the LCIS method was formalized by Krishchenko and Starkov in [60] (see Section 2)
and it states the following: Each compact invariant set Γ of ẋ = f (x) is contained in the
localizing domain:

K(h) =
{

hinf ≤ h(x) ≤ hsup
}

.

From the latter we have that f (x) is a C∞−differentiable vector function where x ∈ Rn

is the state vector. h(x) : Rn → R is a C∞−differentiable function called localizing function.
h|S denotes the restriction of h(x) on a set S ⊂ Rn with S(h) =

{
x ∈ Rn | L f h(x) = 0

}
,

and L f h(x) = (∂h/∂x) f (x) is the Lie derivative of f (x). Hence, one can define hinf =
inf{h(x) | x ∈ S(h)} and hsup = sup{h(x) | x ∈ S(h)}. Furthermore, if all compact invari-
ant sets are contained in the set K(hi) and in the set K

(
hj
)

then they are contained in K(hi)
∩K
(
hj
)

as well. Nonexistence of compact invariant sets can be considered for a given set
Λ ⊂ Rn if Λ ∩ K(h) = ∅, then the system ẋ = f (x) has no compact invariant sets located
in Λ.

Now, let us explore five localizing functions in order to formulate lower and upper
bounds for a localizing domain containing all compact invariant sets of the system (1)–(4)
in R4

+,0.

Maximum upper bound for the live leukemia cells population [A(t)]. In order to determine
this bound, the following localizing function is proposed

h1 = A,

and its Lie derivative is defined as follows

L f h1 = ρA A
(

1− A
b

)
− µA AAd −

µAC AC
a + C

− αT AT,

now, one can write set S(h1) =
{

L f h1 = 0
}

as shown below

S(h1) =

{
A = b− b

ρA

(
µA Ad +

µACC
a + C

+ αTT
)}
∪ {A = 0},
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at this step, negative terms of S(h1) can be discarded. Hence, non-negative boundaries for
all ω−limit sets of A(t) are given in the next domain

KA1 = {0 ≤ A(t) ≤ b}.

However, it should be noted that the latter was determined when all the interactions
with the other cells and treatments are neglected, thus, the maximum carrying capacity
(which is also an equilibrium of A(t)) is located at the upper boundary. Below we will
explore another localizing function that considers the effect of the dead leukemia cells in
the overall cancer cells population.

Localizing set for the live and the dead leukemia cells populations [A(t) and Ad(t)]. Let us
explore the following localizing function

h2 = A + Ad,

whose Lie derivative is defined as follows

L f h2 = ρA A− ρA
b

A2 − µA AAd −
µAC AC
a + C

− αT AT + µA AAd − µd Ad +
µAC AC
a + C

+ αT AT,

then set S(h2) =
{

L f h2 = 0
}

can be formulated and simplified by basic arithmetic opera-
tions as follows when considering that Ad = h2 − A

S(h2) =

{
h2 =

(
ρA + µd

µd

)
A− ρA

µdb
A2
}

,

and by completing the square in the right side of the equation we obtain the next result

− ρA
µdb

A2 +

(
ρA + µd

µd

)
A = − ρA

µdb

(
A− b(ρA + µd)

2ρA

)2
+

b(ρA + µd)
2

4µdρA
,

therefore,

S(h2) =

{
h2 =

b(ρA + µd)
2

4µdρA
− ρA

µdb

(
A− b(ρA + µd)

2ρA

)2
}

,

now, due to h2 = A + Ad we may conclude the following result

K(h2) =

{
0 ≤ A(t) + Ad(t) ≤

b(ρA + µd)
2

4µdρA

}
.

Thus, from the latter, upper bounds for both the live [A(t)] and dead [Ad(t)] leukemia
cells populations can be deducted as follows

KA2 =

{
0 ≤ A(t) ≤ b(ρA + µd)

2

4µdρA

}
,

KAd =

{
0 ≤ Ad(t) ≤ Ad sup =

b(ρA + µd)
2

4µdρA

}
.

Localizing set for the CAR-T cells therapy [T(t)]. Two localizing functions are analyzed to
determine these bounds. First, let us take the next to formulate the lower bound

h3 = T,
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whose Lie derivative is defined as follows

L f h3 = ρT(A + T)T − µTT − αTT2 − µTCCT
a + C

+ ϕT ,

now, one can write set S(h3) =
{

L f h3 = 0
}

as indicated below

S(h3) =

{
−(αT − ρT)T2 − (µT + µTC)T + ϕT +

aµTCT
a + C

+ ρT AT = 0
}

,

thus, by condition (5), i.e., αT > ρT , we can complete the square

−(αT − ρT)T2 − (µT + µTC)T = −(αT − ρT)

(
T +

µT + µTC
2(αT − ρT)

)2
+

(µT + µTC)
2

4(αT − ρT)
,

and rewrite S(h3)

S(h3) =

{(
T +

µT + µTC
2(αT − ρT)

)2
=

(
µT + µTC

2(αT − ρT)

)2
+

ϕT
αT − ρT

+ f (A, T)

}
,

where

f1(A, C, T) =
1

αT − ρT

(
aµTCT
a + C

+ ρT AT
)

,

hence, the lower bound is determined by disregarding the non-negative function f1(A, C, T)
and isolating T, then, we can conclude on the following lower bound for all solutions of T(t)

K1(h3) =

T(t) ≥ Tinf =

√(
µT + µTC

2(αT − ρT)

)2
+

ϕT
αT − ρT

− µT + µTC
2(αT − ρT)

,

from the latter, it is evident that Tinf|ϕT=0 = 0, which is expected in the case where the
CAR-T cells therapy is not constantly or periodically applied into the system. Concerning
the upper bound, we explore the following localizing function

h4 = A + T,

and by computing its Lie derivative

L f h4 = ρA A
(

1− A
b

)
− µA AAd −

µAC AC
a + C

− αT AT + ρT(A + T)T − µTT − αTT2 − µTCCT
a + C

+ ϕT ,

one can define set S(h4) =
{

L f h4 = 0
}

and write it as follows by considering T = h4 − A

S(h4) =

{
µTh4 = ϕT −

ρA
b

A2 + (ρA + µT)A− µA AAd −
µAC AC
a + C

− (αT − ρT)
(

AT + T2
)
− µTCCT

a + C

}
,

now, let us complete the square

−ρA
b

A2 + (ρA + µT)A = −ρA
b

(
A− b(ρA + µT)

2ρA

)2
+

b(ρA + µT)
2

4ρA
,

to rewrite S(h4)

S(h4) =

{
h4 =

ϕT
µT

+
b(ρA + µT)

2

4ρAµT
− f2(A, C, T)

}
,

where
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f2(A, C, T) =
1

µT

[
ρA
b

(
A− b(ρA + µT)

2ρA

)2
+ µA AAd +

µAC AC
a + C

+ (αT − ρT)
(

AT + T2
)
+

µTCCT
a + C

]
,

therefore, we have the following upper bound for the localizing function h4

K(h4) =

{
A(t) + T(t) ≤ ϕT

µT
+

b(ρA + µT)
2

4ρAµT

}
.

Now, one can formulate the following lower and upper bounds for all solutions of the
live leukemia [A(t)] and CAR-T [T(t)] cells populations

KT =

Tinf =

√(
µT + µTC

2(αT − ρT)

)2
+

ϕT
αT − ρT

− (µT + µTC)

2(αT − ρT)
≤ T(t) ≤ Tsup =

ϕT
µT

+
b(ρA + µT)

2

4ρAµT

,

KA3 =

{
0 ≤ A(t) ≤ Amax = min

{
b,

b(ρA + µd)
2

4µdρA
,

ϕT
µT

+
b(ρA + µT)

2

4ρAµT

}}
.

Localizing set for the chemotherapy drug concentration [C(t)]. Let us exploit the localizing
function denoted by

h5 = C

where its Lie derivative is defined as follows

L f h5 = −µCC− µCA AC
a + C

− µCTCT
a + C

+ ϕC,

now, set S(h5) =
{

L f h5 = 0
}

can be written as indicated below

S(h5) =

{
µCC = ϕC − µCA A− µCTT +

aµCTT
a + C

+
aµCA A
a + C

}
,

hence, by applying the Iterative Theorem

S(h5) ∩ KA ∩ KT ⊂
{

C ≥ ϕC
µC
− µCA

µC
Amax −

µCT
µC

Tsup

}
,

the next lower bound can be determined

K1(h5) =

{
C(t) ≥ Cinf =

ϕC −
(
µCA Amax + µCTTsup

)
µC

}
,

from the latter, it is evident that the next condition should be fulfilled

ϕC > µCA Amax + µCTTsup. (13)

for Cinf > 0. However, if condition (13) does not hold, then one should consider Cinf = 0 as
there is no biological sense for negative values for the chemotherapy drug concentration,
C(t). Now, let us take again set S(h5) as follows

S(h5) =

{
µCC = ϕC −

µCA AC
a + C

− µCTCT
a + C

}
,

from which we can determine the next upper bound by disregarding the negative terms as
given below

K2(h5) =

{
C(t) ≤ Csup =

ϕC
µC

}
.
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Hence, all solutions C(t) will be bounded by the following domain

KC =

{
Cinf =

ϕC −
(
µCA Amax + µCTTsup

)
µC

≤ C(t) ≤ Csup =
ϕC
µC

}
,

where ϕC ≥ 0 as this term represents the application of the chemotherapy drug into
the patient.

Nonexistence conditions and supreme upper bound for the live leukemia cells population
[A(t)]. Now, let us apply the Iterative Theorem to the set S(h1) as follows

S(h1) ∩ KT ⊂
{

A ≤ b− αTb
ρA

Tinf

}
,

from the latter and by assuming (5) is fulfilled, the next ultimate upper bound can be
established

KA =

0 ≤ A(t) ≤ Asup = b− αTb
ρA

√( µT + µTC
2(αT − ρT)

)2
+

ϕT
αT − ρT

− µT + µTC
2(αT − ρT)

.

Furthermore, one can formulate the following nonexistence condition from Asup as
indicated below

Asup < 0,

which is solved for the CAR-T cells therapy treatment (ϕT)

ϕT > ϕCART =
ρA
αT

[
ρA
αT

(αT − ρT) + µT + µTC

]
. (14)

Therefore, results shown in this section allow us to conclude the following two statements:

Theorem 1. Localizing domain. If condition (5) holds, then all compact invariant sets of the
leukemia and chemoimmunotherapy system (1)–(4) are located within the following domain:

KΓ = KA ∩ KAd ∩ KC ∩ KT , (15)

with the next lower and upper bounds

KA =
{

0 ≤ A(t) ≤ Asup
}

,

KAd =
{

0 ≤ Ad(t) ≤ Ad sup

}
,

KC =
{

Cinf ≤ C(t) ≤ Csup
}

,

KT =
{

Tinf ≤ T(t) ≤ Tsup
}

.

Corollary 1. Nonexistence. If condition (14) fulfills, then there are no compact invariant sets
outside the plane A = 0 for the leukemia and chemoimmunotherapy system (1)–(4).

3.3. Global Asymptotic Stability: Leukemia Cells Eradication

When considering that Equations (1)–(4) describe cancer evolution as a nonlinear
dynamical system, one can apply Lyapunov’s Direct method (see Chapter 4.1 by Khalil
in [61] and Chapter 2 by Hahn in [62]) to investigate the global asymptotic stability of the
tumor-free equilibrium point and establish sufficient conditions to ensure the leukemia
cells eradication. The latter may be translated into the real-world as immunotherapy doses
that could potentially control cancer cells growth. First, let us take the following Lyapunov
candidate function (V)

V = A,
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and compute its time derivative
(
V̇
)

as follows

V̇ =

(
ρA −

ρA
b

A− µA Ad −
µACC
a + C

− αTT
)

A.

Then, in order to fulfill Lyapunov’s asymptotic stability conditions [V̇(0) = 0 and
V̇ < 0 ∀ A > 0], the derivative is evaluated at the localizing domain, i.e., V̇

∣∣
KΓ

, and the next
upper bound is determined

V̇ ≤ (ρA − αTTinf)A ≤ 0,

hence, by assuming (5) holds, we formulate the following condition

ρA − αT

√( µT + µTC
2(αT − ρT)

)2
+

ϕT
αT − ρT

− µT + µTC
2(αT − ρT)

 < 0 ,

and solve it for the CAR-T cell therapy parameter as shown below

ϕT > ϕCART .

Therefore, the nonexistence condition (14) also becomes a sufficient condition for
asymptotic stability and the following statement is concluded:

Theorem 2. Leukemia cancer cells eradication. If the CAR-T cells therapy dose meets condition (14),
then one can ensure the complete eradication of the leukemia cancer cells population described by the
system (1)–(4). Thus,

lim
t→∞

A(t) = 0 ∀ A(0) > 0 ⇔ ϕT > ϕCART .

Now, one can investigate the leukemia and chemoimmunotherapy system when
the live leukemia cancer cells are completely eradicated and both therapies are stopped,
i.e., [A(t), ϕC, ϕT = 0]. Therefore, Equations (1)–(4) become as follows

Ȧd = −µd Ad, (16)

Ċ = −µCC− µCTCT
a + C

, (17)

Ṫ = −µTT − (αT − ρT)T2 − µTCCT
a + C

, (18)

where the only biologically meaningful equilibrium point is the leukemia-free state given by

(A∗0 , A∗d0, C∗0 , T∗0 ) = (0, 0, 0, 0), (19)

hence, the next statement is a direct result from Theorem 2:

Corollary 2. Leukemia-free equilibrium point. If condition (14) from Theorem 2 is fulfilled and
the chemoimmunotherapy treatments are stopped [ϕC, ϕT = 0] when the leukemia cells are
completely eradicated [A(t) = 0 ∀ A(t) < 1], then the tumor-free equilibrium point (19) is
globally asymptotically stable.

3.4. Persistence: Leukemia and CAR-T Cells

As stated before, long-term persistence of CAR-T cells in cancer patients has been
reported in several papers. Thus, this particular phenomenon can be studied as a local
asymptotic stability problem by means of Lyapunov’s Indirect method (see Chapter 4.3 by
Khalil in [61]) when considering interactions between leukemia and CAR-T cells as a non-



Pharmaceutics 2022, 14, 1396 15 of 32

linear system. First, let us simplify the leukemia and chemoimmunotherapy system (1)–(4)
as follows

Ȧ = ρA A
(

1− A
b

)
− µA AAd − αT AT, (20)

Ȧd = −µd Ad + µA AAd + αT AT, (21)

Ṫ = ρT(A + T)T − µTT − αTT2 + ϕT . (22)

The latter represents the original system in the short-term as the biological half-life
(t1/2) of chlorambucil is 0.0625 days, which implies that this drug should be depleted in
the patient in a short period of time, i.e., C(t) = 0. Hence, one can identify the following
equilibrium point in order to investigate persistence of CAR-T cells in the mathematical
model after the last infusion, i.e., ϕT = 0 ∀ t ∈ [ti, ∞) with ti > 0,

(A∗1 , A∗d1, T∗0 ) =

(
µd
µA

,
ρA(bµA − µd)

bµ2
A

, 0

)
, (23)

with
bµA − µd > 0. (24)

Now, as the method requires, the Jacobian matrix [∂ f (x)/∂x] is computed below

J =

 ρA −
2ρA

b
A− µA Ad − αTT −µA A −αT A

µA Ad + αTT −µd + µA A αT A
ρTT 0 ρT A− 2(αT − ρT)T − µT

, (25)

which is evaluated at the Equilibrium point (23) as follows

J|(A∗1 ,A∗d1,T∗1 )
=


−µdρA

µAb
−µd −αTµd

µA
ρA(bµA − µd)

µAb
0

αTµd
µA

0 0
ρTµd
µA
− µT

,

at this step, eigenvalues are computed from the Jacobian determinant[
det
(

J|(A∗1 ,A∗d1,T∗1 )
− λI

)
= 0

]
, results are shown below

λ1 = −
µdρA −

√
µ2

dρ2
A − 4µAµdρAb(µAb− µd)

2µAb
,

λ2 = −
µdρA +

√
µ2

dρ2
A − 4µAµdρAb(µAb− µd)

2µAb
,

λ3 = − 1
µA

(µAµT − µdρT),

and by condition (24) it is evident that Reλi < 0, i = 1, 2. Therefore, conditions for
depletion (6) and persistence (7) are derived from λ3 as follows. If Reλ3 < 0, then by
Theorem 4.7 in [61]: “The equilibrium is locally asymptotically stable”, this holds when

ρT <
µAµT

µd
,
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which biologically implies depletion of the CAR-T cells. Thus, if Reλ3 > 0, then by
Theorem 4.7 in [61]: “The equilibrium is unstable”, which holds when

ρT >
µAµT

µd
,

and according to Liu and Freedman (see Section 3.1.3 in [63]) this could be biologically
interpreted as a “necessary condition for the cell population to grow”. Therefore, the following
statement is concluded:

Theorem 3. CAR-T cells persistence. If conditions (7) and (24) hold, then the CAR-T cells immune
response to the leukemia cancer cells persists after at least one infusion into the system, i.e.,

lim
t→∞

T(t) > 0 when A(t) > 0, for T(0) > 0 and/or ϕT(τ) > 0 with τ ∈ [t1, t2].

Now, following the latter, let us explore leukemia cells persistence under the im-
munotherapy treatment, i.e., ϕT > 0. It is important to note that this implies the CAR-T
cells dose will not be enough to control cancer growth. Hence, in this case one should inves-
tigate the local stability of the next equilibrium point from the simplified system (20)–(22)

(A∗0 , A∗d0, T∗1 ) =

0, 0,

√
µ2

T + 4ϕT(αT − ρT)− µT

2(αT − ρT)

, (26)

where αT > ρT by condition (5). Thus, the equilibrium (26) is evaluated at the Jacobian
matrix (25) as indicated below

J|(A∗0 ,A∗d0,T∗0 )
=

 ρA − αTT∗1 0 0
αTT∗1 −µd 0
ρTT∗1 0 −2(αT − ρT)T∗1 − µT

,

as the resulting matrix is lower triangular, all eigenvalues are given by each element of the
main diagonal. Therefore,

λ4 = ρA −
αT

√
µ2

T + 4ϕT(αT − ρT)− αTµT

2(αT − ρT)
,

λ5 = −µd,

λ6 = −
√

µ2
T + 4ϕT(αT − ρT),

and it is evident that λj < 0, j = 5, 6. Thus, local asymptotic stability of (26) follows from
the next condition on λ4

ρA −
αT

√
µ2

T + 4ϕT(αT − ρT)− αTµT

2(αT − ρT)
< 0,

which is solved for the immunotherapy treatment parameter

ϕT > ϕprstnc =
ρA
αT

[
ρA
αT

(αT − ρT) + µT

]
. (27)

In the biological sense, if condition (27) holds, then the immunotherapy could be able
to eradicate a sufficiently small initial tumor population, i.e., the equilibrium point (26) is
locally asymptotically stable. Hence, given the following condition

ϕT < ϕprstnc, (28)



Pharmaceutics 2022, 14, 1396 17 of 32

the next statement can be concluded regarding the persistence of the leukemia cells popula-
tion in the system (1)–(4):

Theorem 4. Leukemia cells persistence. If the CAR-T cells dose meets condition (28), then the
immunotherapy treatment will not be able to eradicate the leukemia cells population. Therefore,
cancer persits, i.e.,

lim
t→∞

A(t) > 0⇔ ϕT < ϕprstnc.

4. Results: In Silico Experimentation

In this section, we will explore by means of numerical simulations the overall dynamics
of the leukemia and chemoimmunotherapy system (1)–(4). It is important to note that
our mathematical model aims to describe the evolution of leukemia cancer cells in the
blood circulatory system in a hypothetical adult patient when considering the application of
immunotherapy in the form of CAR-T cells either alone or combined with the chemotherapy
drug chlorambucil. Hence, we formulate four scenarios for the in silico experimentation,
i.e., no treatments, CAR-T cells depletion and persistence, and both immunotherapy and
chemoimmunotherapy protocols.

Now, it should be noted that the in silico experimentation was performed in Matlab
2022a in a desktop computer with a Ryzen 7 5800X CPU, 64 GB of RAM DDR4 3200, and a
2 TB M.2 Samsung 980 PRO SSD. The system of ODEs (1)–(4) was solved by means of
Euler’s method, that is

xi+1 ≈ xi + f (x)∆t,

with a step size ∆t = 1× 10−7 to further reduce the intrinsic error in the system solutions.

4.1. No Treatments

First, let us consider the ‘no treatments case’, i.e., C(t), T(t) = 0. Thus, the mathemati-
cal model becomes as follows

Ȧ = ρA A
(

1− A
b

)
− µA AAd,

Ȧd = −µd Ad + µA AAd,

where the leukemia cells growth rate (ρA) is set to 0.1680. This represents 10% of the rate
value of Guzev et al. as this was estimated in vitro in ideal conditions. Further, values of
this order of magnitude have been reported in several works concerning mathematical
models formulated with in vivo studies of both solid and non-solid tumors [24,26–28,34–36].
Results are illustrated in Figure 2 with the following initial conditions

A(0) = 1010 cells,

Ad(0) = 0.05× A(0) cells,

which are used through all the in silico experimentation, i.e., Figures 2–8. The latter are set
to consider a high initial non-solid tumor population and the corresponding 5% of dead
leukemia cells proposed by Guzev et al. [25].
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Figure 2. No treatments case. The in silico experimentation illustrates that the absolute count of
live leukemia cells [A(t)] is of 2.5× 1011, which implies 50,000 cancer cells by every µL of blood,
while the final count of dead leukemia cells [Ad(t)] represents ∼26.88% of this value. In the lower
panel one can see that the sum of these two cells populations almost reach the maximum carrying
capacity but eventually converges to a value below the upper bound given in the localizing set
K(h2). Mathematically, solutions of the live and dead leukemia cells go to the equilibrium point(

A∗, A∗d
)
=
(
µd/µA, ρA(bµA − µd)/(bµ2

A)
)
. For this case, parameter ρA is set to 0.1680.
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Figure 3. CAR-T cells depletion case. Numerical simulations allow us to illustrate that this phe-
nomenon arises when the mitosis/activation rate (ρT) of CAR-T cells is below a threshold directly
related to the death rates of both leukemia (µA) and CAR-T cells (µT), and the dissolution rate of
dead leukemia cells (µd) as given by condition (6). The upper panel shows that there is almost a
2 log-kill of leukemia cells due to the treatment. However, as CAR-T cells are eventually depleted,
the leukemia concentration ends as the ‘no treatments case’, i.e., 50,000 cells/µL. For this case, param-
eter values are set as follows: ρA = 0.1680, ρT = 2.5714× 10−13, µT = 1/14, and αT = 1.2560× 10−7

by Equation (12).
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Figure 4. CAR-T cells persistence case. The in silico experimentation illustrates that by fulfilling
condition (7) CAR-T cells can persist after a single application with an absolute count of 10,001 cells,
just above the threshold of clinical detectability reported in [44]. Nonetheless, in our mathematical
model persistence of CAR-T cells is linked to the survival of leukemia cells. Solutions of live
leukemia cells [A(t)], dead leukemia cells [Ad(t)] and CAR-T cells [T(t)] go to the equilibrium point(

A∗, A∗d , T∗
)
'
(
2.4716× 1011, 6.6835× 1010, 1.0001× 104). The analytical analysis shows that the

numerical value of ρT is directly related to this result. For this case, parameter values are set as
follows: ρA = 0.1680, ρT = 2.9409× 10−13, µT = 1/14, and αT = 1.2560× 10−7 by Equation (12).
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Figure 5. Weekly CAR-T cells case. Four doses of 202,079,012 CAR-T cells were applied at days 0,
7, 14, and 21, for a total of 808, 316, 048 CAR-T cells infused into the system to achieve leukemia
cancer cells eradication [A(t) < 1] between days 25 and 26 [t = 25.96]. The lower panel illustrates
that CAR-T cells are completely depleted [T(t) < 1] by day 208 [t = 207.32]. For this case, parameter
values are set as follows: ρA = 0.1680, ρT = 2.9409× 10−13, µT = 1/14, and αT = 1.2560× 10−7 by
Equation (12).
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Figure 6. Fortnight CAR-T cells case. Four doses of 245,633,284 CAR-T cells were applied at days 0,
14, 28, and 42, for a total of 982 , 533, 136 CAR-T cells infused into the system to achieve leukemia
cancer cells eradication [A(t) < 1] between days 47 and 48 [t = 47.16]. The lower panel illustrates
that CAR-T cells are completely depleted [T(t) < 1] by day 229 [t = 228.34]. For this case, parameter
values are set as follows: ρA = 0.1680, ρT = 2.9409× 10−13, µT = 1/14, and αT = 1.2560× 10−7 by
Equation (12).
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  Dose: 0.7 mg/kg

Figure 7. Constant chemoimmunotherapy case. In this scenario we incorporated consecutive ad-
ministrations of the chlorambucil chemotherapy drug with a constant dose. Numerical simulations
allowed us to determine both the amount dose and the day at which the treatment should be applied
to achieve leukemia cells eradication. The chemoimmunotherapy protocol was established as follows
for a hypothetical 80 kg leukemia patient: three immunotherapy infusions of 245,633,284 CAR-T cells
at days 0, 14, and 28 as illustrated in the middle panel; six administrations of the chlorambucil
chemotherapy drug with a dose of 56 mg (0.7 mg/kg) at days 6, 10, 20, 24, 34, and 38. The combined
therapy is illustrated in the upper panel with the leukemia cells evolution [A(t)] which go below
the threshold of complete eradication by day 39 [t = 38.87] for an initial non-solid tumor population
of 1010 cancer cells. Total doses of the chemoimmunotherapy treatment are as follows: 336 mg
of chlorambucil, and 736,899,852 CAR-T cells. For this case, parameter values are set as follows:
ρA = 0.1680, ρT = 2.9409× 10−13, µT = 1/14, αT = 1.2560× 10−7 by Equation (12), µAC = 0.3712,
and µTC = 0.0200.
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Figure 8. Increasing chemoimmunotherapy case. The in silico experimentation allowed us to
determine the increments of the chlorambucil dosing to achieve leukemia cells eradication as follows:
40 mg at day 6, 48 mg at days 10 and 20, 56 mg at days 24 and 34, and 64 mg at day 38 as illustrated
in the lower panel. The immunotherapy infusions remain as 245,633,284 CAR-T cells at days 0, 14,
and 28 as shown in the middle panel. The combined therapy strategy is illustrated in the upper
panel with the leukemia cells evolution [A(t)] which go below the threshold of complete eradication
by day 41 [t = 40.18] for an initial non-solid tumor population of 1010 cancer cells. Total doses of
the chemoimmunotherapy treatment are as follows: 336 mg of chlorambucil, and 736,899,852 CAR-
T cells. It should be noted that the final CAR-T cells count is lower than the weekly and fortnight
CAR-T cells cases of Figures 5 and 6, respectively. For this case, parameter values are set as follows:
ρA = 0.1680, ρT = 2.9409× 10−13, µT = 1/14, and αT = 1.2560× 10−7 by Equation (12). For the
values of µAC and µTC see columns ‘Cytotoxicity µAC(κ)’ and ‘Cytotoxicity µTC’ of Table 6.
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4.2. CAR-T Cells Depletion and Persistence

Now, regarding depletion and persistence of CAR-T cells, Figures 3 and 4 illustrate,
respectively, conditions (6) and (7), i.e., ‘CAR-T cells depletion case’ and ‘CAR-T cells
persistence case’. For these two scenarios Equations are as follows

Ȧ = ρA A
(

1− A
b

)
− µA AAd − αT AT,

Ȧd = −µd Ad + µA AAd + αT AT,

Ṫ = ρT(A + T)T − µTT − αTT2,

where ρT = 2.5714× 10−13 for depletion, and ρT = 2.9409× 10−13 for persistence. These
values are directly related to the dissolution and dead rates of both leukemia and CAR-T
cells as indicated below

CAR-T cells depletion case : ρT <
µAµT

µd
,

CAR-T cells persistence case : ρT >
µAµT

µd
.

Further, by following the Lee et al. [44] escalation trial the immunotherapy dose was
set to 2.4× 108 CAR-T cells as this is the last infusion applied when considering an 80 kg
patient, hence

T(0) = 2.4× 108 cells,

is the initial condition for the in silico experimentation performed in Figures 3 and 4.

4.3. CAR-T Cells Treatment Protocols

In the following two cases we explore the leukemia cells eradication when applying
the immunotherapy treatment in two different schedules, each one with its corresponding
dose. These scenarios are identified as the ‘weekly CAR-T cells application case’ and
the ‘fortnight CAR-T cells application case’ as illustrated in Figures 5 and 6, respectively.
Numerical simulations are performed by solving the next set of Equations

Ȧ = ρA A
(

1− A
b

)
− µA AAd − αT AT,

Ȧd = −µd Ad + µA AAd + αT AT,

Ṫ = ρT(A + T)T − µTT − αTT2 + ϕT .

The in silico experimentation allowed us to design two immunotherapy administration
protocols with the following characteristics:

1. Weekly CAR-T cells application protocol: Four applications at days 0, 7, 14, and 21;
each one with a dose of 202,079,012 cells.

2. Fortnight CAR-T cells application protocol: Four applications at days 0, 14, 28, and 42;
each one with a dose of 245,633,284 cells.

Mathematically, the first dose is considered with the initial condition T(0), whereas
the last three consecutive doses were performed with the treatment parameter ϕT in the
form of a delayed pulse train with asymmetrical waves. The experimentation indicates
that delaying doses implies an increase in the total number of CAR-T cells that needs to
be infused into the patient to achieve cancer eradication, and it should be noted that each
immunotherapy dose fulfills the leukemia cancer cells eradication condition (14) by several
orders of magnitude as

ϕCART =
ρA
αT

[
ρA
αT

(αT − ρT) + µT + µTC

]
' 320,252 CAR-T cells,
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when considering the next set of parameter values: ρA = 0.1680, ρT = 2.9409× 10−13,
µT = 1/14, αT = 1.2560 × 10−7 by Equation (12), and µTC = 0 as the chemotherapy
treatment is not applied in these two cases. Regarding the cytotoxic effect of the therapy,
one can see in the upper panel of Figures 5 and 6 that each application produces a 2 to
3 log-kill of leukemia cells. Nonetheless, numerical simulations also illustrate that cancer
cells could begin to grow again if the treatment is stopped.

These two cases allow us to conclude that when immunotherapy is the only treatment
applied, then reducing the period between applications yields a better result concerning
the number of CAR-T cells needed to control and eradicate the leukemia cells population
described by the mathematical model under study in this work. Further, the lower panel in
Figures 5 and 6 shows that CAR-T cells population is eventually depleted once leukemia
cancer cells have been eradicated after the last application of the therapy. The latter is to be
expected as the system becomes as follows

Ṫ = −µTT − (αT − ρT)T2,

when A(t), Ad(t) = 0, and this equation has only one biologically feasible equilibrium point
given by T∗ = 0, which is globally asymptotically stable. Hence, long-term persistence of
CAR-T cells could be related to the survival of a small tumor population.

4.4. Chemoimmunotherapy Treatment Protocols

Now, regarding the combined chemoimmunotherapy treatment strategy, we for-
mulated the next two scenarios: ‘constant chemoimmunotherapy case’ and ‘increasing
chemoimmunotherapy case’. As it was stated in Section 3, we considered an 80 kg CLL
adult patient with an average age of ∼70 years. In silico experimentations of these two
cases were performed with the complete mathematical model (1)–(4), i.e.,

Ȧ = ρA A
(

1− A
b

)
− µA AAd −

µAC AC
a + C

− αT AT,

Ȧd = −µd Ad + µA AAd +
µAC AC
a + C

+ αT AT,

Ċ = −µCC− µCA AC
a + C

− µCTCT
a + C

+ ϕC,

Ṫ = ρT(A + T)T − µTT − αTT2 − µTCCT
a + C

+ ϕT .

In order to properly combine the two therapies, we continue with the fortnight CAR-
T cells application protocol, i.e., one application every two weeks, and our aim was to
eliminate the fourth dose illustrated in Figure 6. First, constant dose applications of the
chlorambucil chemotherapy drug were explored. Numerical simulations allowed us to
conclude that two chemotherapy administrations after each immunotherapy infusion with
a dose of 0.7 mg/kg were necessary to achieve the leukemia cells eradication, as it is shown
in Figure 7.

Concerning the increasing dose of chemotherapy, by means of the in silico experimen-
tation we were able to formulate the protocol illustrated in the lower panel of Figure 8,
which is as follows

Dose 1 at day 6 with 0.5 mg/kg→ Cmg = 40 mg,
Dose 2 at days 10 and 20 with 0.6 mg/kg→ Cmg = 48 mg,
Dose 3 at days 24 and 34 with 0.7 mg/kg→ Cmg = 56 mg,
Dose 4 at day 38 with 0.8 mg/kg→ Cmg = 64 mg.

From the latter, one is able to compute the number of molecules of chlorambucil (11),
the concentration in the circulatory system in mg per liter of blood (κ), and both cytotoxicity
to cancer cells (8) and CAR-T cells as indicated below in Table 6.
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Table 6. Chlorambucil characteristics for the chemoimmunotherapy protocol cases.

Dose Molecules Concentration Cytotoxicity Cytotoxicity
Cmg Cmg × ς κ µAC(κ) µTC

40 mg 7.91834740× 1019 8.0 mg/L 0.3145 days−1 0.0170 days−1

48 mg 9.50201688× 1019 9.6 mg/L 0.3444 days−1 0.0186 days−1

56 mg 1.10856864× 1020 11.2 mg/L 0.3712 days−1 0.0200 days−1

64 mg 1.26693558× 1020 12.8 mg/L 0.3955 days−1 0.0214 days−1

Now, the leukemia cells eradication condition (14) from Theorem 2 changes as the
chemotherapy cytotoxicity increases.

ϕCART =
ρA
αT

[
ρA
αT

(αT − ρT) + µT + µTC

]
µTC = 0.0170

' 342, 971 CAR-T cells,

ϕCART =
ρA
αT

[
ρA
αT

(αT − ρT) + µT + µTC

]
µTC = 0.0186

' 345, 131 CAR-T cells,

ϕCART =
ρA
αT

[
ρA
αT

(αT − ρT) + µT + µTC

]
µTC = 0.0200

' 347, 066 CAR-T cells,

ϕCART =
ρA
αT

[
ρA
αT

(αT − ρT) + µT + µTC

]
µTC = 0.0214

' 348, 821 CAR-T cells,

where the other values remain as indicated above, and it is evident that each infusion with
a dose of 245,633,284 CAR-T cells continues to fulfill this condition. Thus, one can see in
Figures 7 and 8 that the leukemia cancer cells population is eradicated between days 38 and
42. The constant chemoimmunotherapy case required six doses of 56 mg of chlorambucil
which amounted to 336 mg of the drug, whereas in the increasing case we needed a total
of 312 mg, the upper panel of these two figures illustrates minor differences in both the
leukemia cells evolution and the time in which they go below the threshold of complete
eradication, i.e., one cancer cell [20,29,43].

The cytotoxicity of the chemotherapy drug to the CAR-T cells was estimated by
considering the results reported by de Pillis et al. in [36] as a proportion of the cytotoxicity
to cancer cells, i.e., µTC = 0.054µAC . Hence, as the chlorambucil dose is increased, then the
values of µAC and µTC increase as well, this is shown in columns ‘Cytotoxicity µAC(κ)’ and
‘Cytotoxicity µTC’ of Table 6. These increments over time in the chemotherapy doses and
parameter values were incorporated in the in silico experimentation illustrated in Figure 8.

5. Discussion

First, concerning the analytical results, our methodology is as follows. The LCIS
method was applied to determine ultimate bounds to all solutions for the leukemia and
chemoimmunotherapy system (1)–(4) as given in the localizing domain KΓ (see (15)).
From the latter, nonexistence conditions for the tumor population can be derived. Then,
following these results one can establish the sufficient condition (14) on the immunotherapy
treatment to ensure the complete eradication of the leukemia cancer cells by means of
Lyapunov’s direct method. This condition was only formulated for the CAR-T cells as there
are already well established off-label dosing protocols for chlorambucil administration with
which the immunotherapy treatment was intended to be combined. Nonetheless, conditions
on both therapies could be explored through this analytical procedure. In addition to the
global asymptotic stability conditions of the tumor-free equilibrium point (19), local stability
conditions were calculated with Lyapunov’s indirect method to investigate the long-term
persistence of both leukemia and CAR-T cells, as given by (28) and (7), respectively.
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All conditions derived in this research are given in terms of the system parameters.
These are summarized below

Localizing domain and stability (5) : αT > ρT ,

Depletion of CAR-T cells (6) : ρT <
µAµT

µd
,

Persistence of CAR-T cells (7) : ρT >
µAµT

µd
,

Eradication of leukemia cells (14) : ϕT > ϕCART =
ρA
αT

[
ρA
αT

(αT − ρT) + µT + µTC

]
,

Persistence of leukemia cells (28) : ϕT < ϕprstnc =
ρA
αT

[
ρA
αT

(αT − ρT) + µT

]
,

from the latter, the first condition (5) is directly related to the boundedness, local and global
asymptotic stability of the system, and it implies that the killing efficacy rate (αT) of CAR-T
cells should be larger than its activation rate (ρT). Concerning depletion or long-term
persistence of CAR-T cells we found that this phenomenon is directly proportional to the
death rates of leukemia (µA) and CAR-T cells (µT), and inversely proportional to the
dissolution rate in the blood circulatory system of dead leukemia cells (µd). At the same
time, persistence of CAR-T cells could be associated with the existence of a small population
of undetectable cancer cells. Now, the last two constraints, (14) and (28), provide sufficient
and necessary conditions to ensure the complete eradication of the leukemia cells by the
immunotherapy treatment, and a threshold on which the CAR-T cells dose will not be able
to control any initial size of the non-solid tumor population.

Regarding the in silico experimentation performed in this work, the leukemia and
chemoimmunotherapy system (1)–(4) was explored under different scenarios. First, nu-
merical simulations illustrate that in the absence of therapies, leukemia cells massively
accumulate in the blood circulatory system reaching values of 50,000 cells/µL as shown
in Figure 2, which is expected to be lethal in CLL patients. Depletion and persistence
of CAR-T cells after the last infusion into the system was found to be strictly related to
their activation rate (ρT). Both scenarios are illustrated in Figures 3 and 4, where recent
studies demonstrate that long-term persistence of CAR-T cells is to be expected as new
generations continue to be developed and explored in in vivo clinical trials. In Figures 5–8
we design four administration protocols of immunotherapy and chemoimmunotherapy
that completely eradicate the CLL cancer population. Here, it is important to remember that
we assume that a cells populations described by an ODEs system are eliminated once the
corresponding solution goes below the threshold of 1 cell. The latter is essential to properly
apply nonlinear systems theory for modeling the dynamics between cells populations, since
any value less than one will not represent any biologically meaningful real-life scenario.

When only the immunotherapy treatment is considered, the in silico experimentation
illustrates that reducing the period between applications yields a better overall outcome
by improving the in vivo toxicity profile of this so-called living drug. Figure 5 shows that
by applying the therapy weekly, fewer cells are needed to eradicate an initial leukemia
population of 1010 cells, whereas by increasing the period between applications, a higher
dose of immunotherapy should be infused. Furthermore, there is an instant in time when
the leukemia population starts to grow again as there are not enough CAR-T cells to
control the tumor population, which is illustrated in Figure 6. Given these results, we
decided to explore the chemoimmunotherapy scheme for the ‘fortnight CAR-T cells case’
aiming to stop the regrowth of cancer cells by including the chlorambucil drug between
the immunotherapy administrations. Additionally, we are taking advantage of the period
between doses to avoid, at least to some extent, the cytotoxicity of the chemotherapy on
CAR-T cells. Hence, the in silico experimentation was performed in order to design the
combined administration protocols illustrated in Figures 7 and 8. As one can see, we
were able to discard the fourth CAR-T cells application by incorporating two chlorambucil
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intakes after each dose. Both the constant and increasing dosing scenarios demonstrated
similar results concerning the time at which complete eradication of leukemia cancer
cells was achieved and the total dose of chlorambucil administered to the hypothetical
CLL patient.

Another contribution of this work is the formulation of two equations to estimate the
cytotoxicity to cancer cells of the chemotherapy drug chlorambucil (8) and the CAR-T cells
immunotherapy (12), to the best of our knowledge, equations of this form have not been
proposed before. Equation (8) was constructed by fitting a base 10 logarithmic function
to the data from the in vitro study of Guzev et al. where cytotoxicity directly depends
on the concentration in mg/L of the drug; whereas Equation (12) provides a minimum
value for the cytotoxicity of CAR-T cells that could be enhanced by considering the rates
of activation and exhaustion of these cells, as well as the tumor growth rate. However,
it is important to note that this equation was fitted to the data of a previous work and
further research is needed to either validate or reformulate this equation. Additionally,
parameters from Equations (8) and (12) were computed with a 95% CI, and they fit the
corresponding cytotoxicity data with coefficients of determination

(
R2) equal to 0.999 and

0.995, respectively.
Nonetheless, it is important to discuss that even if mathematical models are formulated

by considering several aspects of the biological or physiological phenomenon under study,
which is also known as mechanistic modeling, they still could be considered as an ideal
representation of such phenomenon. Hence, time series data from in vivo clinical studies
where the evolution of each cell population could be accurately measured or estimated is
needed to validate these models or to better fit the values of the proposed parameters in
the system. Following this path, we provided in the Supplementary Material the necessary
code to fit real-life data to nonlinear equations in Python.

6. Conclusions

With the continuous advancement of computing power in recent decades, coupled
with the increasingly affordable prices, the paradigm of exploring complex biological
phenomena such as cancer evolution through mathematical modeling and in silico exper-
imentation has provided interesting and promising results in this field. Particularly, we
applied nonlinear system theories and combine them with numerical simulations to explore
several scenarios of CLL progression when considering two anticancer therapies: CAR-T
cells and chlorambucil. Our methodology allowed us to design treatment protocols for the
administration of immunotherapy and chemoimmunotherapy that completely eradicate
the leukemia cancer cells population described by our proposed mathematical model.

We expect this research to be useful in the designing of administration protocols for
cancer treatment as the in silico experimentation illustrates that mathematical modeling
and nonlinear system theories could be applied to obtain insights on tumor evolution and
the cytotoxicity of combined anticancer therapies.
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