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Abstract: Plastics have changed human lives, finding a broad range of applications from packaging
to medical devices. However, plastics can degrade into microscopic forms known as micro- and
nanoplastics, which have raised concerns about their accumulation in the environment but mainly
about the potential risk to human health. Recently, biodegradable plastic materials have been
introduced on the market. These polymers are biodegradable but also bioresorbable and, indeed, are
fundamental tools for drug formulations, thanks to their transient ability to pass through biological
barriers and concentrate in specific tissues. However, this “other side” of bioplastics raises concerns
about their toxic potential, in the form of micro- and nanoparticles, due to easier and faster tissue
accumulation, with unknown long-term biological effects. This review aims to provide an update
on bioplastic-based particles by analyzing the advantages and drawbacks of their potential use as
components of innovative formulations for brain diseases. However, a critical analysis of the literature
indicates the need for further studies to assess the safety of bioplastic micro- and nanoparticles despite
they appear as promising tools for several nanomedicine applications.

Keywords: bioplastics; nanoparticles; drug delivery systems; brain

1. Introduction

Plastic diffusion is deemed a significant indicator of the onset of the Anthropocene, [1]
an era in which humans altered and dominated the Earth and its ecosystems [2]. Despite
the convenience aspects, the widespread use of plastics and their uncontrolled waste has
resulted in negative impacts on the environment and human health [3]. In addition, most
plastic products are added with various chemical compounds to improve functional prop-
erties, such as plasticizers (phthalates), flame retardants, antioxidants (i.e., IRGAFOS-168),
acid scavengers, stabilizers (e.g., bisphenol A, BPA), and pigments [4]. Plastic degradation
produces microplastics (MPs, particle size lower than 5 mm) and nanoplastics (NPs, size
less than 1 µm) [5] that cross biological barriers and accumulate in the food chain [6].
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More recently, “environmentally sustainable” plastic materials fabricated adopting
biodegradable polymers, such as polylactic acid (PLA) and poly-lactic-co-glycolic acid
(PLGA), have been introduced on the market. These bioplastics undergo a more rapid
degradation in the environment; indeed, these biopolymers have been developed for phar-
maceutical and biomedical applications in order to have a transient polymer (bioresorbable)
but with mechanical properties similar to the non-biodegradable ones [7]. However, the
recent widespread use of bioplastic-based materials needs a critical approach because the
polymer’s faster biodegradation poses an issue for a more rapid accumulation in the form
of particles in living tissues.

This issue is confirmed by the fact that these polymers are properly adopted in the
form of micro- and nanoparticles as drug carriers in pharmaceutical formulations. For
example, bioplastic-based NPs can be targeted and accumulated (depot systems) in a given
tissue in order to achieve a proper sustained release of the loaded drug [8,9]. Bioplastic
NPs can also prolong the therapeutic effect of a given drug, improving its efficacy [9].
Recent studies also suggest that specific concentrations of bioplastic NPs in the central
nervous system (CNS) promote their passage through the blood–brain barrier (BBB) or
blood–cerebrospinal fluid barrier (BCSFB). Indeed, bioplastic NPs seemed able to cross
the BBB through transcytosis pathways and proper surface modifications can allow their
passage through the BBB via receptor-mediated endocytosis or to deeply diffuse in the
brain parenchyma [10]. This behavior, while extremely interesting for the development of
new drug formulations for the CNS, poses significant challenges in terms of cost, failure,
and clinical implementation; on the other hand, it may also raise public health concerns.

Hence, the aim of this review is to provide a different point of view on bioplastics
and their degradation products. Truly, bioplastic MPs and NPs should be considered
particularly effective for pharmaceutical formulations and precision medicine, to transport
drugs into organs, like the brain, that are protected by biological barriers. Indeed, bioplastic
MPs/NPs will be discussed as successful tools for brain drug delivery; however, different
particle accumulation of bioplastics in the environment may enhance the issues for potential
tissue accumulation, with unknown long-term biological effects.

2. Bioplastics: Definition, Chemical Properties, and Applications

Bioplastics can be divided into two categories: biodegradable and biobased [11–13].
Biobased plastics are entirely or partially made from biological resources and are not neces-
sarily biodegradable. Plastics’ biodegradability is determined by the chemical composition
of the polymer and environmental conditions [14]. On the other hand, biotic degradation is
a process in which microorganisms, such as fungi or bacteria, reduce polymeric structure
into smaller molecules that are utilized as a source of carbon or energy [15]. Photodegrada-
tion and hydrolysis consist of chemical processes in which high-energy radiations (UV) and
water molecules induce polymer chain degradation [16–18]. In polymer degradation, biotic
and abiotic factors can sometimes act together. Typically, abiotic degradation produces
small fragments of plastic, which are subsequently degraded by microorganisms [18]. How-
ever, this process inevitably leads to the formation of small plastic particles with different
characteristics and size [11,19].

Non-biodegradable plastics or petroleum-based plastics (conventional plastics) include
polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), and polystyrene (PS),
which belong to the polyolefin class [20]. They are thermoplastic polymers in which
olefin monomer units like ethylene, styrene, and vinyl chloride are combined to form long
chains [21,22] (Figure 1). Polyolefins represent the leading industrial polymers due to
their remarkable chemical stability and mechanical characteristics [23]. The manufacturing
processes of these plastics and applications have been well described elsewhere [24–34].
The so-called “biobased” plastics, such as bio-PE obtained from sugar cane [35] and bio-PET
produced by the oxidization of bio-ethylene derived from the fermentation of glucose [36],
find many applications in the packaging sector, particularly for drinking bottles and textile
industries; however, they are non-biodegradable [37].
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Biodegradable plastics comprise poly-caprolactone (PCL), poly-butylene succinate
(PBS), poly-butylene adipate terephthalate (PBAT), poly-lactic acid (PLA), poly-lactic-co-
glycolic acid (PLGA), and poly-hydroxy-alkanoate (PHA) [14] (Figure 1). PCL is suitable for
a wide range of medical applications such as implantable biomedical devices, sutures, and
tissue engineering scaffolds due to its biocompatibility and slow degradation [38–40]. It is
used for the synthesis of green polyurethane [41] and commonly blended with biobased
biodegradable plastics [42] to improve its thermal and mechanical properties [43]. On the
contrary, PBS has a relatively slow biodegradation rate and biocompatibility [43].

PLA is made from 100% bioresources and is totally biodegradable and recyclable [44].
It is produced by a combination of lactic acid monomers derived from the fermentation of
sugars obtained by sugar cane, potatoes, and corn [45,46]. PLA degrades in 6 to 24 months
in the environment, depending on various factors, such as temperature, product size and
shape, and isomer ratio. Despite some inherent weaknesses like brittleness and moisture
uptake, it exhibits good thermomechanical properties like the traditional plastics PET and
PP and has been extensively applied in different fields, ranging from packaging applications,
bowls, films, and bottles, to clothes, textile furniture, hygiene products, and mulch films
for agriculture [47–49]. Furthermore, it can be also copolymerized with polyethylene
glycol (PEG) to enhance its hydrophilic and biocompatibility properties, making it suitable
for drug delivery systems [50]. However, despite its eco-friendly characteristics, the
commercial production of PLA is hindered by the high cost of raw materials and the lack
of composting infrastructure in most markets. Implementing composting infrastructure
would enable the widespread use of PLA and would reduce the environmental impact of
traditional plastics [51].

PLGA is another bioplastic component frequently used as a copolymer of polyglycolic
acid (PGA) and PLA. In fact, it is frequently employed in biomedical applications, due
to its biocompatibility and fast biodegradation. PLGA, like PLA, can be produced by
polycondensation or ring-opening polymerization, varying its molecular weights and
monomer ratios to ameliorate its degradation rate [52].

PHAs are aliphatic polyesters synthesized through the polymerization of b-, g-, and
d-hydroxyalkanoic acids obtained from the fermentation of sugars and lipids from various
feedstocks [53]. PHAs are polymerized by bacteria, which can synthesize them under
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stressful conditions as a carbon and energy reserve [54]. Large-scale production of PHAs
is expensive, requiring fermentation, isolation, and purification processes that limit their
widespread use [55,56]. Nonetheless, PHAs are driving the growth of the biodegradable
bioplastics market, with production capacity expected to triple in the next five years [57].
Poly-4-hydroxybutyrate (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)
are the most commonly used PHAs: PHB has a high elastic modulus and better barrier
properties than PLA. However, it is brittle and has lower thermal stability. PHBV has
PP-like properties and is commercially available added with a hydroxyvalerate (HV) that
is able to confer more flexibility than PHB [58]. Like PLA, PHAs find various applications
in the packaging and biomedical fields as single-use items. PHB and PHBV have been
investigated for their potential use as bioresorbable materials for surgical sutures, wound
dressings, tissue scaffolds, bone fracture fixation plates, and porous sheets for tissue
regeneration in injured soft tissues [53]. The biodegradability of PHAs depends on factors,
such as chain configuration, crystallinity, and processing conditions. Another important
advantage of PHAs is their high degradation rate in marine environments [59].

3. Routes for MPs and NPs Adsorption, Tissue Accumulation, and Biological Effects

All plastics, both biodegradable or not, can initiate their degradation process reducing
the manufacture size into smaller particles known as MPs and NPs. Studies on preferential
adsorbing routes, tissue internalization, accumulation, and molecular mechanisms of
penetration are important to assess toxic potential and to better understand the capability
of MPs and NPs to target specific tissues. Indeed, there is growing evidence of the harmful
effects of MPs/NPs on organisms ranging from plants and fish to microorganisms and
animals [60]; thus, MPs/NPs have been studied for their potential hazards and health
implications for humans even though investigations are still in infancy.

3.1. Dermal Route

Due to the presence of bioplastic MPs/NPs in cosmetic products, such as body and
facial scrubs, creams, soaps, and other beauty products, as well as in microfibers and drug
delivery systems for dermal application, the skin represents a potential route for human
exposure [61]. For instance, hair follicles, sweat glands, and injured skin represent all
possible entry routes [61]. Some interesting data on conventional NPs’ dermal penetration
were obtained by Campbell et al. [62], who demonstrated that PS-NPs reach a depth of
approximately 2–3 µm from the top layers of pig skin tissue. Furthermore, Vogt et al. [63]
demonstrated the presence of 40 nm-diameter fluorescent PS-NPs in the perifollicular
tissue of human skin explants undergone cyanoacrylate follicular stripping, indicating a
size-dependent absorption of transcutaneous application of particles by Langerhans cells
around hair follicles. By using ex vivo human skin samples, Zou et al. [64] investigated
the effects of skin condition, incubation temperature, particle size, and vehicle solutions
on NPs’ uptake. They found that the use of dimethyl sulfoxide as a vehicle led to deeper
penetration of PS-NPs compared to ethanol and water. Tape stripping also allowed deeper
penetration, but only until the granulosum layer. Similarly, in excised human skin samples,
Jatana et al. [65] observed that ingredients present in skincare lotions can facilitate bioplastic
particle penetration of PCL-NPs corroborating that skin conditions and vehicles influence
the uptake of these NPs by the skin. Considering animal and human skin differences in
their anatomical structure, results obtained by ex vivo human samples should be considered
more reliable [66]. The overall observations suggest that the dermal penetration route is not
preferred; thus, bioplastic MPs/NPs are not largely used in pharmaceutical applications
for transdermal drug delivery. However, the effects of this route on human health received
very little attention and should be certainly further investigated.

3.2. Inhalation

The fact that MPs and NPs can be transported in the air over long distances favoring
their presence both in aquatic and terrestrial environments has been well documented in
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conventional plastics, whereas studies on bioplastics are not [67–69]. Due to their size,
MPs/NPs can be easily inhaled and can reach the lungs, where they should be removed
through the mucociliary escalator or phagocytosis by alveolar macrophages [70], but
MPs/NPs can overcome these defense mechanisms and remain on the alveolar surface,
causing lung damage. In vitro studies report a positive correlation between exposure to
MPs and the development of pulmonary inflammation and cancer [70,71]. Exposure to
MPs (4.06 ± 0.44 µm) to human lung epithelial cells (BEAS-2B) has been shown to induce
the formation of reactive oxygen species (ROS), inflammatory process, and cytotoxic effects,
as well as a decrease in transepithelial electrical resistance [72]. The onset of these harmful
processes is affected by MPs/NPs’ properties, such as hydrophobicity, surface charge, and
functionalization, that influence their absorption and clearance in the lungs. Among these
properties, particle size rather than particle kind has a great relevance: the smaller the
particles, the greater the effect and distribution (see Table 1). For example, in rat models,
the instillation of ultrafine PS-NPs of different sizes (from 64 to 535 nm) caused lung
inflammation. This effect was mediated by an excessive neutrophil influx and increased
pro-inflammatory proteins and lactate dehydrogenase in bronchoalveolar lavage (BAL) [73].
Accordingly, in alveolar cell lines (A549), the treatment with PS-MPs determined an increase
in IL-8 mRNA expression after 2–4 h of treatment [73]. In addition, it has been found that
a mixture of MPs (MPs < 50µm) taken from environmental plastic waste can accumulate
in A549 cells exposed in vitro and induce oxidative stress, genotoxicity, and alterations in
gene expression [74,75]. Similar results were obtained by exposing mice to particles from
tire wear by inhalation [76]; in this case, reduced ventilatory functions and exacerbated
pulmonary fibrotic injury were observed [76].

The alveolar epithelium barrier is thin enough for NPs to enter blood capillaries,
allowing them to disperse throughout the human body and potentially cross the BBB [77].
Both conventional and bioplastic particles, depending on their hydrophilicity, size, and
surface charge, can translocate and enter the circulation, probably more easily when
endothelial and epithelial permeability is increased during immune/inflammation response.
In fact, a research group aiming to develop improved mucosal immunization strategies
exposed BALB/c mice to PS carboxylate MPs (1.1 µm in size) by intranasal delivery. Treated
mice exhibited the presence of PS-MPs in the nasal-associated lymphoid tissues (NALTs)
and draining cervical lymph nodes after 7 days. In addition, MPs’ accumulation in the
spleen was also observed corroborating that the spleen can act as an inductive site following
bronchopulmonary deposition [78].

Since the nasal route is also used for drug delivery to the brain [79], it can be argued
that once MPs/NPs are unintentionally inhaled, the olfactory nerve might permit the transit
of NPs to the CNS. Different studies have demonstrated that various nanomaterials, once
in contact with the olfactory epithelium, can be transported to the brain through olfactory
neurons inducing detrimental effects such as brain inflammation [80–82]. However, few
studies have investigated this exposure route, even if some authors confirmed the presence
of MPs and NPs in the respiratory system and their passage through the BBB [67,70].
Collectively, both in vitro and in vivo research suggest that MPs/NPs have toxic effects on
the respiratory tract and lungs, leading to inflammation and lung fibrosis.

Table 1. Preferential accumulation sites of plastic or bioplastic MPs/NPs’ exposure in vivo and their
biological effects.

Exposure Route Type Size Accumulation Biological Effects Ref.

Dermal contact

NPs 20–200 nm Hair follicular
openings ND [83]

NPs
40 nm

750 nm
1500 nm

Langerhans cells and
epidermal cells ND [63]
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Table 1. Cont.

Exposure Route Type Size Accumulation Biological Effects Ref.

Inhalation

NPs 64 nm Lung epithelium
Lung inflammation, excessive

neutrophil influx,
proinflammatory proteins

[73]

NPs <1 µm Pulmonary
alveolar units

Pulmonary parenchymal lesion,
alveolar stenosis, fibrous tissue

hyperplasia, perivascular, lymphocyte,
infiltration,
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3.3. Ingestion

The most significant MPs/NPs exposure route for humans is ingestion. MPs/NPs are
present in food and drink containers, and in edible products, and have been found in the
gastrointestinal system of fishes [5,84,88]. As in skin and lungs, in gastric cells, smaller-
sized particles have more possibilities to be absorbed. Many studies are available in the
current literature examining the effects of conventional plastics and their accumulation in
the gastrointestinal tract, while data on the consequences of the ingestion of bioplastics are
still lacking. In a study carried out by Banerjee et al. [89], the toxicity of PS MPs/NPs was
examined in SNU-1 human gastric epithelial cells. The study revealed that smaller particles
(50 nm) were taken up more avidly by the cells than larger particles (1000 nm), increasing
cell cytotoxicity, apoptosis, and necrosis [89]. To gain a better understanding of the chronic
exposure to MPs/NPs through the gastrointestinal tract, Domenech et al. (2021) [90]
investigated the effects of 50 nm PS particles on CaCo-2 colon cancer cells. After 8 weeks of
treatment, it was found that 20% of the cells had taken up and internalized the particles
and exhibited altered expression of oxidative-stress-related genes. Conversely, another
study [85] demonstrated that 5 weeks of exposure of mice to PE-MPs by ingestion led to
gut microbiome alteration and intestinal inflammation. The MPs/NPs-induced effects were
not limited to the gastrointestinal tract since the potential ability of NPs to permeate the gut
epithelium and pass into the systemic circulation can lead to both damage and disruption
of the intestinal barrier and accumulation in other tissues and organs far from the primary
route of exposure [91]. Accordingly, Xu et al. [86] investigated the uptake mechanism of
NPs in mice demonstrating that PS-NPs’ absorption occurs through clathrin-mediated
endocytosis. Furthermore, a reduction in occludin and zonula occludens-1 (ZO-1) was
observed in Caco-2 cells, thus suggesting the potential ability of these particles to disrupt the
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intestinal barrier. By passing the intestinal epithelium, particles could enter the circulation
accumulating in the spleen, liver, lung, and brain [86]. Han et al. [87] demonstrated that
PS particles combined with di-(2-ethylhexyl) phthalate (DEHP) accumulated in mouse
organs, such as intestines, livers, kidneys, testis, and brain. The accumulation of NPs in the
brain after ingestion probably takes place through the lymphatic or blood circulation, the
translocation through the BBB—which appears to be affected by enhanced permeability
induced by PS-MPs—and the transport up to the brain parenchyma [21,92,93].

Noteworthy, after entering the circulatory system, MPs and/or NPs could also affect
blood and immune cells. Indeed, we have shown that PLA microbeads (size 1 ± 0.2 µm)
used as drug delivery systems can be internalized by human monocytes with an efficiency
of 30%; but after PLA-MPs phagocytosis, cell apoptosis increased in a dose-dependent
manner [94]. Instead, empty microcarriers of PLGA (mean size 827 ± 68 µm) at a concentra-
tion of 12.5 mg/mL did not induce any cytotoxic effect on human peripheral mononuclear
cells (hPBMCs) from healthy donors [95]. By reducing the size of PLA- and PLGA-NPs
(0.4–3 µm), both PLA and PLGA NPs exhibited low cytotoxicity in Chinese hamster ovary
(CHO) cells and in hPBMCs, corroborating, as in conventional NPs, that the particle size
is fundamental to cause biological effects. However, at the same concentration, PLGA
affected cell viability more than PLA [96].

Studies on contamination routes, deposition, and related health risks of exposure
to bioplastic MPs/NPs are widely unexplored. Few data indicated that gut enzymatic
hydrolysis of PLA-MPs in mice generated smaller particles by competing for triglyceride-
degrading lipase. PLA oligomers and their NPs accumulate in the liver, intestine, and brain,
inducing intestinal damage and acute inflammation [97]. Details regarding the size and
distribution of MPs/NPs in tissues are given in Table 1, while a schematic representation
showing different aspects of adsorption, tissue accumulation, and biological effects is
summarized in Figure 2.
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4. Bioplastic-Based Polymeric NPs for Drug Delivery in the Brain
4.1. Bioplastic MPs/NPs as Drug Delivery Systems

Significant advancements in nanomedicine have led to the development of drug
delivery systems based on bioplastic MPs/NPs. These systems offer several advantages, in-
cluding increased drug shelf-life, targeting to the specific organ/tissue, reduced therapeutic
dose administrations, improving drug effectiveness, and minimizing side effects. Among
drug delivery systems, the PLA and PLGA-NPs are the most extensively studied [98],
because of their high drug-loading capacity, good biocompatibility, biodegradability, and
tunable release properties. PLA/PLGA pharmaceutical formulations were developed
for sustained delivery of several drugs used in cancer treatment, anti-inflammatory com-
pounds, and drugs for neurological disease [99,100], while many others are still in phase II
or III of clinical trials [101] (see Table 2).

In the field of treatment of neurodegenerative diseases, pharmaceutical formulations
have been often unsuccessful due to the BBB that is very difficult to cross [102]. Instead,
PLA/PLGA NPs have emerged as a promising solution for delivering drugs to the brain,
as they can overcome the physiological barrier through different strategies, such as tran-
scytosis pathways (Trojan horse strategy) or by escaping the efflux pumps by bearing
specific ligands onto the particle surface [10]. In general, the smaller size coupled with
surface modifications improved formulation pharmacokinetics, enhancing cell uptake and,
consequently, drug absorption [103,104].

Table 2. Bioplastic MPs/NPs-based drug delivery systems approved by the FDA for disease treatments.

Name Bioplastic Loaded Drug Therapeutic
Application Company FDA Approval

(Date) Ref.

Lupron Depot® PLGA Leuprolide acetate Prostate cancer,
endometriosis

Takeda–Abbott
Products (Osaka,

Japan)
1989 [105]

Atridox® PLA Doxycycline hyclate Chronic adult
periodontitis

Tolmar (Fort
Collins, CO, USA) 1998 [99]

Sandostatin Lar® PLGA Octreotide acetate Acromegaly
Novartis

(Mulgrave, VIC,
Australia)

1998 [99]

Trelstar® PLGA Triptoreline pamoate Advanced
prostate cancer

Allergan
(Gordon, NSW,

Australia)
2001 [99]

Risperdal Consta® PLGA Risperidone
Schizophrenia,

bipolar I
disorder

Janssen (Beerse,
Belgium) 2003 [106]

Vivitrol® PLGA Naltrexone Alcohol
dependence

Alkermes
(Waltham, MA,

USA)
2006 [100]

Signifor Lar® PLGA Pasireotide pamoate Acromegaly
Novartis

(Mulgrave, VIC,
Australia)

2014 [99]

Sublocade® PLGA Buprenorphine Opioid disorder
Indivior

(Richmond, VA,
USA)

2017 [99]

Triptodur Kit® PLGA Triptorelin pamoate
Central

precocious
puberty

Arbor (Mulgrave,
VIC, Australia) 2017 [99]
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Table 2. Cont.

Name Bioplastic Loaded Drug Therapeutic
Application Company FDA Approval

(Date) Ref.

Scenesse® PLGA Afamelanotide

Prevention of
phototoxicity in
erythropoietic

protoporphyria

Clinuvel
(Melbourne, VIC,

Australia)
2019 [107]

Durysta® PLA/PLGA Bimatoprost

Glaucoma,
open-angle,
intraocular

hypertension

Allergan (Gordon,
NSW, Australia) 2020 [107]

Abbreviations: PLGA, polylactic co-glycolic acid; PLA, polylactic acid; PCL, polycaprolactone.

4.2. Techniques for Fabricating Bioplastic MPs/NPs

Several technologies have been described for the fabrication of bioplastic MPs/NPs,
such as nanoprecipitation, solvent evaporation or extraction, spray drying, and supercritical
fluids [108,109]. All described technologies are schematically illustrated in Figure 3, and
examples of MPs/NPs’ characterizations by laser scattering (size distribution curve) or
SEM/TEM (micrographs) are shown in Figure 4.
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The nanoprecipitation process involves the precipitation of a polymer from a water-
miscible organic solvent by mixing it with an aqueous medium, acting as an anti-solvent
(see Figure 3). The size can be controlled by adjusting different parameters, such as
organic solvent, polymer concentration, and surfactant amount in the water [110–112].
Since proper mixing is required between the two fluids, microfluidic systems have been
recently described as promising tools for this task [113]. Indeed, the nanoprecipitation
within micrometering channels assures strict control over the particle size by varying pump
flow rates and micromixer geometry [114,115]; however, the method is unsuitable for
encapsulating hydrophilic drugs into the NPs [112] (Figure 3b).

Solvent evaporation from emulsion is also widely used; that is, when emulsions
undergo evaporation or extraction, the dispersed oily droplets within the surrounding
water phase can solidify due to organic solvent removal, developing micro/nanocarriers
(Figure 3c) [116–118]. Physical properties of resulting particles can be modulated by vary-
ing surfactant type and concentration, stirring rate, and solvent evaporation conditions;
the method can encapsulate hydrophobic and hydrophilic drugs depending on the use
of single or multiple emulsions; however, the evaporation step demonstrates fluctua-
tions in reproducibility from one batch to another [119,120]. At the same time, extraction
requires comparatively large amounts of a second solvent, with the related issue of fur-
ther solvent recovery. Both processes require processing times of several hours that can
promote aggregation phenomena between the droplets, producing carriers with a larger
polydispersity [121]. It should also be noted that, despite the widespread use of solvent
evaporation/extraction processes to prepare polymeric carriers, there are no established
standard protocols, and each preparation follows its own set of procedures. Finally, this
may not be suitable for temperature-sensitive drugs due to the risk of degradation during
the solvent evaporation step as well as poor encapsulation efficiency of high water-soluble
compounds reported [95].

Dense carbon dioxide technologies have been proposed to produce bioplastic MPs/NPs
for different drug delivery purposes [122–125] or tissue engineering [96,126]. Supercritical
emulsion extraction (SEE) technology operating in a continuous layout using a counter-
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current packed tower [127,128] was described for both PLA and PLGA carriers’ fabri-
cation. In detail, an emulsion that contains polymer undergoes solvent removal using
supercritical carbon dioxide as an extraction fluid (Figure 3d). The dense-gas extraction
technology ensured improved performances, such as a better batch-to-batch reproducibil-
ity [129], more accurate carrier size control—thanks to a fixed droplet shrinkage without
aggregation phenomena [130], lower solvent residue, and better-controlled encapsulation
efficiency [95,96,131].

Nano spray drying is a relatively recent technique enabling the single-step fabrication
of bioplastic MPs/NPs starting from a small sample volume. In this process, a liquid
solution containing both the polymer and the drug is transformed into tiny droplets
through atomization by a spray nozzle. Subsequently, these droplets undergo rapid drying
as they are exposed to a stream of hot air or inert gas. As a result, solid particles are
formed through the evaporation of the solvent (Figure 3e). In this case, the particle size
and especially the size distribution may be impacted by electrospray process parameters,
such as nozzle diameter, spraying rate, and drying temperature [132]. This method can
yield nanoparticles with a narrow size distribution and high drug-loading capacity [133].
In contrast, conventional spray drying can produce carriers with lower encapsulation
efficiency and larger size and granulometry.

To sum up, the choice of suitable technology for the production of bioplastic MPs/NPs
for drug delivery will depend on several factors, including polymer or drug solubility,
desired carrier size, distribution, and shape or surface charge.

4.3. Bioplastic MPs/NPs Delivery to the Brain

In general, a drug delivery system facilitates the attainment of the desired therapeutic
response of an active substance by enhancing its bioavailability at the target site while
ensuring optimal effectiveness and safety [134]. Due to the presence of the BBB, which
limits the entrance of external substances into the brain, many efforts are being made
to use bioplastic NPs as drug carriers to the brain. Although parenteral administration
is the prevalent route for bioplastic MPs/NPs, its effectiveness for brain drug delivery
is still in development. Intranasal administration is an alternative route to bypass the
BBB as it allows direct access to the brain, even though its clinical application is hindered
by the limited knowledge of nanoparticle deposition and absorption in this anatomical
site [135]. Intracranial administration, by bioplastic MPs/NPs’ injection directly into the
brain tissue or cerebrospinal fluid, is a direct and effective route for brain drug delivery
using bioplastic MPs/NPs. However, this route is invasive and may cause tissue damage or
inflammation [136]. Intrathecal administration is another direct route for brain drug deliv-
ery that involves the injection of bioplastic MPs/NPs into the spinal cord or cerebrospinal
fluid [137]. This route accounts for the targeted delivery of NPs to the brain and has shown
to be the most promising for brain tumors and neurodegenerative disease treatment [137].
Overall, the intravenous route remains the preferred choice as those mentioned before are
too invasive. As a result, several strategies have been devised to overcome the BBB and
improve the delivery of bioplastic MPs/NPs to the brain. One strategy is to modify the sur-
face of bioplastic MPs/NPs with BBB-penetrating molecules, such as peptides, antibodies,
or aptamers. These modifications can increase the affinity of NPs to the BBB and enhance
their transport across the barrier [138]. Another strategy involves employing ultrasound
or magnetic fields to increase BBB permeability and enhance the transport of bioplastic
MPs/NPs’ carriers [139].

Recently bioplastic MPs/NPs have been engineered to overcome the BBB or target spe-
cific cell types in the brain, such as neurons or glial cells. These targeted nanoparticles can
enhance drug delivery to specific regions of the brain and reduce off-target effects [140]. Es-
sentially, there are three distinct strategies to accomplish this objective: adsorptive-mediated
transcytosis, transporter-mediated transcytosis, and receptor-mediated transcytosis. The
first mechanism can be facilitated through electrostatic interactions between the nega-
tively charged components present on the luminal surface of cerebral endothelial cells and
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the cationic groups or conjugating specific compounds, such as lectins, cardiolipin, and
heparin to the NPs surface [141]. Another approach for delivering drugs to the brain is
utilizing transporter-mediated transcytosis. Indeed, it is feasible to synthesize nanoparti-
cles with surface-conjugated molecules (glucose and its analogs, glutathione, and amino
acids) that exhibit strong recognition by the transporters that are overexpressed in brain
endothelial cells [142]. The last approach to access brain tissue involves the use of receptors
overexpressed within the BBB. In more detail, transferrin, lactoferrin, low-density lipopro-
teins, and nicotinic acetylcholine receptors are commonly employed receptors to achieve
receptor-mediated transcytosis across the BBB [140].

Finally, the use of prodrug strategies can also enhance the delivery of bioplastic
MPs/NPs to the brain. Prodrugs are inactive precursors of active drugs that can be
activated within the brain by specific enzymes. In fact, hydrophilic and high-molecular-
weight compounds cannot traverse the BBB or the blood–cerebrospinal fluid barrier (BCSFB)
through paracellular pathways. In contrast, lipophilic solutes can passively permeate these
barriers [143]; hence, hydrophilic drugs can be chemically modified into lipophilic prodrugs
by concealing polar functional groups. This approach can increase the brain concentration
of active drugs while reducing their systemic toxicity [144].

Altogether, the described strategies offer promising solutions to overcome the BBB
and enhance the delivery of bioplastic NPs to the brain.

5. Biological Effects of Bioplastic NPs Loaded Carriers in the Brain
5.1. Bioplastic MPs/NPs for Brain Diseases: Advantages

Several PLGA-NPs have been developed for Alzheimer’s disease (AD) treatment.
Yusuf et al. [145] designed PLGA-NPs loaded with the phytochemical compound thymo-
quinone (TQ). The TQ-loaded PLGA-NPs, coated with polysorbate 80, successfully crossed
the BBB and significantly increased superoxide dismutase (SOD) activity in male albino
mice [145,146]. Furthermore, Xu et al. [147] synthesized Tween 80-coated methoxy poly
(ethylene glycol) PLGA-NPs loaded with rhynchophylline (RIN), a spirocyclic alkaloid
with neuroprotective effects, to target the brain for AD treatment. In vitro and in vivo
studies demonstrated that both these bioplastic NPs had a high transport across BBB and
improved survival rate of neuronal cells [148]. Since AD is linked to Aβ aggregation,
PEGylated bioplastic NPs loaded with an Aβ1–42 antibody have been developed and its
efficacy has been investigated in a transgenic AD mouse model [149]. The treatment led to a
significant improvement in memory and to a reduction in Aβ levels in the brain, indicating
the potential of this approach for treating AD.

Even for the treatment of Parkinson’s disease (PD), several PLGA-NP systems have
been developed. This neurodegenerative disorder is characterized by tremors, dyskinesia,
and motor impairments. The appearance of these symptoms is attributable to a degenera-
tion of dopaminergic neurons within the substantia nigra with consequent destruction of
the nigrostriatal pathway [150–152]. Current therapies for PD management aim to enhance
dopamine levels; in fact, the gold standard for the treatment of PD is the administration of
L-Dopa, a dopamine precursor [153]. In line with such strategies, Monge-Fuentes et al. [154]
developed bioplastic NPs loaded with dopamine and composed of albumin and PLGA.
This nano-system, thanks to albumin, can cross the BBB better than free L-DOPA. PD
mice, administered with these L-DOPA-loaded bioplastic NPs, show augmented levels
of dopamine and improvements in motor symptoms [154]. Accordingly, PLGA-NPs, con-
jugated with wheat germ agglutinin (that enhances absorption via the nasal cavity) and
loaded with L-Dopa, showed a significant improvement in the drug delivery to the brain
together with better therapeutic efficacy and lower side effects [155].

More complex bioplastic NP systems have been developed consisting of multilayer
hybrid PLCL-NPs encapsulating together L-Dopa, Tenoxicam as an anti-inflammatory drug,
and Lamotrigine as a neuroprotective agent. This formulation was able to act on more
than one complication associated with PD and improved cognitive abilities in PD-induced
rats [156].
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Few PLGA-based drug delivery systems have been developed for the treatment of
other neurological disorders, such as Huntington’s disease (HD), amyotrophic lateral
sclerosis (ALS), and multiple sclerosis (MS). HD is a genetic disease characterized by an
accumulation of the mutant huntingtin (mHTT) protein in nerve cells [157]. Symptoms con-
sist of motor impairment, psychiatric disorders, and behavioral disorders as a consequence
of the progressive loss of nerve cells and brain mass; the neurons of the striatal part of the
basal ganglia are the most affected [157]. Currently, there are no approved therapies to delay
the onset and progression of HD. Therapeutic approaches targeting the cause of HD, i.e.,
the CAG-expanded HTT gene and its products, or downstream processes associated with
the pathogenesis of HD, are still in the clinical development [158]. Joshi et al. [159] designed
PLGA-NPs coated with polysorbate 80 and loaded with oligonucleotides able to inhibit
the HTT gene. These authors, using a Drosophila model of HD, reported improvements in
motor performance without signs of toxicity [159,160].

For the treatment of ALS, a neuromuscular disease in which motor neuron loss occurs
due to an altered expression of retinoid signaling [161,162] realized adapalene-loaded
PLGA-NPs. These bioplastic NPs, tested in OD1G93A transgenic mice, showed an activa-
tion of the retinoid signaling pathway in the CNS with an improvement in neuroprotection
and motor performance.

MS is known as a disease in which the immune system attacks the myelin sheath,
an important component of axonal membranes, inducing progressive loss of neuronal
structure and functions [163]. In this regard, recently Gholamzad et al. developed PLGA-
NPs conjugated with myelin oligodendrocyte glycoprotein (PLGA-MOG) [164]. These
particles were then intravenously administered to a C57BL6 mouse model of MS. PLGA-
MOG NPs were able to ameliorate clinical symptoms and autoimmune responses, reducing
the infiltration of immune cells within the brain.

Bioplastic NPs have emerged also as a strategy for the treatment of brain cancers such
as glioblastoma which is considered the most aggressive form of CNS tumors [165,166]. In
a study carried out by Maksimenko et al. [167], it emerged that PLGA-NPs (size 110 nm),
loaded with doxorubicin and coated with poloxamer 188 (Dox-PLGA), crossed the BBB
more efficiently than doxorubicin alone in a xenograft rat model. Dox-PLGA-NPs were
able to significantly reduce intracranial 101.8 glioblastoma size after 2 weeks of treatment
with 3 × 1.5 mg/kg bw (as doxorubicin) after tumor implantation. Accordingly, some other
studies carried out to improve the transport of anti-proliferative drugs across the BBB have
shown that transferrin-conjugated magnetic silica PLGA-NPs loaded with doxorubicin
and paclitaxel stimulate ROS and TNF-α production inducing time and dose-dependent
cytotoxicity against glioma cells in vitro and in vivo [168]. The effectiveness of conju-
gated nanocarriers loaded with chemotherapeutic drugs has also been demonstrated for
PLGA-NPs—loaded with morusin (PLGA–MOR) and conjugated with chlorotoxin (CTX), a
peptide that binds specific chloride channels and matrix metalloproteinase (MMP-2) [169].
In this case, the treatment of U87 and GI-1 glioma cells with PLGA–MOR–CTX NPs resulted
in enhanced anti-proliferative effects by inhibiting MMP activity and inducing cytoskeletal
alterations, ROS generation, and apoptosis [169].

The overall data indicate undoubtedly that bioplastic NPs represent a promising
strategy for the treatment of neurodegenerative disorders and brain tumors, since they can
cross or bypass the BBB delivering drugs in a specific manner and preserving their efficacy.
Despite the numerous efforts and encouraging results obtained until now, we are still far
from the effective use of these formulations, as no bioplastic NPs-based system is currently
on the market [170]. The only available data concern preclinical studies (Table 3), and many
aspects mainly linked to pharmacokinetics (ADME) still need to be clarified [171,172].
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Table 3. Preclinical studies on bioplastic MPs/NPs used as drug delivery systems in brain diseases.

Biopolymer Technology Mean Size
(nm) Drug Loaded In Vitro/In Vivo

Model Data Brain
Disease Ref.

Chi-PLGA NP 136 ± 30 Lutein

-Co-culture model
of BBB

-Nasal mucosa
-Male Wistar rats

Oxidative stress
reduction AD [173]

PLGA SE 226.2 ± 40 Thymoquinone -Male rats

Pharmaceutics 2023, 15, 2549 6 of 25 
 

 

passage through the BBB [67,70]. Collectively, both in vitro and in vivo research suggest 
that MPs/NPs have toxic effects on the respiratory tract and lungs, leading to 
inflammation and lung fibrosis. 

Table 1. Preferential accumulation sites of plastic or bioplastic MPs/NPs’ exposure in vivo and 
their biological effects. 

Exposure Route Type Size Accumulation Biological Effects Ref. 

Dermal contact 

NPs 20–200 nm Hair follicular 
openings ND [83] 

NPs 
40 nm 

750 nm 
1500 nm 

Langerhans cells 
and epidermal cells 

ND [63] 

Inhalation 

NPs 64 nm Lung epithelium 
Lung inflammation, excessive 

neutrophil influx, proinflammatory 
proteins 

[73] 

NPs <1 μm 
Pulmonary 

alveolar units 

Pulmonary parenchymal lesion, 
alveolar stenosis, fibrous tissue 

hyperplasia, perivascular, 
lymphocyte, infiltration, 
ꜜ E-cadherin expression, 
ꜛ collagen deposition 

[76] 

MPs 1.1 μm 

NALTs, 
mediastinal lymph 

node, spleen, 
bronchopulmonary 

deposition 

ꜛ Immunological response [84]  

Ingestion 

MPs 10–150 μm 
Colon and 
duodenum 

Gut microbiome alterations, 
intestinal inflammation, 

ꜛ pro-inflammatory cytokines, 
intestinal glands disruptions 

[85] 

NPs 100 nm 
Stomach, small and 

large intestines, 
kidney, lungs  

Liver immune cells infiltration, 
hepatocyte vacuolization, pulmonary 

interstitial fibrosis, renal tubular 
atrophy, ileum epithelium 

disruption, colon lymphocyte 
aggregation, neuron alterations, 

testicular atrophy 

[86] 

MPs/NPs 
50 nm 

500 nm 
5 μm 

Intestine, liver, 
kidney, testis, brain 

ꜛ Inflammatory factors [87] 

Abbreviations: MPs, microparticles; NPs, nanoparticles; PS, polystyrene; TW, tire wear; PE, 
polyethylene; NALTs, nasal-associated lymphoid tissues. ꜛ increase; ꜜdecrease. 

3.3. Ingestion 
The most significant MPs/NPs exposure route for humans is ingestion. MPs/NPs 

are present in food and drink containers, and in edible products, and have been found in 
the gastrointestinal system of fishes [5,84,88]. As in skin and lungs, in gastric cells, 
smaller-sized particles have more possibilities to be absorbed. Many studies are 
available in the current literature examining the effects of conventional plastics and their 
accumulation in the gastrointestinal tract, while data on the consequences of the 
ingestion of bioplastics are still lacking. In a study carried out by Banerjee et al. [89], the 

SOD activity

Pharmaceutics 2023, 15, 2549 6 of 25 
 

 

passage through the BBB [67,70]. Collectively, both in vitro and in vivo research suggest 
that MPs/NPs have toxic effects on the respiratory tract and lungs, leading to 
inflammation and lung fibrosis. 

Table 1. Preferential accumulation sites of plastic or bioplastic MPs/NPs’ exposure in vivo and 
their biological effects. 

Exposure Route Type Size Accumulation Biological Effects Ref. 

Dermal contact 

NPs 20–200 nm Hair follicular 
openings ND [83] 

NPs 
40 nm 

750 nm 
1500 nm 

Langerhans cells 
and epidermal cells 

ND [63] 

Inhalation 

NPs 64 nm Lung epithelium 
Lung inflammation, excessive 

neutrophil influx, proinflammatory 
proteins 

[73] 

NPs <1 μm 
Pulmonary 

alveolar units 

Pulmonary parenchymal lesion, 
alveolar stenosis, fibrous tissue 

hyperplasia, perivascular, 
lymphocyte, infiltration, 
ꜜ E-cadherin expression, 
ꜛ collagen deposition 

[76] 

MPs 1.1 μm 

NALTs, 
mediastinal lymph 

node, spleen, 
bronchopulmonary 

deposition 

ꜛ Immunological response [84]  

Ingestion 

MPs 10–150 μm 
Colon and 
duodenum 

Gut microbiome alterations, 
intestinal inflammation, 

ꜛ pro-inflammatory cytokines, 
intestinal glands disruptions 

[85] 

NPs 100 nm 
Stomach, small and 

large intestines, 
kidney, lungs  

Liver immune cells infiltration, 
hepatocyte vacuolization, pulmonary 

interstitial fibrosis, renal tubular 
atrophy, ileum epithelium 

disruption, colon lymphocyte 
aggregation, neuron alterations, 

testicular atrophy 

[86] 

MPs/NPs 
50 nm 

500 nm 
5 μm 

Intestine, liver, 
kidney, testis, brain 

ꜛ Inflammatory factors [87] 

Abbreviations: MPs, microparticles; NPs, nanoparticles; PS, polystyrene; TW, tire wear; PE, 
polyethylene; NALTs, nasal-associated lymphoid tissues. ꜛ increase; ꜜdecrease. 

3.3. Ingestion 
The most significant MPs/NPs exposure route for humans is ingestion. MPs/NPs 

are present in food and drink containers, and in edible products, and have been found in 
the gastrointestinal system of fishes [5,84,88]. As in skin and lungs, in gastric cells, 
smaller-sized particles have more possibilities to be absorbed. Many studies are 
available in the current literature examining the effects of conventional plastics and their 
accumulation in the gastrointestinal tract, while data on the consequences of the 
ingestion of bioplastics are still lacking. In a study carried out by Banerjee et al. [89], the 

Oxidative stress
AD [145]

PEG-PLGA NP 145.2 ± 43 Rhynchophylline -bEnd-3 cells
-C57BL/6 mice

-Pass through BBB
-Regulate neuronal

activity
AD [147]

PEG NP 125 ± 65 Functionalized
Ab anti Aβ

-AD transgenic
mice

-male Tg2576

-Correction of
memory deficit
-Reduction in

Aβ levels

AD [149]

PLGA SE 497 ± 353 Dopamine -6-OHDA PD
Swiss mice

-Replenishment
dopamine level

-Motor symptoms
improvement

PD [154]

PLGA SE 720 ± 87 Levodopa
-PC-12 neuronal

like cells
-CD57/BL6 mice

-Improvement
drug delivery

Pharmaceutics 2023, 15, 2549 6 of 25 
 

 

passage through the BBB [67,70]. Collectively, both in vitro and in vivo research suggest 
that MPs/NPs have toxic effects on the respiratory tract and lungs, leading to 
inflammation and lung fibrosis. 

Table 1. Preferential accumulation sites of plastic or bioplastic MPs/NPs’ exposure in vivo and 
their biological effects. 

Exposure Route Type Size Accumulation Biological Effects Ref. 

Dermal contact 

NPs 20–200 nm Hair follicular 
openings ND [83] 

NPs 
40 nm 

750 nm 
1500 nm 

Langerhans cells 
and epidermal cells 

ND [63] 

Inhalation 

NPs 64 nm Lung epithelium 
Lung inflammation, excessive 

neutrophil influx, proinflammatory 
proteins 

[73] 

NPs <1 μm 
Pulmonary 

alveolar units 

Pulmonary parenchymal lesion, 
alveolar stenosis, fibrous tissue 

hyperplasia, perivascular, 
lymphocyte, infiltration, 
ꜜ E-cadherin expression, 
ꜛ collagen deposition 

[76] 

MPs 1.1 μm 

NALTs, 
mediastinal lymph 

node, spleen, 
bronchopulmonary 

deposition 

ꜛ Immunological response [84]  

Ingestion 

MPs 10–150 μm 
Colon and 
duodenum 

Gut microbiome alterations, 
intestinal inflammation, 

ꜛ pro-inflammatory cytokines, 
intestinal glands disruptions 

[85] 

NPs 100 nm 
Stomach, small and 

large intestines, 
kidney, lungs  

Liver immune cells infiltration, 
hepatocyte vacuolization, pulmonary 

interstitial fibrosis, renal tubular 
atrophy, ileum epithelium 

disruption, colon lymphocyte 
aggregation, neuron alterations, 

testicular atrophy 

[86] 

MPs/NPs 
50 nm 

500 nm 
5 μm 

Intestine, liver, 
kidney, testis, brain 

ꜛ Inflammatory factors [87] 

Abbreviations: MPs, microparticles; NPs, nanoparticles; PS, polystyrene; TW, tire wear; PE, 
polyethylene; NALTs, nasal-associated lymphoid tissues. ꜛ increase; ꜜdecrease. 

3.3. Ingestion 
The most significant MPs/NPs exposure route for humans is ingestion. MPs/NPs 

are present in food and drink containers, and in edible products, and have been found in 
the gastrointestinal system of fishes [5,84,88]. As in skin and lungs, in gastric cells, 
smaller-sized particles have more possibilities to be absorbed. Many studies are 
available in the current literature examining the effects of conventional plastics and their 
accumulation in the gastrointestinal tract, while data on the consequences of the 
ingestion of bioplastics are still lacking. In a study carried out by Banerjee et al. [89], the 

Therapeutic
efficacy

PD [155]

PEG-lipid-
PLCL-NP NP 150 ± 50

Dopamine/
Tenoxicam

Lamotrigine

-Human cortical
neuronal cells-2

(HCN2)
-BBB hCMEC/D3

cell line
-Male Wistar rats

Cognitive
improvement PD [156]

PEG-PLA- SE 106 ± 5.4 Adapalene -OD1G93A
transgenic mice

-Improvement of
adapalene

encapsulation
-Activation of

retinoid signaling
pathway

-Improvement
motor

performance

ALS [162]

PLGA SE 521 ± 289 with MOG -C57BL/6 mice
Ameliorates
autoimmune

response
MS [164]

PLGA SE ~110 Doxorubicina -Male Wistar rats Antitumor effects Glioblastoma [167]

PLGA SE 250 ± 180
Chlorotoxin-
conjugated

morusin

-U87 and GI-1
human

glioma cells
Antitumor effects Glioblastoma [169]

Abbreviations: PLGA, polylactic co-glycolic acid; Chi, chitosan coated; PEG, polyethylene glycol; PLCL, poly
(L-lactide-co-ε-caprolactone); NP, nanoparticle; PNP, polymeric nanoparticle; MOG, myelin oligodendrocyte
glycoprotein; BBB, blood–brain barrier; SOD, superoxide dismutase; AD, Alzheimer’s disease; PD, Parkinson’s
disease; ALS, amyotrophic lateral sclerosis; MS, multiple sclerosis; NP, nanoprecipitation; SE, solvent evaporation.

Pharmaceutics 2023, 15, 2549 6 of 25 
 

 

passage through the BBB [67,70]. Collectively, both in vitro and in vivo research suggest 
that MPs/NPs have toxic effects on the respiratory tract and lungs, leading to 
inflammation and lung fibrosis. 

Table 1. Preferential accumulation sites of plastic or bioplastic MPs/NPs’ exposure in vivo and 
their biological effects. 

Exposure Route Type Size Accumulation Biological Effects Ref. 

Dermal contact 

NPs 20–200 nm Hair follicular 
openings ND [83] 

NPs 
40 nm 

750 nm 
1500 nm 

Langerhans cells 
and epidermal cells 

ND [63] 

Inhalation 

NPs 64 nm Lung epithelium 
Lung inflammation, excessive 

neutrophil influx, proinflammatory 
proteins 

[73] 

NPs <1 μm 
Pulmonary 

alveolar units 

Pulmonary parenchymal lesion, 
alveolar stenosis, fibrous tissue 

hyperplasia, perivascular, 
lymphocyte, infiltration, 
ꜜ E-cadherin expression, 
ꜛ collagen deposition 

[76] 

MPs 1.1 μm 

NALTs, 
mediastinal lymph 

node, spleen, 
bronchopulmonary 

deposition 

ꜛ Immunological response [84]  

Ingestion 

MPs 10–150 μm 
Colon and 
duodenum 

Gut microbiome alterations, 
intestinal inflammation, 

ꜛ pro-inflammatory cytokines, 
intestinal glands disruptions 

[85] 

NPs 100 nm 
Stomach, small and 

large intestines, 
kidney, lungs  

Liver immune cells infiltration, 
hepatocyte vacuolization, pulmonary 

interstitial fibrosis, renal tubular 
atrophy, ileum epithelium 

disruption, colon lymphocyte 
aggregation, neuron alterations, 

testicular atrophy 

[86] 

MPs/NPs 
50 nm 

500 nm 
5 μm 

Intestine, liver, 
kidney, testis, brain 

ꜛ Inflammatory factors [87] 

Abbreviations: MPs, microparticles; NPs, nanoparticles; PS, polystyrene; TW, tire wear; PE, 
polyethylene; NALTs, nasal-associated lymphoid tissues. ꜛ increase; ꜜdecrease. 

3.3. Ingestion 
The most significant MPs/NPs exposure route for humans is ingestion. MPs/NPs 

are present in food and drink containers, and in edible products, and have been found in 
the gastrointestinal system of fishes [5,84,88]. As in skin and lungs, in gastric cells, 
smaller-sized particles have more possibilities to be absorbed. Many studies are 
available in the current literature examining the effects of conventional plastics and their 
accumulation in the gastrointestinal tract, while data on the consequences of the 
ingestion of bioplastics are still lacking. In a study carried out by Banerjee et al. [89], the 

increase;

Pharmaceutics 2023, 15, 2549 6 of 25 
 

 

passage through the BBB [67,70]. Collectively, both in vitro and in vivo research suggest 
that MPs/NPs have toxic effects on the respiratory tract and lungs, leading to 
inflammation and lung fibrosis. 

Table 1. Preferential accumulation sites of plastic or bioplastic MPs/NPs’ exposure in vivo and 
their biological effects. 

Exposure Route Type Size Accumulation Biological Effects Ref. 

Dermal contact 

NPs 20–200 nm Hair follicular 
openings ND [83] 

NPs 
40 nm 

750 nm 
1500 nm 

Langerhans cells 
and epidermal cells 

ND [63] 

Inhalation 

NPs 64 nm Lung epithelium 
Lung inflammation, excessive 

neutrophil influx, proinflammatory 
proteins 

[73] 

NPs <1 μm 
Pulmonary 

alveolar units 

Pulmonary parenchymal lesion, 
alveolar stenosis, fibrous tissue 

hyperplasia, perivascular, 
lymphocyte, infiltration, 
ꜜ E-cadherin expression, 
ꜛ collagen deposition 

[76] 

MPs 1.1 μm 

NALTs, 
mediastinal lymph 

node, spleen, 
bronchopulmonary 

deposition 

ꜛ Immunological response [84]  

Ingestion 

MPs 10–150 μm 
Colon and 
duodenum 

Gut microbiome alterations, 
intestinal inflammation, 

ꜛ pro-inflammatory cytokines, 
intestinal glands disruptions 

[85] 

NPs 100 nm 
Stomach, small and 

large intestines, 
kidney, lungs  

Liver immune cells infiltration, 
hepatocyte vacuolization, pulmonary 

interstitial fibrosis, renal tubular 
atrophy, ileum epithelium 

disruption, colon lymphocyte 
aggregation, neuron alterations, 

testicular atrophy 

[86] 

MPs/NPs 
50 nm 

500 nm 
5 μm 

Intestine, liver, 
kidney, testis, brain 

ꜛ Inflammatory factors [87] 

Abbreviations: MPs, microparticles; NPs, nanoparticles; PS, polystyrene; TW, tire wear; PE, 
polyethylene; NALTs, nasal-associated lymphoid tissues. ꜛ increase; ꜜdecrease. 

3.3. Ingestion 
The most significant MPs/NPs exposure route for humans is ingestion. MPs/NPs 

are present in food and drink containers, and in edible products, and have been found in 
the gastrointestinal system of fishes [5,84,88]. As in skin and lungs, in gastric cells, 
smaller-sized particles have more possibilities to be absorbed. Many studies are 
available in the current literature examining the effects of conventional plastics and their 
accumulation in the gastrointestinal tract, while data on the consequences of the 
ingestion of bioplastics are still lacking. In a study carried out by Banerjee et al. [89], the 

decrease.

5.2. Bioplastic MPs/NPs for Brain Diseases: Drawbacks

Despite bioplastic MPs/NPs seeming effective as drug delivery systems for the
brain, their toxicity is largely unknown, and available information is strictly related
to conventional NPs from industrial production. In this regard, several studies have
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demonstrated that NPs could be involved in neuroinflammation and increase oxidative
stress [172,174,175]. The generation of ROS could cause damage to lipids, nucleic acids, pro-
teins, and other essential biomolecules, leading to mitochondrial dysfunction and cell death
by altering signaling pathways [176]. Bioplastic MPs/NPs’ exposure is also responsible for
activation of microglia cells and astrocytosis, leading to neuroinflammation and neuron
function impairments [177]. However, to date, toxicological data are still few and limited
to cautious hypotheses referring to systemic toxicity. In addition, the only available data
differ from each other by the administration route, dose metrics, particle size, and loaded
drug [178], making it difficult to draw general conclusions. Indeed, despite PLGA and
PLA biocompatibility and biodegradability, bioplastic MPs/NPs for drug delivery, when
produced on a nanoscale dimension, could have toxic effects [179] that are far from being
fully understood. Bioplastic MPs/NPs may have dimensions quite far from cells (1:10;
1:100), and this implies that they could easily interfere with the activity and metabolism of
neurons, microglia, and astrocytes [180,181]. A study focused on the in vivo neurotoxicity
of polysorbate 80-chitosan NPs, after intravenous injection in rats, showed an accumulation
in several brain areas such as the frontal cortex and cerebellum inducing neuronal death,
inflammation, and oxidative stress [182]. Furthermore, the removal of bioplastic MPs/NPs
by the blood can occur very slowly, thus promoting their accumulation with potential side
effects [183]. From this point of view, it is crucial to analyze damaging effects at different
levels, including the ultrastructure of the cell, since this level represents the boundary
between molecular and spatially organized levels of the body. NPs interact with the cell
precisely at this level, and dysfunction of cells or the action of redundant and regulatory
systems could play a negative role in smoothing out the effectiveness of treatments. An-
other important factor is the toxicity related to degradation. PLA or PLGA degradation
products, such as lactic or glycolic acid, could lead to tissue acidification when accumu-
lated. Furthermore, PLGA has been reported to be much more responsible for inflammation
because of its faster degradations (weeks) with respect to PLA (months) [184]. Increased
levels of lactate could interfere with bioenergetic processes such as glycolysis and oxidative
phosphorylation, and it is known that brain alterations in energy metabolism are associated
with schizophrenia and bipolar disorders [185]. Furthermore, bioplastic MPs/NPs once
in contact with biological systems could interact with neighbor biomolecules. As a result,
these interactions could lead to the formation of the so-called “protein corona”. Protein
corona affects NPs’ properties and alters their pharmacokinetics with possible aberrating
biodistribution, toxicity, and mistargeting [186–188].

Other several factors could influence the neurotoxicity of bioplastic MPs/NPs. First
of all, the size of polymeric NPs: all NPs with smaller sizes can penetrate the BBB more
easily and have a higher surface area which can increase their interactions with brain cells
and cause toxic effects [189]. The surface chemistry of bioplastic MPs/NPs is another
factor that can influence their neurotoxicity. Surface modifications such as the addition
of targeting ligands or PEGylation could alter the surface charge and hydrophobicity of
NPs, affecting their cellular uptake but also their ability to interfere with endogenous cell
signaling pathways [140]. Furthermore, intravenous injection can cause the accumulation
of bioplastic MPs/NPs in the liver, spleen, and other organs, leading to potential systemic
adverse effects. Finally, higher doses and more frequent administrations can increase the
negative health effects, while lower doses and infrequent administration can reduce the
toxic risk [190]. In summary, bioplastic MPs/NPs possess good properties for successful
use in pharmaceutical preparations for the treatment of brain diseases; but it is important
to understand the balance between the therapeutic and toxic actions of these drug carriers,
because their potential clinical use still represents a matter of concern (Figure 5).



Pharmaceutics 2023, 15, 2549 16 of 24

Pharmaceutics 2023, 14, x FOR PEER REVIEW 16 of 25 
 

 

lead to tissue acidification when accumulated. Furthermore, PLGA has been reported to 

be much more responsible for inflammation because of its faster degradations (weeks) 

with respect to PLA (months) [184]. Increased levels of lactate could interfere with 

bioenergetic processes such as glycolysis and oxidative phosphorylation, and it is known 

that brain alterations in energy metabolism are associated with schizophrenia and 

bipolar disorders [185]. Furthermore, bioplastic MPs/NPs once in contact with biological 

systems could interact with neighbor biomolecules. As a result, these interactions could 

lead to the formation of the so-called “protein corona”. Protein corona affects NPs’ 

properties and alters their pharmacokinetics with possible aberrating biodistribution, 

toxicity, and mistargeting [186–188].  

Other several factors could influence the neurotoxicity of bioplastic MPs/NPs. First 

of all, the size of polymeric NPs: all NPs with smaller sizes can penetrate the BBB more 

easily and have a higher surface area which can increase their interactions with brain 

cells and cause toxic effects [189]. The surface chemistry of bioplastic MPs/NPs is 

another factor that can influence their neurotoxicity. Surface modifications such as the 

addition of targeting ligands or PEGylation could alter the surface charge and 

hydrophobicity of NPs, affecting their cellular uptake but also their ability to interfere 

with endogenous cell signaling pathways [140]. Furthermore, intravenous injection can 

cause the accumulation of bioplastic MPs/NPs in the liver, spleen, and other organs, 

leading to potential systemic adverse effects. Finally, higher doses and more frequent 

administrations can increase the negative health effects, while lower doses and 

infrequent administration can reduce the toxic risk [190]. In summary, bioplastic 

MPs/NPs possess good properties for successful use in pharmaceutical preparations for 

the treatment of brain diseases; but it is important to understand the balance between 

the therapeutic and toxic actions of these drug carriers, because their potential clinical 

use still represents a matter of concern (Figure 5). 

 

Figure 5. Pros and cons of bioplastic MPs/NPs drug delivery systems for brain disease 

management. 

6. Conclusions 

Figure 5. Pros and cons of bioplastic MPs/NPs drug delivery systems for brain disease management.

6. Conclusions

In the light of environmentally friendly solutions, nowadays bioplastics are considered
a valid alternative. However, their faster biodegradability to smaller particles (MPs and
NPs) poses a potential health risk for animals and humans since they can accumulate
in tissues and organs altering homeostasis and physiological functions. Furthermore,
bioplastic MPs/NPs are well-studied and investigated as carriers for drug delivery and
can easily pass through physiological barriers because they have been developed for these
purposes, such as drug loading to assure its proper delivery and improve its bioavailability
at the target site.

Despite these bioplastic MPs/NPs exhibit a capacity of complete biodegradation
in the body and represent a useful tool for personalized and precision medicine, there
are still some issues that should be addressed because side and toxic effects have not
been sufficiently investigated, and the majority of data refer to the drug and not to the
carriers. Knowing the exact mechanism of distribution, metabolism, and excretion is
fundamental to understanding the potential toxic effect of bioplastic MPs/NPs. Until now,
there exists a knowledge gap regarding this aspect, and the studies concerning their use for
therapeutic purposes are far greater than those aimed at determining their toxicological
profile. However, the field of nanotoxicology aimed to understand the interaction between
biomaterials and living cells is growing, but studies are still few and methods and results
are frequently controversial.

Taken together, all of this evidence emphasizes the importance of the risk assessment
for bioplastic MPs/NPs, but it is also necessary to standardize the evaluation method to
obtain a reliable validation of their toxicity. Indeed, until now, studies have been conducted
using different in vivo and in vitro models, and there are no results about the effects of
long-term exposure to these particles. Additionally, because the fabrication of bioplastic
MPs/NPs as a delivery system differs based on the method of preparation, there is no
general data available about their bio-interaction and biodistribution.
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