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Abstract: Gene delivery by the pulsed electric field is a promising alternative technology for nonviral
transfection; however, the application of short pulses (i.e., nanosecond) is extremely limited. In
this work, we aimed to show the capability to improve gene delivery using MHz frequency bursts
of nanosecond pulses and characterize the potential use of gold nanoparticles (AuNPs: 9, 13, 14,
and 22 nm) in this context. We have used bursts of MHz pulses 3/5/7 kV/cm × 300 ns × 100 and
compared the efficacy of the parametric protocols to conventional microsecond protocols (100 µs × 8,
1 Hz) separately and in combination with nanoparticles. Furthermore, the effects of pulses and
AuNPs on the generation of reactive oxygen species (ROS) were analyzed. It was shown that gene
delivery using microsecond protocols could be significantly improved with AuNPs; however, the
efficacy is strongly dependent on the surface charge of AuNPs and their size. The capability of local
field amplification using AuNPs was also confirmed by finite element method simulation. Finally, it
was shown that AuNPs are not effective with nanosecond protocols. However, MHz protocols are
still competitive in the context of gene delivery, resulting in low ROS generation, preserved viability,
and easier procedure to trigger comparable efficacy.

Keywords: plasmid DNA; transfection; electroporation; GFP; CHO-K1

1. Introduction

Gene therapy or gene vaccination is a promising approach for the treatment of cancer,
which shows good efficacy both in vivo and in applied clinical research [1–3]. Currently,
the application of viruses is an effective method for DNA transfection, but it is associated
with increased cytotoxicity, delivered gene size limitations, immunogenicity, or tumori-
genesis [4–6]. Nonviral gene transfection methods have several advantages over viral
methods, including lower immunogenicity, reduced risk of insertional mutagenesis, and
better flexibility in terms of the size and type of genetic material that can be delivered.
In recent years, there have been several new developments in the nonviral gene transfec-
tion context, including lipid-based nanoparticles [7], polymer-based delivery systems [8],
CRISPR-Cas9 delivery [9], ultrasound [10], magnetofection [11], and electroporation [12],

Pharmaceutics 2023, 15, 1178. https://doi.org/10.3390/pharmaceutics15041178 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics15041178
https://doi.org/10.3390/pharmaceutics15041178
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0003-4588-7576
https://orcid.org/0000-0002-1952-0431
https://orcid.org/0000-0001-6571-5881
https://orcid.org/0000-0002-2438-5713
https://orcid.org/0000-0001-9702-3062
https://orcid.org/0000-0001-5864-0359
https://orcid.org/0000-0001-8272-5440
https://orcid.org/0000-0001-6147-956X
https://doi.org/10.3390/pharmaceutics15041178
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics15041178?type=check_update&version=2


Pharmaceutics 2023, 15, 1178 2 of 17

where electroporation is one of the most established ones [13,14]. Electroporation enhances
reporter plasmid delivery to the skin to a greater extent than liposome conjugation, which
makes it a safe and reliable method for obtaining efficient and effective delivery of plasmid
DNA [15].

Electroporation is a pulsed electric field-mediated phenomenon that is based on cell
plasma membrane polarization [16,17]. Due to polarization, a critical transmembrane
voltage (TMP) is induced, and the hydrophilic pores are formed in the cell membrane
facilitating drug and gene delivery [18]. The process can be reversible (i.e., the pores reseal
over time) or irreversible when the cells die due to the severity of the membrane damage
caused by pulsed electric fields (PEF) [19]. As a result, modulation of pulsed electric
field parameters and optimization of the protocols for drug and gene delivery is a topic
that does not lose actuality [20], ensuring good application capabilities in clinics [21,22].
Currently, the field of reversible electroporation (incl. electrotransfection) is dominated
by the microsecond and millisecond range of pulses [13,23]. The European Standard
Operating Procedures for Electrochemotherapy and Electrogenetherapy (ESOPE) involve
sequences of 8 × 100 µs pulses delivered at 1 Hz [24]. Nevertheless, in the context of
gene delivery, the electrophoretic component was considered to be crucial [25,26]; thus, the
high voltage (HV) pulses are frequently supplemented with low voltage (LV) millisecond
pulses to improve the electrotransfection efficacy [27,28]. Alternatively, the whole burst of
pulses consists of 1–10 ms waveforms [29]. The application of long pulses (µs-ms) ensures
efficient electrogene transfer; however, it comes with an array of associated negative effects.
Longer pulses are responsible for the generation of reactive oxygen species (ROS) due
to electrolysis [30,31] and increased muscle contractions (and potentially pain) [32,33].
Moreover, (if not accounted for) the thermal influence (i.e., Joule heating) might affect the
treatment outcome [34]. Therefore, methods to improve electrotransfection efficacy without
the requirement to increase the pulse duration are constantly researched.

The application of nanotechnology and nanoparticles in the area of drug and gene
delivery is heavily exploited. For example, functionalized metal nanoparticles improve
cytotoxicity in the context of cancer [35] or can be used to overcome the chemoresistance in
cancer cells [36]. It is also agreed that a combination of nanoparticle-based gene therapy
with a drug, radiotherapy, photodynamic therapy, immunotherapy, or others will be
emphasized in future clinical studies [37]. In the context of electroporation, the theoretical
model predicting the potential of the use of conductive nanoparticles emerged and was
proposed by Lekner [38] and Qiu et al. [39]. It was shown that the conductive nanoparticles
in close proximity to the membrane are capable of increasing the electric field and increasing
the density of the hydrophilic pores. Applied in vitro research supported the in silico
data [40–43]. Currently, there are less than 10 papers focusing on the phenomenon, and
the array of parametric protocols is still limited to µs-ms protocols. Application of shorter
pulses (i.e., nanosecond range) is extremely limited in the area of electrogene transfer,
presumably due to the lack of significant electrophoretic components and the complexity
of pulse generators. Nevertheless, the proof of concept was shown recently [13,44], and
as expected, ultrashort pulses are less efficient for gene delivery, however, only when
delivered with several Hz or kHz frequencies. In our previous studies, we have shown that
compressing nanosecond pulses into an MHz burst triggers a new phenomenon of residual
TMP accumulation, which significantly improves electrotransfer [45,46] and, thus, can be
applied in nanosecond range electrogene delivery context [14].

In this work, we aimed to show the capability to improve gene delivery using MHz
bursts of nanosecond pulses and characterize the potential use of gold nanoparticles
(AuNPs) in this context. Additionally, we compared the generation of ROS accompanying
the treatment and the effects of AuNPs on the process using both the standard (ESOPE-
like) protocols, nanosecond protocols (kHz repetition frequency), and the new modality
of nanosecond pulses (delivered at MHz frequency). The results of our work improve
the understanding of polarization-based phenomena in the nanosecond range and have
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direct applicability for the development of new clinical gene transfer protocols based on
nano-electroporation, which was considered not possible several years ago.

2. Materials and Methods
2.1. Electroporation Setup and Parameters

A 3 kV, 100 ns–1 ms square-wave pulse generator (VilniusTECH, Vilnius, Lithua-
nia) [47] and a commercially available electroporation cuvette with a 1 mm gap between
electrodes (Biorad, Hercules, CA, USA) were used in the experiments. The voltage applied
to the cuvette was from 0.06 to 0.7 kV, corresponding to a 0.6–7 kV/cm electric field. The
treatment included ESOPE-like µsPEF protocols (100 µs × 8, 1 Hz) with 0.6–1.4 kV/cm PEF
amplitude. The nsPEF protocols were based on bursts of 100 pulses delivered at 1 kHz or
1 MHz frequency (3/5/7 kV/cm × 300 ns × 100).

2.2. Cell Culture

Chinese hamster ovary (CHO-K1) cells were cultivated in Petri dishes with RPMI 1640
medium enriched with 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 mg/mL
streptomycin, and glutamine. The cell line CHO-K1 (ATCC CCL-61) was acquired from
the national collection of the State Research Institute for Innovative Medicine (Vilnius,
Lithuania). All cell culture reagents were derived from Gibco, Thermo Fisher Scientific,
Waltham, MA, USA. Conditions for cell growth were 5% CO2, 37 ◦C.

On an experimental day, the cells were trypsinized (Thermo Fisher Scientific, Waltham,
MA, USA), centrifuged, and resuspended in the electroporation buffer (sucrose 242 mM,
Na2HPO4 5.5 mM, NaH2PO4 3 mM, MgCl2 1.7 mM, pH 7.1) at concentration 6 × 106 cells/mL.
For the cell permeabilization and viability assays, cells were resuspended in the electropo-
ration buffer at a concentration of 2 × 106 cells/mL.

2.3. Cell Permeabilization

To test the efficiency of cell permeabilization, the green fluorescent stain Yo-Pro1
(Sigma-Aldrich, St. Louis, MO, USA) was used. Cells in electroporation buffer at a
concentration of 2 × 106 cells/mL were combined (or not) with AuNPs of various sizes
(25 µg/mL) and mixed with Yo-Pro1 to a concentration of 1 µM. Samples were placed
between the electrodes, and different protocols of PEF were used. After 3 min incubation
at room temperature, 150 µL of phosphate-buffered saline (PBS) was added. Samples
were analyzed using BD Accuri C6 flow cytometer (BD Biosciences, San Jose, CA, USA),
where Yo-Pro1 (491⁄509) fluorescence was detected in channel FL1 (533/30 nm BPF). Results
were analyzed with FlowJo software (BD, Franklin Lakes, NJ, USA). The scheme of cell
permeabilization assay and analysis is shown in Figure 1.
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The experiments were performed with and without AuNPs.

2.4. Cell Electrotransfection

The efficacy of electrotransfection was evaluated using pEGFP-N1 plasmid (4.7 kbp)
encoding the green fluorescent protein (GFP). For each sample, 30 µL of cells were mixed
with 4 µL of the plasmid DNA (purified with HiPure Expi Plasmid Gigaprep Kit (Thermo
Fisher Scientific, Waltham, MA, USA)). All the steps were performed on ice. Different PEF
protocols with and without AuNPs were used. After electroporation, the samples were
transferred to a 48-well plate, and after 10 min of incubation, 500 µL of RPMI medium
was added. The experimental plate was placed in an incubator for 24 h at 37 ◦C, 5% CO2.
After incubation, the cells were trypsinized, collected in microtubes, centrifuged, and
suspended in 90 µL PBS. The samples were transferred to a 96-well round-bottomed plate
to be measured with a BD Accuri C6 and Amnis FlowSight (Luminex, Northbrook, IL,
USA) flow cytometers. The fluorescence of transfected cells was detected using channel FL1
(533/30 nm BPF) and channel 2 (532/55 nm), respectively. The scheme of electrotransfection
analysis is illustrated in Figure 2.
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2.5. Viability Assay

Electrotransfection was performed as described above. After electroporation, samples
were transferred into 96-well flat-bottomed plates and incubated for 10 min on ice, followed
by the addition of growth media to the final 200 µL volume in each well. After 24 h,
wells were washed twice with PBS, and to each well, 90 µL of PBS and 10 µL of cell
viability reagent (PrestoBlue, Thermo Fisher Scientific, Waltham, MA, USA) were added.
The cells were kept in an incubator for 2 h, and the fluorescence was measured using a
Synergy 2 microplate reader and the Gen5 1.04.5 software (BioTek, Winooski, VT, USA).
The excitation wavelength was 540/20 nm, and the emission was evaluated at 620/40 nm.

2.6. Fluorescence Microscopy

Immediately after electrotrasfection, a sample of CHO-K1 cells was seeded and
grown on a sterile glass coverslip in 6-well plates (TPP, Switzerland) at a concentration of
2 × 105 cells/mL in RPMI 1640 medium with 10% FBS, 100 U/mL penicillin, 100 µg/mL
streptomycin, and 2mM L-glutamine (Gibco, Thermo Fisher Scientific, Waltham, MA, USA).
Then cells were incubated for 24 h at 37 ◦C, 5% CO2. After incubation, glass coverslips were
gently washed with PBS ×1 (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) and
placed on a microscope slide. Afterward, the cells were imaged using an Olympus IX81 in-
verted fluorescence microscope (Olympus, Hamburg, Germany), ORCA-ER digital camera
(Hamamatsu, Japan), and CellˆM microscope system (Olympus, Hamburg, Germany).
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2.7. Synthesis and Characterization of Gold Nanoparticles

Materials: All reagents utilized were of analytical grade and used as received without
additional purification. Hydrogen tetrachloroaurate(III) trihydrate (HAuCl4·3H2O) and
tannic acid were obtained from Carl Roth GmbH&Co (Karlsruhe, Germany), trisodium
citrate—from Penta (Praha, Czech Republic). Deionized (DI) water (18 MΩ·cm) purified by
Merck Millipore (Billerica, MA, USA) was used for all synthesis of different-sized AuNPs.

AuNPs of 13 nm size were synthesized by reducing HAuCl4 by trisodium citrate in
the presence of tannic acid according to the modified Turkevich method [48] and earlier
described methodology [49]. Briefly, 80 mL of 0.0125% [w/v] of HAuCl4 solution and
a mixture of 20 mL consisting of 4 mL 1% [w/v] trisodium citrate and 0.025 mL of 1%
[w/v] tannic acid solutions in the deionized water were prepared and heated up to 60 ◦C
in the separate Erlenmeyer flasks on a magnetic stirrer with electrical heating. Then
these solutions were mixed, heated up to 98 ◦C under stirring (1000 rpm), and kept at this
temperature for 3 min to yield a red color solution of AuNPs. The colloid solution of AuNPs
was stored in the dark at +4 ◦C. The size of synthetized AuNPs (dry sample) determined by
atomic force microscopy using tapping mode was within the range of 12–16 nm [50]. The
characterization of AuNPs by dynamic light scattering technique showed that AuNPs are
nearly monodispersed since the determined diameter was 12.96 ± 0.607 nm. Zeta potential
measurements reveal that 13 nm AuNPs have an average surface charge of −34.2 ± 2.3 mV
in the obtained colloidal solution. The initial concentration of gold (according to mass)
used for the synthesis of 13 nm AuNPs was 50 µg/mL.

In order to compare the effects of AuNPs size on the electroporation and electrotrans-
fection efficiency, new stocks of colloidal solutions were prepared using the Turkevich
method. To maintain the set temperatures, AuNPs were synthesized in a thermostat-
controlled 100 mL glass reaction vessel wrapped in aluminum foil. Briefly, the reaction
vessel was filled with 50 mL of 1 mM HAuCl4·solution and kept to yield (approximately
20 min) the temperature values of 70, 80, and 90 ◦C, respectively. Then, 10 mL of a freshly
prepared and warmed solution of 38.8 mM trisodium citrate was injected into the reac-
tion vessel under vigorous stirring and kept for 10, 15, and 30 min. The small AuNPs
with a diameter of ~6–9 nm was synthesized at 70 ◦C for 10 min, whereas the medium-
sized (10–15 nm) and higher (17–25 nm) nanoparticles were grown by keeping the higher
temperatures at 80–90 ◦C and more extended reaction times of 15–30 min, respectively.
Finally, the reaction vessel was transferred into the ice bath to stop the reduction reaction
and kept there until the red-wine-colored solution decreased to room temperature. The
obtained red-wine-colored solutions were placed into the fridge if not in use to prevent
possible contamination. The morphology (Figure 3A–C) and size distribution (Figure 3D–F)
of the as-synthesized different-sized AuNPs were investigated by transmission electron
microscope (TEM) FEI Tecnai F20 X-TWIN (Eindhoven, The Netherlands) equipped with
a field emission gun. The colloidal solutions of AuNPs were dispersed in ethanol, drop-
casted onto a carbon-coated nickel grid, and left to dry under environmental conditions.
TEM images were recorded using a Gatan Orius CCD camera (Pleasanton, CA, USA) in
bright field mode at an acceleration voltage of 200 kV. The averaged particle diameter
was estimated from TEM images by using ImageJ 1.51k software (National Institutes of
Health, WI, USA). The size of AuNPs was also assessed by measuring the surface plasmon
resonance of colloidal solutions using Lamda 35 UV/VIS spectrophotometer (Perkin Elmer,
Waltham, MA, USA). The concentration of gold in the colloidal solutions was determined
by inductively coupled plasma optical emission spectrometer (ICP-OES) OPTIMA 7000DV
(Perkin Elmer, Waltham, MA, USA). Before the measurements, AuNPs were centrifuged
and resuspended in DI water to remove the gold acid residues. The AuNPs were dissolved
in aqua regia solution and further subjected to ICP-OES measurements performed on
emission peaks at λAu = 267.595 nm.

The size distribution histograms of AuNPs enable to estimate size intervals of three
types of nanoparticles that are further assigned as small (6–12 nm), medium (10–20 nm),
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and large (14–29 nm) with averaged particles radius of 9, 14, and 22 nm, respectively
(Figure 3D–F).
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Figure 3. TEM images and size distribution histograms of small (A,D), medium (B,E), and large
(C,F) AuNPs synthesized via citrate-induced reduction in tetrachloroauric acid at 70, 80, and 90 ◦C,
respectively. The size distribution of AuNPs was inspected from TEM images by counting at least
100 accidentally selected AuNPs.

Since the noble metal-based NPs (i.e., gold and silver) exhibit strong surface plasmon
resonance (SPR) and show size-dependent characteristics [51], the red-wine-colored solu-
tions of different-sized AuNPs were subjected to UV-VIS analysis to gain more information
about colloidal nanoparticles size. The particle radius was estimated by following the Haiss
et al. investigations [52]. According to the (1) equation, the particle size (nm) was calculated
by measuring the ratio of the absorbance at the ratio of SPR peak (Aspr) to the registered
averaged absorbance at 450 nm wavelength (A450), whereas B1 and B2 are experimentally
estimated parameters (3.0 and 2.2, respectively).

d = exp
(

B1
Aspr

A450
− B2

)
(1)

Figure 4 displays the absorbance spectra of different-sized AuNP colloidal solution
with the Aspr peaks at 521, 522, and 530 nm for small, medium, and large nanoparticles.
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The calculated particles size with the radius of 2, 10, and 20 nm from UV-VIS are
slightly smaller than those estimated by TEM. Based on our previous research [53] to
prepare AuNPs using the identical protocol, the citrate-capped AuNPs have a negative
surface charge ranging from −39 to −44 mV, respectively. For all the AuNPs used in the
study, the aliquot of colloidal solutions was further diluted with citrate buffer to obtain
identical content of AuNPs (50 µg/mL) and was used for further research by diluting the
stock 1:1 with cell suspension (final concentration of 25 µg/mL).

The characteristics of AuNPs used in the study are provided in Table 1.

Table 1. Characteristics of AuNPs used in the study.

AuNP Size ζ Potential Final Experimental Concentration

13 nm −34 mV

25 µg/mL
9 nm

from −39 to −44 mV14 nm

22 nm

2.8. Modelling of Electric Field and Nanoparticles Using FEM

A cell polarization model based on the finite element method (FEM) was developed in
COMSOL (COMSOL Multiphysics, Sweden) using 2D geometry. The cell was modeled as
a conductive sphere (σc = 0.3 S/m [54], radius of 6.5 µm) with a thin layer (5 nm) of low
electrical conductivity (1.1 × 10−7 S/m [55]) representing a lipid membrane similar to the
previous study [56]. Briefly, the extracellular medium (0.1 S/m) was approximated as a
cube with a 1 mm edge, and the cathode/anode was defined as aluminum electrodes (1 mm
gap). A free triangular mesh with 6.9M domain elements and 2975 boundary elements was
generated. The 120 V voltage (100 µs) was defined as an input (corresponding to 1.2 kV/cm
PEF). The nanoparticles were programmed as gold spheres (using the COMSOL library
of materials) with a size of 20 nm. The mesh structure and the cell model are shown in
Figure 5.
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Figure 5. FEM model in COMSOL environment, where (A) cell model inside a cuvette; (B) model of
gold nanoparticles in close proximity with cell membrane; (C) generated mesh structure.

The minimum and maximum element sizes were selected as 1 and 200 nm, respectively.
A maximum element growth rate of 1.1 was defined. The effects of AuNPs on the spatial
electric field distribution were studied.

2.9. ROS Analysis

For ROS evaluation, the cells in an electroporation medium were incubated with
H2DCFDA (DCF) (Sigma-Aldrich, Chemie GmbH, Steinheim, Germany) dye at a concen-
tration of 10 µM for 30 min. Afterward, 50 µL (4 × 106 cells/mL) of cell/dye suspension
with or without AuNPs was placed into the electroporation cuvette and treated by PEF.
After the treatment, the samples were transferred to a black 96-well plate (Thermo Fisher
Scientific, Waltham, MA, USA) and incubated for an additional 20 min at room temperature.
Then 100 µL of 97% ethanol was added to each sample, and the samples were incubated
for another 10 min. Then DCF fluorescence measurements were performed using Synergy
2 microplate reader and Gen5 1.04.5 software (BioTek, Winooski, VT, USA).

2.10. Statistical Analysis

One-way analysis of variance (ANOVA; p < 0.05) was used to compare different treat-
ments. Tukey HSD multiple comparison test for the evaluation of the difference was used
when ANOVA indicated a statistically significant result (p < 0.05 was considered statisti-
cally significant). Each experimental point was obtained from at least three independent
experiments, and results are represented as mean ± standard deviation.

3. Results
3.1. PEF Induced Electropermeabilization

Firstly, in order to characterize electroporation with and without AuNPs (13 nm), the
permeabilization of the cell membrane was evaluated using a YO-PRO-1 fluorescent marker,
and the results are presented in Figure 6. The ESOPE protocols (100 µs × 8) without AuNPs
have a scaling in permeabilization efficiency, which is dependent on the pulse amplitude.
The introduction of AuNPs significantly improves the number of permeabilized cells at the
same pulsing conditions.
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Figure 6. Permeabilization of CHO-K1 cells with the pulsed electric field, where (A) ESOPE protocols
(100 µs × 8); (B) nanosecond burst protocols (300 ns × 100). PEF—pulsed electric field; NPs—gold
nanoparticles (13 nm). Asterisk (*) corresponds to statistically significant differences (p < 0.05).

Equivalent pulsing conditions can be derived for nanosecond range protocols
(Figure 6B). We observed that a 7 kV/cm amplitude is required to trigger more than
80% permeabilization, while for nanosecond compressed pulse (1 MHz) bursts, the same
rate of permeabilization can be triggered already at 5 kV/cm. Interestingly, the effect of
AuNPs on nanosecond electropermeabilization is less profound when compared to ESOPE,
and in most cases, the difference is not statistically significant. In order to ensure high
electrotransfection efficiency, a high permeabilization rate must be triggered; thus, the
protocols triggering more than 80% permeabilization are of utmost interest.

3.2. Electrotransfection of CHO-K1 Cell Line

The electrotransfection efficiency was evaluated 24-h post-treatment, and firstly, the
cells were analyzed in terms of morphology changes using Amnis FlowSight and mi-
croscopy. The photographs of cells are shown in Figure 7.

As reported in Figure 7A,B, the cells feature a high fluorescence signal indicating
successful electrotransfection. It should be noted that in all of the electroporated samples,
there were some cells (<5%) featuring swelling and blebbing (Figure 7C), which was not the
case in the untreated control samples. The cytotoxicity of electric fields is a known issue;
therefore, the pulses should be adjusted, respectively, to cause predominantly reversible
electroporation. For quantitative analysis, both the number of fluorescent cells and the
median fluorescence intensity (MFI) were analyzed further in the study, and the results are
summarized in Figure 8.
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Figure 7. Photographs of cells 24 h post-electrotransfection, where (A) PEF nontreated control
(plasmid only), 15 accidentally selected cells; (B) cells treated with 7 kV/cm × 300 ns × 100 pulses
(1 MHz), 15 accidentally selected cells; (C) images of cell swelling and blebbing after PEF treatment
captured using 60 × UPlanSApo oil objective (NA = 1.35) on an Olympus IX81 microscope (Olympus,
Hamburg, Germany). Ch01—brightfield images and Ch02—fluorescence images using a laser of 488
and 505–560 nm BP filter.

We observed that with ESOPE protocols (Figure 8), the electrotransfection rate steadily
increased with the increase in pulse amplitude (up to 30+%). However, when AuNPs
are added, the 1–1.4 kV/cm range trigger a saturated electrotransfection efficiency (i.e.,
an increase in pulse amplitude does not result in an increase in electrotransfection rate),
which is in agreement with the permeabilization data (Figure 6A). It is shown that the
application of AuNPs can significantly improve gene delivery. The median fluorescence of
transfected cells is also significantly increased when AuNPs are added (Figure 8B), which
indicates that the number of DNA complexes is higher. Nevertheless, it is not the case
for nanosecond protocols (Figure 8C,D). The AuNPs have no tendency to increase the
electrotransfection efficiency in the nanosecond pulse range, which is also in agreement
with the permeabilization data (Figure 6B). The median fluorescence after nanoprotocols is,
on average, higher than ESOPE alone for most of the protocols employed in the study but
several-fold lower if ESOPE is combined with AuNPs.
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Figure 8. Electrotransfection of CHO-K1 with and without AuNPs, where (A) electrotransfection
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3.3. Viability Results

The preserved viability of cells is of utmost importance in electrotransfection experi-
ments; therefore, the viability of the cells was also evaluated. The results are summarized
in Figure 9.
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Due to the field amplification, the ESOPE protocols are more cytotoxic with AuNPs
than without; the 1.2 and 1.4 kV/cm electric field protocols result in more than 60%
loss of cell viability (Figure 9A). The 1 kV/cm occurs to be optimal due to saturated
electrotransfection (refer to Figure 8A) and minimal losses (<20%) in cell viability. As
expected, the AuNPs have no effect on the cell viability for nanosecond range protocols,
which is in agreement with the electropermeabilization and electrotransfection data. The
optimal protocol is the 5 kV/cm × 300 ns × 100 pulses delivered at 1 MHz frequency.

3.4. Evaluation of ROS

Further, the ROS generation due to PEF treatment was evaluated, and the results are
summarized in Figure 10. The long microsecond pulses result in a more than 60% increase
in DCF fluorescence, indicating higher ROS and, thus, potentially higher oxidative damage.
The 1.4 kV/cm protocols resulted in a more than 80% increase when compared to the
control, which is an expected result since the electric current is higher, resulting in higher
electrolysis. The effects of AuNPs on the additional ROS generation during PEF treatment
were not detected or lost within the standard deviation of data.
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Figure 10. Generation of ROS during electroporation-based treatment. Asterisk (*) corresponds to
statistically significant difference (p < 0.05; ns—non-significant).

Nanosecond protocols resulted in a significantly lower ROS generation indepen-
dently of the burst frequency. The effects of AuNPs on ROS generation during nano-
electroporation were also not detected.

3.5. Dependence of the Effect on AuNP Size

The effects of AuNP size using different stocks of nanoparticles were studied. The
experiments with 9, 14, and 22 nm AuNPs were performed using the most successful
protocols determined in the study (i.e., 1 kV/cm × 100 µs × 8 and 5 kV/cm × 300 ns × 100).
The results are summarized in Figure 11.
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(A) percentage of GFP positive cells; (B) median fluorescence intensity. Asterisk (*) corresponds to
statistically significant difference (p < 0.05).

The effects of AuNPs during electroporation are dependent on the synthesis of the
AuNPs. The stocks of 9, 14, and 22 nm resulted in a significantly weaker electrotransfection
improvement (1 kV/cm ESOPE protocol) when compared to the 13 nm AuNP stock used in
the study, which might be associated with the surface charge of the AuNPs. Nevertheless, a
clear tendency in terms of median fluorescence intensity was observed (Figure 11B)—with
the increase in the AuNP size, the MFI increases. The AuNPs, independently of the size,
had no effect on electrotransfection when nanosecond pulses were employed. The 1 MHz
pulses were the most efficient for nano-electrotransfection.

3.6. FEM Model Results

Finally, to support the experimental data, the FEM simulation was performed, and the
results are presented in Figure 12.
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corresponds to points of interest (1–4) where the field amplitude is evaluated.

During PEF application, the cell membrane is polarized (Figure 12A); however, when
the AuNPs are in close proximity to the membrane (Figure 12B), the amplitude is signifi-
cantly amplified. The quantitative analysis is summarized in Figure 12C—more than 50%
field amplification is expected, which is in agreement with the permeabilization and the
electrotransfection data using ESOPE protocols.

4. Discussion

In this work, the effects of AuNPs on the efficacy of gene delivery using conventional
electroporation protocols and nanosecond high-frequency bursts were studied. It was
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shown that AuNPs could amplify electric fields in close proximity to the cell membrane,
which significantly improves the effectiveness of ESOPE protocols. It was not the case for
nanosecond protocols, where all of the AuNPs employed in the study were ineffective.

It is established that the electrophoretic force has a positive effect on electrogene
transfer [26]; thus, the area of electroporation-mediated electrotransfection is dominated
by longer pulses or a combination of the short and long waveforms (i.e., HV/LV method-
ology). We have shown that the efficiency of gene delivery can be improved by AuNPs,
which amplify the electric field according to the presented data and available knowledge.
Electroporation is a threshold-type polarization phenomenon; therefore, an increase in
the PEF amplitude results in an increase in pore size, density, and stability [39]. As a
result, improvement of electrogene transfer in the ESOPE range is expected. In the con-
text of nanosecond pulses, we speculate that the inefficacy of AuNPs is associated with
the lack of an electrophoretic component of the nanosecond burst. Ghorbel et al. have
shown [42] that the accumulation of conductive nanoparticles for the enhancement of
cell electropermeabilization is associated with electrophoresis. Longer pulses increase the
accumulation of either aggregated or individual NPs near the cell membrane, supporting
the electrophoretic nature of the observed effects [42]. In the case of nanosecond pulses,
the negatively charged NPs are electrostatically repelled from the cell membrane [57], and
there is no electrophoretic component to compensate for this. This hypothesis explains the
inefficiency of negatively charged AuNPs with nanosecond bursts and also partly explains
why the AuNP stock with the average surface charge of −34.2 mV was significantly better
when compared to the −39–44 mV surface-charged AuNPs. In order to compensate for
this, positively charged conductive NPs should be used in the future to ensure repeatable
close spatial proximity of NPs with the membrane via the electrostatic forces. Another
solution is to use a low-voltage, but longer prepulse protocol followed by a high-frequency
nanosecond burst. However, we believe that it is a suboptimal solution since it will increase
ROS generation.

In terms of ROS, we have shown that the AuNPs have no effect on additional ROS
generation during electroporation. At the same time, ESOPE protocols trigger ~20% higher
ROS when compared to the nanosecond protocols used in the study. The result is in
agreement with the available knowledge [31]. Minimizing ROS is a priority in the context
of gene delivery due to the detrimental effects of oxidative damage on the plasmid [58].

In this study, we have also analyzed the effect of frequency during nanosecond bursts,
and it was shown that 1 kHz pulses are inferior to 1 MHz protocols or ESOPE bursts. Com-
pressing the pulses into an MHz burst triggers a phenomenon of residual TMP accumula-
tion between the consequent pulses [45]. The capability to prevent complete depolarization
of the cell membrane between the pulses positively affects the number and stability of
the pores and, thus, improves electrotransfer. This phenomenon was recently confirmed
in silico [59], in vitro [56,60], and in vivo [61]. Based on the results, we can conclude that
the application of nanosecond pulses, which are compressed into an MHz burst, can be
successfully used for gene delivery as a natural evolution of ESOPE procedures since
the whole electroporation field is moving towards the shorter pulse duration range. The
application of shorter pulses enables better control of input energy and minimizes muscle
contractions, oxidative damage, and the negative effects of electric field inhomogeneity in
the tissue.

We have also shown that the size of AuNPs has an effect on gene delivery during
electroporation. Bigger nanoparticles (i.e., 22 nm) showed the highest increase in median
GFP fluorescence intensity when compared to 14 or 9 nm AuNPs. The result partly supports
the data by Miklavčič et al. [43].

Finally, it should be noted that AuNPs, while routinely used in biomedical applications,
can cause skin pigmentation [62], which is undesired. Therefore, future studies with other
noble metals, especially metal oxide nanoparticles (i.e., magnetic iron oxide NPs), which
are cheap, have excellent biocompatibility, and can be synthesized with a positive surface
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charge, would be of great interest and deserve further development of electroporation-
assisted gene delivery technology.

5. Conclusions

The gene delivery using ESOPE protocols can be significantly improved with AuNPs;
however, the efficacy is strongly dependent on the surface charge of AuNPs and their
size. The application of lower PEF amplitude during ESOPE minimizes ROS generation.
At the same time, AuNPs are not effective with nanosecond protocols. However, MHz
protocols are competitive in the context of gene delivery by themselves, resulting in low
ROS generation, preserved viability, and easier procedure (do not require AuNPs) to trigger
comparable efficacy.
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