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Abstract: Exposure-response (E-R) is a key aspect of pharmacometrics analysis that supports drug
dose selection. Currently, there is a lack of understanding of the technical considerations necessary for
drawing unbiased estimates from data. Due to recent advances in machine learning (ML) explainabil-
ity methods, ML has garnered significant interest for causal inference. To this end, we used simulated
datasets with known E-R “ground truth” to generate a set of good practices for the development of
ML models required to avoid introducing biases when performing causal inference. These practices
include the use of causal diagrams to enable the careful consideration of model variables by which
to obtain desired E-R relationship insights, keeping a strict separation of data for model-training
and for inference generation to avoid biases, hyperparameter tuning to improve the reliability of
models, and estimating proper confidence intervals around inferences using a bootstrap sampling
with replacement strategy. We computationally confirm the benefits of the proposed ML workflow
by using a simulated dataset with nonlinear and non-monotonic exposure–response relationships.

Keywords: machine learning; exposure-response; causal inference

1. Introduction

Exposure-response (E-R) analysis is an integral part of clinical drug development and
can be highly informative for dose-selection [1]. Accounting for confounders, factors that
simultaneously affect both exposure and response, is key to E-R analysis. While the issue
of confounded E-R relationships is well established for monoclonal antibodies (mAbs) in
the treatment of inflammatory indications such as rheumatoid arthritis and inflammatory
bowel disease (IBD) [2], there are a set of good practices that have been proposed to ensure
the validity of conclusions that are drawn from such E-R analyses [3].

While many methodologies exist for performing E-R analyses [1], the advent of ma-
chine learning (ML) and deep learning (DL) [4–6] opens up a novel approach. To address
the presence of confounders that may affect either exposure and/or response in nonlinear
manners and to explore the potential benefits of DL in E-R analysis, the FDA authors [7]
generated synthetic data that involved complex, nonlinear relationships and compared
traditional logistic regression with DL models. Using synthetic data, the DL approach more
accurately adjusted for confounders such that the identified E-R was in good agreement
with the known ground truth [7]. Additionally, when estimating heterogeneous treat-
ment effects, the potential benefits of ML in handling covariates that manifest nonlinear
relationships in the presence of data noise was also demonstrated [8].

More recently, a number of different statistical and ML models were applied to analyze
the exposure-response (E-R) for efficacy from oncology clinical trials [9]. Specifically, a
tree-based ensemble ML algorithm (XGBoost) was compared against logistic regression
and the Cox proportional hazards model with elastic net penalty, for binary and survival
clinical outcomes, respectively. The methodology is based upon the computation of Shapley
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Additive Explanations (SHAP) [10], which has been used to quantify the contribution of
explanatory variables to hazard ratios in the setting of ML models of survival data [11].
While SHAP analysis has become widely applied in a number of different pharmacometrics
modeling applications (e.g., [12,13]), care is needed in the ML workflow to avoid drawing
biased estimates of the E-R relationship and to ensure that the confidence intervals are
representative of the model uncertainty. In this work, we highlight key methodological
considerations that enable sound ML analysis and describe a workflow that conforms
to these principles. First, we emphasize, via computational simulations using synthetic
datasets that arise from a two-phase clinical trial design, the need for a causal diagram
to identify the set of variables needed to be included in the analysis. Additionally, we
underline the implications of these methodological considerations on the ML results for
E-R analysis, as well as the need for a set of good practices to avoid potential pitfalls.

2. Methods
2.1. Synthetic Dataset

Because this work is methodological in nature, the principles and approaches dis-
cussed here are widely applicable to a variety of datasets. In this work, we simply syn-
thesized a dataset where the ground truth functional relationships between variables are
known in order to facilitate the illustration of concepts and strengths of a ML-based ER
analysis framework. Therefore, we reserved the mathematical details of the synthetic
data generation to Appendix A, but here we briefly describe the structure of the dataset
(Figure 1).
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in the maintenance stage. The variables y1 and y2 represent measured binary outcome variables at 
the end of the induction and maintenance stages, which are stochastically determined from the 
latent health status variables hM and hF, respectively. 
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Figure 1. Causal structure of a synthetic clinical trial dataset with two randomized treatment stages
(induction (I) and maintenance (M)). The variable subscript I refers to variables from the induction
stage: hI represents the health status; xI1, xI2, xI3, and xI4 represent covariates; rI represents a
treatment randomization variable whereby patients were randomized active treatment arm when
rI = 1 or placebo arm when rI = 0; cI represents a confounding variable from the beginning of the
induction stage; tI represents drug exposure in the induction stage. The variable subscript M refers to
variables from the maintenance stage. Correspondingly, hM, xM1, xM2, xM3, rM, cM, and tM represent
the values in the maintenance stage. The variables y1 and y2 represent measured binary outcome
variables at the end of the induction and maintenance stages, which are stochastically determined
from the latent health status variables hM and hF, respectively.
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We synthesized a dataset analogous to a clinical trial with two treatment randomization
stages, an induction stage (I) and a maintenance stage (M). This is similar to two-stage trials
designs in the IBD therapeutic area [14,15], where there is a need for therapies that provide
lasting durable responses. The two-stage trial design allows for assessing the safety and
efficacy of a therapy following an initial induction treatment stage as well as a subsequent
maintenance treatment stage.

The synthetic dataset had two binary outcome variables, y1 and y2, which can be
interpreted as whether or not patients had favorable outcomes at the end of induction
and maintenance, respectively (Figure 1). The outcomes were probabilistically determined
from patients’ health status, and terms were included to capture health status at the start
of induction (hI), the start of maintenance (hM), and the final health status at the end of
maintenance (hF). We considered health status as latent variables that were not directly
measurable, and thus not available for ML-based analyses. Treatment randomization for
induction and maintenance was determined by the Bernoulli random variables rI and rM,
respectively, while tI and tM reflect drug exposure during the two stages, respectively.
Similar to actual clinical trials, only the subset of patients on the active treatment arm
during induction (rI = 1) continued onto the maintenance stage. The dataset includes
confounding factors, cI and cM, that impact both the exposure and outcome in the induction
and maintenance stages, respectively. Other random variables were included in the dataset
with a random covariance structure (i.e., xI1–xI4 and xM1–xM3); however, these variables
did not have a causal impact on health status or outcomes.

The final synthetic dataset consists of 2000 patients, of whom 40.2% had a favorable
outcome at the end of induction (i.e., y1 = 1). From this subset, 943 patients continued
onto the maintenance stage, and 78.2% of patients had a favorable outcome at the end
of maintenance (i.e., y2 = 1) (Figure S1). While we utilized a complex data structure to
illustrate the principles of variable selection through the use of causal diagrams and to
demonstrate how the proposed ML E-R framework adjusts for confounding effects, we
note these principles are applicable as well to simpler trial settings.

2.2. Machine Learning

In this analysis, we synthesized data with nonlinear relationships between explanatory
variables and outcomes to demonstrate the utility of a ML framework to characterize these
relationships. Specifically, we created three models aimed at characterizing the exposure
response relationships between tI and y1, tM and y2, and tI and y2 (Figure 1), referred
to as the induction model, maintenance-only model, and maintenance from induction
model, respectively. The selection of variables for these models are discussed in the
Results section (Selection of explanatory variables for ML-based E-R analysis). We utilized
XGBoost binary classification algorithms for these analyses, which is a non-parametric
tree-based ML algorithm [16]. While we demonstrated the utility of the XGBoost algorithm
in relatively simple synthetic datasets in this work, XGBoost has the advantages of scaling
well with many explanatory variables, handling missing values, and working well with
heterogeneously distributed data.

2.3. SHAP Analysis

Shapley Additive Explanations (SHAP) is a ML explainability framework with the-
oretical underpinnings in cooperative game theory [10]. SHAP analysis decomposes the
marginal effect of explanatory variables (SHAP values) on ML predictions. For consistency
with the data generation process, we extracted SHAP values in the log odds rather than
probability domain using the SHAP package [10]. We denoted terms with a “hat” notation
when they related to model-estimated terms. In the SHAP formulation, a model prediction
f̂ (x) is equal to an estimated expected value (φ̂0) plus the sum of SHAP values of all
explanatory variables, as shown in (1):

f̂ (x) = φ̂0 + ∑
v∈S

φ̂v (1)
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where S represents the set of explanatory variables, and φ̂v is the SHAP value for the
explanatory variable v.

2.4. Ground Truth Marginal Effects

Utilizing synthetic data enabled comparison of model-estimated marginal effects
(SHAP values) with known ground truth marginal effects of explanatory variables. A
detailed mathematical description of how ground truth marginal effects were calculated
can be found in Appendix A. In brief, the synthetic outcomes of the dataset were generated
by defining the impact of explanatory variables on outcomes of the log odds domain, which
can be thought of as the ground truth marginal effects of the explanatory variables. The
ground truth marginal effects were mean subtracted to enable direct comparison with
SHAP values (see Appendix A for details).

3. Results

In this section, we propose a set of good practices necessary for using ML and SHAP
values for E-R analysis and the computational results of adopting them within the ML
workflow. In each of the subsections, we describe in detail the computational steps involved
and illustrate (via the synthetic data) their importance by comparing to the alternate results
if the proposed steps are not followed.

3.1. Generating Unbiased Predictions and SHAP Values

While ML models have the flexibility to describe complex nonlinear relationships, this
property could result in overfitting on training data unless proper care is taken [17]. We first
demonstrated how an XGBoost model generates biased predictions on training data. Training
data or in-training sample data (henceforth referred to as in-sample data) refers to data that was
used to train a model. This contrasts with out-of-sample data which refers to data that was not
utilized to train a model. According to the schematic in Figure 2A, we utilized the induction
model with explanatory variables {xI1, xI2, xI3, xI4, cI, tI} to train an XGBoost model to predict
the binary outcome y1. Figure 3A shows that when we generated model-based predicted
probabilities on in-sample data (ŷin-sample), there was a clear separation dependent on y1 status
such that predicted probabilities for y1 = 1 were greater than predicted probabilities for y1 = 0
in all cases. This represents a perfect classification of y1, with classification performance of
1.0 when evaluated using the area under the receiver operator curve (AUROC); however, in
this synthetic dataset, the ground truth probabilities are known and cannot be dichotomized
exactly by y1 status (see inset in Figure 3A). Using the ground truth y1 probabilities, the
maximum theoretical performance was AUROC = 0.84 rather than 1.0, suggesting the model
performed implausibly well due to overfitting. Moreover, in Figure 3B, we assessed the
reliability of the model, which relates to how well the predicted probability distribution relates
to the true probability distribution. Here, the binned ŷin-sample did not reliably correspond
to the empirical rates of y1. In real datasets, the ground truth probabilities are unknown;
however, through this synthetic example we demonstrated that ŷin-sample can be biased toward
the actual outcomes, which can yield inflated performance metrics and unreliable predictions.

A standard approach to generate unbiased predictions is to use a k-fold cross-validation
schema, as illustrated in Figure 2B. In this methodology, a 1

k th of the dataset is split into
out-of-sample data that is reserved to generate predictions and inferences, while the re-
maining k−1

k th of the data is in-sample data utilized to train a model. Having the separation
between in-sample and out-of-sample data ensures that models do not have the ability
to overfit on out-of-sample data upon which predictions are generated. This process is
repeated for k-folds to cover the generation of predictions across the entire dataset, which
is known as cross-validation. We utilized a 10-fold cross-validation approach to generate
out-of-sample predictions (ŷout-of-sample), which are specifically predictions on data that
was not used to train the model. In contrast to ŷin-sample, the ŷout-of-sample distribution
was not perfectly separable based on y1 status (Figure 3C). The classification performance
based on ŷout-of-sample was AUROC = 0.78, which was plausibly less than the theoretical
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maximum of 0.84. ŷin-sample were generally greater than ŷout-of-sample when y1 = 1 and vice
versa when y1 = 0 (Figure 3E), further illustrating the bias in ŷin-sample toward the outcomes.
Because SHAP analysis is utilized to explain model predictions according to Equation (1),
SHAP values corresponding to ŷin-sample were on average greater than SHAP values corre-
sponding to ŷout-of-sample when y1 = 1 and vice versa when y1 = 0 (Figure 3F). All together,
this highlights that ŷin-sample can be biased toward the outcomes, and explaining biased
predictions using SHAP analysis can perpetuate these biases onto SHAP values. Ensuring
a separation between in-sample training data and out-of-sample data for prediction and
inference generation through a cross-validation approach can help to mitigate biases in
predictions and inferences.

Figure 3D demonstrates that ŷout-of-sample provided more reliable predictions than
ŷin-sample (Figure 3B), with points closer to the line of parity for ŷout-of-sample. Nevertheless,
for many of the binned ŷout-of-sample, the corresponding empirical rates of y1 were not
within the expected 95% binomial confidence intervals estimated from the predictions,
suggesting that the ŷout-of-sample still exhibited poor reliability. Next, we demonstrated how
hyperparameter tuning improved the reliability of predictions and SHAP-based inferences.
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Figure 2. Schematic to generate in- vs. out-of-sample predictions and SHAP values. (A) To generate
in-sample predictions and SHAP values, the full dataset is used both to train a model and to generate
predictions and SHAP values. (B) Out-of-sample predictions and SHAP values are generated using a
k-fold cross-validation schema, whereby in each fold, a model is trained on in-sample training data
and predictions and SHAP values are generated on out-of-sample data.

3.2. Generating Reliable Predictions and SHAP Values

ML models can be prone to overfit on training data. As such, it is standard practice to
keep a strict separation between in-sample data used for model training and out-of-sample
data used for assessing model performance and generating inferences. This separation
prevents predictions and inferences from being biased toward the outcomes, but it does
not preclude overfitting to the training data and consequent poor generalizability. ML
models have hyperparameters that can be tuned to optimize the bias–variance tradeoff
to improve generalizability. As each ML model has its own set of hyperparameters, it is
beyond the scope of this work to discuss how specific hyperparameters alter model training.
Moreover, there are many hyperparameter tuning methods with their own strengths
and limitations [18]. For this analysis, we utilized an efficient Bayesian hyperparameter
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search algorithm using the hyperopt package to optimize AUROC using 5-fold cross-
validation and 25 search iterations in the XGBoost hyperparameter search space defined in
Supplementary Table S1.
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Figure 3. In-sample vs. out-of-sample prediction reliability and differences in SHAP value estimates
(without hyperparameter tuning). Distribution of ŷin-sample (A) and ŷout-of-sample (C) colored by y1 status.
Inset in (A) shows the distribution for the true probability (σ(hM)). (B) Reliability of ŷin-sample and
(D) ŷout-of-sample with empirical rates of y1, with the binning schema being identical to the corresponding
ŷin-sample (A) and ŷout-of-sample (C) distribution plots. Vertical bars in (B,D) represent the expected
95% binomial confidence intervals based on binned ŷin-sample and ŷout-of-sample values, respectively.
(E) Concordance between ŷin-sample and ŷout-of-sample demonstrating predominantly higher ŷin-sample

values when y1 = 1, vice versa when y1 = 0. (F) Bar plot demonstrating mean in-sample SHAP values
were greater y1 = 1, vice versa when y1 = 0 for each of the induction model features.
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Hyperparameter tuning to optimize cross-validation model performance can im-
prove the generalizability of a model. Figure 4A demonstrates there was not an exact
dichotomization of ŷin-sample based on y1 status after hyperparameter tuning as was seen
without hyperparameter tuning (Figure 3A). ŷin-sample also tended to be much more reliable
after hyperparameter tuning (Figure 4B) compared to without hyperparameter tuning
(Figure 3B), with empirical rates of y1 closely corresponding to predicted probabilities.
In this example, the distribution and reliability of ŷin-sample was similar to that of the
ŷout-of-sample after hyperparameter tuning (Figure 4C,D). However, even after hyperpa-
rameter tuning, there were slight differences in the predictions, whereby ŷin-sample were
generally greater than ŷout-of-sample when y1 = 1 and vice versa when y1 = 0 (Figure 4E).
These differences in ŷin-sample vs. ŷout-of-sample led to minor differences in classification
performance in terms of AUROC (0.85 vs. 0.82, respectively). Given that model perfor-
mance based on ŷin-sample was slightly above the maximum theoretical performance of
0.84 suggests that ŷin-sample may still be biased toward the outcome due to overfitting. We
show in Figure 4F that SHAP values corresponding to ŷin-sample vs. ŷout-of-sample were simi-
lar for this dataset after hyperparameter tuning. However, in general, there is no guarantee
that ŷin-sample and in-sample SHAP values would be unbiased after hyperparameter tuning
for other datasets and other ML models. Therefore, we suggest as a best practice to generate
predictions and SHAP-based inferences on out-of-sample data that the model has not been
trained on.

3.3. Selection of Explanatory Variables for ML-Based E-R Analysis

In this analysis, ML was utilized to estimate the marginal effect of exposure upon
response variables of interest. The selection of explanatory variables is an important
step towards generating the desired inferences from a ML-based E-R analysis, and
a causal diagram such as Figure 1 can guide this step [19,20]. It is important for a
model to account for potential confounders, which are variables that impact exposure
and response (e.g., cI and cM). Failure to account for confounding can lead to biased
estimates of an E-R relationship or, in extreme cases, lead to the false conclusion that
an E-R relationship exists when there is none. Explanatory variables that can explain
the variability in response are typically included in traditional E-R analyses to improve
the precision of inferences. ML models can generally accommodate a large number
of explanatory variables and multicollinearity, and this can be advantageous when
attempting to account for all potential confounding variables. Of note, it is important to
use the causal diagrams such as Figure 1 when deciding which variables to leave out of
the analysis.

To examine the effect of exposure tI on outcome y1, we utilized explanatory vari-
ables {xI1, xI2, xI3, xI4, cI, tI} in the induction model. To examine the effect of tM on y2, we
utilized explanatory variables {xM1, xM2, xM3, cM, tM, y1} in the maintenance-only model.
One could include baseline variables such as cI and tI in the maintenance-only model,
which would better estimate the latent variable hM, and thereby improve predictive per-
formance and precision of inferences. However, in this case, inferences drawn regarding
the effects of cI and tI on y2 should be interpreted with caution since they would partially
be subsumed by y1. Lastly, to examine the effect of tI on y2, we utilized the induction
stage explanatory variables {xI1, xI2, xI3, xI4, cI, tI} to predict y2 in the maintenance from
induction model. Specifically, we intentionally did not include y1 in the maintenance
from induction model because including y1 would be expected to partially mask the
effect of tI upon y2.
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Figure 4. In- vs. out-of-sample prediction reliability and differences in SHAP value esti-
mates (with hyperparameter tuning). Distribution of ŷin-sample (A) and ŷout-of-sample (C) col-
ored by y1 status. Reliability of (B) ŷin-sample and (D) ŷout-of-sample with empirical rates
of y1, with the binning schema being identical to the corresponding (A) ŷin-sample and
(C) ŷout-of-sample distribution plots. Vertical bars in (B) and (D) represent the expected 95%
binomial confidence interval based on binned ŷin-sample and ŷout-of-sample values, respectively.
(E) Concordance between ŷin-sample and ŷout-of-sample demonstrating slightly higher ŷin-sample values
when y1 = 1, vice versa when y1 = 0 in general. (F) Bar plot demonstrating mean in-sample SHAP
values were similar for each of the induction model features.
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3.4. SHAP Analysis to Infer Functional Relationships

SHAP dependence plots can be utilized to quantitatively characterize how a response
depends upon an explanatory variable which lends itself to characterizing E-R relationships.
In this analysis, SHAP values were generated in the log odds domain on out-of-sample
data using 10-fold cross-validation after hyperparameter tuning to generate unbiased
and reliable SHAP values. In each of the SHAP dependence plots, the SHAP value for
a given explanatory variable v (which represents the estimated marginal effect of the
v on response) was plotted against the value of v. Figure 5 depicts the key dependence
plots for the induction model. The estimated E-R relationship on the induction model
(Figure 5A) closely approximated the ground truth marginal effects of tI on y1. SHAP
analysis on the ML model also captured the inverse U-shaped confounding effect of cI on
y1 (Figure 5B), highlighting the ability of non-parametric ML models to capture potential
nonlinear relationships; however, poor approximations to the ground truth were apparent
at the tail ends of the cI distribution. While these SHAP dependence plots reveal the
functional relationships between explanatory variables and response, it is challenging to
assess wherein and to what extent uncertainties in the functional relationships exist. To
address this concern, we next discuss how bootstrap analysis can be utilized to estimate
confidence intervals around SHAP values.
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3.5. Realistic Estimation of Confidence Intervals

Quantification of uncertainty in SHAP values can help one address important ques-
tions in the learned functional relationships, including whether there may be biases in the
model inferences and whether estimated functional relationships are statistically significant.
We utilized a nonparametric bootstrap-based approach to estimate confidence intervals for
SHAP values. In this approach, we draw N samples from our datasets with replacement
to train an XGBoost model to predict a response, where N is the number of patients in
the dataset. SHAP values are then estimated on the out-of-sample data. This process
is repeated for an arbitrarily large number of bootstrap iterations (500 iterations in this
analysis), from which we estimated the 95% confidence intervals for SHAP values.

Sampling with replacement preserves sampling independence, is necessary for the
variability of in-sample datasets if drawing N samples and is a standard approach that can
provide realistic confidence interval estimates [21]. In contrast, subsampling via sampling
without replacement requires selecting an arbitrary training vs. test split size which can lead
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to unrealistically small or unnecessarily large confidence intervals and/or poor estimations
of functional relationships if the training size is too small or too large. Confidence intervals
may not necessarily capture the mean ground truth marginal effects due to model and/or
data limitations.

The forest plot in Figure 6A demonstrates that the 95% confidence intervals gener-
ated using various approaches. In particular, the proposed bootstrapped sampling with
replacement approach for tI and cI in the induction model is shown in black; in comparison,
the 10:90 train–test–split sampling without replacement approach (shown in green) poorly
approximated the ground truth effects of tI and cI and yielded much larger confidence
intervals for tI; finally, the 90:10 train–test–split sampling without replacement approach
(shown in blue) yielded much smaller and unrealistic confidence intervals for both tI and
cI compared to sampling with replacement (black). While the ML model was imperfect
and, hence, confidence intervals using the sampling with replacement approach did not
perfectly capture ground truth marginal effects in the induction nor the maintenance-only
models (Figure 6A,B, respectively), this computational experiment demonstrated the need
for the correct sampling approach to ensure good estimation of the uncertainties in the
inferred relationships.

3.6. Bootstrapped Feature Dependence Plots

Using the bootstrap (sampling with replacement) approach, we estimated the mean
and 95% confidence intervals for all SHAP values. This was utilized to generate boot-
strapped feature dependence plots in Figures 7 and 8. Like Figure 5, bootstrapped feature
dependence plots can be utilized to characterize the functional relationships between
explanatory variables and responses. Additionally, they allow for uncertainty characteriza-
tion within the functional relationships. In the left panels, the mean and 95% confidence
intervals SHAP values of individual patients are plotted against the explanatory variable
value. The colors represent different decile bins of the explanatory variables, and the right
panels summarize the binned data with the mean and 95% confidence intervals SHAP
values of each bin versus median explanatory variable values.

While the bootstrapped feature dependence plots for the induction model are shown in
Figure 7A,D, Figure 7A,B demonstrate that the estimated effects of tI on y1 were comparable
to the ground truth and the model misestimated effects for the 2nd–4th quantile groups,
with ground truth marginal effects outside of the 95% confidence intervals (Figure 7B).
The effect of cI on y1 was well captured in Figure 7C,D with minor deviations outside of
the 95% confidence intervals (Figure 7D). The bootstrapped feature dependence plots for
the maintenance-only model are shown in Figure 7E–H. The effect of tM on y2 was well
captured (Figure 7E,F) with the ground truth marginal effects within the 95% confidence
interval for all bins except the placebo group (tM = 0) (Figure 7F). The effect of cM on y2
was well-captured (Figure 7G,H) with the ground truth marginal effects within the 95%
confidence interval for all except the last bin (Figure 7H).

These bootstrapped feature dependence plots on simulated data demonstrate that the
XGBoost model can capture nonlinear E-R and confounding relationships. The fidelity of
estimations to ground truth is expected to be dataset dependent, but also dependent upon
the explanatory variables included in the model. In the maintenance from induction model,
we were interested in inferring the effect of tI on y2. According to the causal diagram
(Figure 1), there is no direct relationship between tI and y2 but the effect of tI is mediated
through the latent variable hM. To estimate the effect of tI on y2, we did not include y1 as an
explanatory variable to predict y2 in the maintenance from induction model as previously
mentioned (see the section Selection of explanatory variables for ML-based E-R analysis).
Using this approach, we show that the inferred tI-y2 functional relationship closely matched
the ground truth (Figure 8), with slight deviations at the extremes of the tI distribution that
lay outside the 95% confidence intervals.
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Figure 6. Realistic estimation of confidence intervals for SHAP values with bootstrap sample with
replacement strategy. (A) Compared to sample with replacement approach (black), the 10:90 train-test
split method (green) yielded larger confidence intervals for SHAP values or poor estimation of
functional relationships, while the 90:10 train–test–split method (blue) yielded unrealistically small
confidence intervals in the induction model. The confidence intervals using the sampling with
replacement approach did not perfectly capture all the ground truth marginal effects (red) in the
induction (A) nor the maintenance-only models (B).
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Figure 7. Bootstrapped feature dependence plots for explanatory variables in the induction (A–D) and
maintenance-only (E–H) models. Left panels show individual-level bootstrapped feature dependence
plots (A,C,E,G) colored by deciles of explanatory variable values compared to ground truth marginal
effects (black dots). Binned data is summarized in corresponding right panels (B,D,F,H), which
shows the mean SHAP values against the median explanatory variable values and the mean ground
truth marginal effects (X). Gray error bars represent 95% confidence intervals.
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effects (X). Gray error bars represent 95% confidence intervals.

4. Discussion

ML models are inherently non-parametric and can work well in predicting targets
when nonlinear relationships exist between explanatory variables and outcomes such as an
Emax or an inverted U-shaped E-R relationship. Rather than relying on the expertise of a
modeler to define the functional form of relationships, using ML the functional relation-
ship can be derived in a data-driven approach. However, in contrast to well-established
statistical methodologies for the analysis of E-R relationships, the use of ML models and
SHAP values for E-R analysis [9] is nascent; hence, there is a need for understanding the
potential pitfalls of such ML-based approaches, and consequently establish a set of good
practices aimed at overcoming them.

In this work, we highlight the importance of the following components in the ML
workflow in order to ensure accurate, unbiased results: (1) perform SHAP analysis only
on out-of-sample data; (2) perform hyperparameter tuning and check model reliability;
(3) generate realistic confidence intervals via appropriate sampling with replacement;
(4) leverage causal diagrams to determine which variables should be incorporated into the
ML model. In particular, we utilized synthetic binary classification datasets that mimic a
two-phase clinical trial, with known functional relationships between explanatory variables
and outcomes and demonstrated the results using the tree-based XGBoost ML models for
binary classification in conjunction with the SHAP explainability framework. For each of the
above mentioned components of the ML workflow, we showed via synthetic data the perils
if the proposed good practices are not followed, including: (1) over- and under-estimation
of the E-R effects; (2) over- and under-estimation of the predicted confidence intervals; and
(3) use of inappropriate variables that either leave out important confounders or mask the
true E-R relationship. Finally, we showed that even with a challenging synthetic dataset
that mimics a two-phase clinical trial which exhibits nonlinear and/or non-monotonic
E-R and confounding relationships, the ML model was nevertheless able to adequately
infer the underlying relationships. This result suggests that the proposed ML workflow
is adequate for the E-R task at hand and provides a promising alternative to parametric
statistical modeling, which would be challenging to perform due to the nonlinearity and
non-monotonicity involved.

The application of these proposed practices should enable sound model-based infer-
ences. It is important to note that while ML models have favorable properties that may
accurately estimate E-R relationships even in the setting of strong confounding effects, ML-
based inferences are subject to certain biases and limitations, as with any other model [7].
While we have addressed key methodological factors that may impact the results of E-R
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analysis, there are areas for further development that are beyond the scope of the current
work. In particular, the confluence of causal graphs and SHAP analysis offers a way to
advance these concepts [22] and remains a topic for future research.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics15051381/s1, Figure S1: Characteristics of synthetic
datasets; Table S1: Hyperparameter search space for XGBoost models.
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Appendix A.

Appendix A.1. Data Generation Process

Synthetic patient data was generated by sampling variables from a multivariate normal
distribution, followed by data transformation, and, finally, synthesizing outcomes. We
use capital letters X = (HI, XI1, XI2, XI3, XI4, CI, CM, TI, TM) to denote random variables,
while lower case letters (e.g., hI, xI1, xI2, . . . rM, cM, and tM) denote the associated realized
values (after sampling and/or transformations have taken place). For each patient, a nine-
dimensional vector was sampled from a multivariate normal distribution with a vector of
mean values µ and the covariance matrix ∑ defined in (A1). The covariance structure was
selected to explicitly impose correlation between the confounding variable cI and tI as well
as cM and tM. The covariance structure also imposed correlations between the health status
hI and the set of covariates {xI1, xI2, xI3}, as well as between the covariate xI4 and exposure
variables {tI, tM}.

X ∼ N9(µ, Σ)

HI
XI1
XI2
XI3
XI4
CI
CM
TI
TM


∼ N





−2
ln(5)
ln(5)
ln(5)
ln(5)
ln(2)
ln(2)
ln(5)
ln(5)


,



0.0 −0.1 0.1 −0.1 0.0 0.1 0.0 0.0 0.0
−0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
−0.1 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.3 0.3
0.1 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.0
0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.2
0.0 0.0 0.0 0.0 0.3 0.2 0.0 0.1 0.0
0.0 0.0 0.0 0.0 0.3 0.0 0.2 0.0 0.1




(A1)

Appendix A.2. Induction Stage

The formulae defining the independent variables in the induction stage are shown
in (A2). Initial health state (hI) was defined as the realized value of HI. The random
variables XI1, XI2, XI3, XI4, and CI, were log transformed to generate xI1, xI2, xI3, xI4, and
cI, respectively. The treatment randomization term rI was defined as a Bernoulli random
variable with 0.5 probability. Drug exposure in the induction stage (tI) was defined as ln(TI)
or 0, which was conditional upon rI. While log transformation was not strictly necessary, it
aligns with the non-negative distribution of variables that are common for biomarkers and
drug exposure in clinical datasets.

https://www.mdpi.com/article/10.3390/pharmaceutics15051381/s1
https://www.mdpi.com/article/10.3390/pharmaceutics15051381/s1
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Definition of independent variables in the induction stage:

hI := HI
xI1 := XI1
xI2 := ln(XI2)
xI3 := ln(XI3)
xI4 := ln(XI4)
cI := ln(CI)
rI := Bernoulli(0.5)

tI :=
{

ln(TI), rI = 1
0, otherwise

(A2)

The measured dependent variable for the induction stage was a binary variable y1 that
indicated whether a patient had a favorable outcome at the end of the induction stage. The
value y1 was stochastically determined from the unmeasured latent variable hM, which
represents the health status at the end of the induction stage and can be simultaneously
interpreted as the log odds of a favorable outcome. The sigmoid function (A3) was used to
convert hM to the probability of a favorable outcome:

σ(x) = 1/
(
1 + e−x) (A3)

We simulated cI to have a nonlinear effect on hM; the specific functional form is
unimportant, but we parameterized the cI effect on hM using a Weibull probability density
function (A4).

W(x) = 10
( x

3

)2
e−(x/3)3

(A4)

We implemented a saturable effect of drug exposure tI on hM using the Hill function (A5)
with km = 2 and Hill coefficient = 2. In the induction stage, we set Emax = 3.

Hill(x) =
Emax

1 + (2/x)2 (A5)

The nonlinear impacts of cI and tI on hM were added to hI, along with a constant
deterioration of health (−1) according to Equation (A6a). Lastly, y1 was generated as a
Bernoulli random variable with σ(hM) probability given in (A6b).

Definition of dependent variables in the induction stage:

hM := hI + W(cI) + Hill(tI |Emax = 3)− 1 (A6a)

y1 := Bernoulli(σ(hM)) (A6b)

Appendix A.3. Maintenance Stage

The dataset for the maintenance stage was synthesized only for the subset of pa-
tients in the active treatment arm of the induction stage (i.e., rI = 1), which was 943 out of
2000 synthetic patients. The formulae defining the independent variables in the mainte-
nance stage are shown in (A7). Health status at the start of maintenance, hM, was set to
be the health status at the end of induction. The values of variables xM1, xM2, and xM3
correspond to the induction stage variables xI1, xI2, and xI3, respectively, with the addition
of Gaussian noise (with mean of 0 and standard deviation of 0.01). The values of variables
cM, rM, and tM were defined similarly to cI, rI, and tI, respectively, in the induction stage.
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Definition of independent variables in the maintenance stage:

hM := hM
xM1 := xI1 + N(0, 0.01)
xM2 := xI2 + N(0, 0.01)
xM3 := xI3 + N(0, 0.01)
cM := ln(CM)
rM := Bernoulli(0. 5)

tM :=
{

ln(TM), rM = 1
0, otherwise

(A7)

The formulae defining the dependent variables in the maintenance stage are shown in
(A8). Dependent variables in the maintenance stage were simulated from the corresponding
maintenance variables in a similar manner to the induction stage (A6), except with Emax = 2.

Definition of dependent variables in the maintenance stage:

hF := hM + W(cM) + Hill(tM|Emax = 2)− 1 (A8a)

y2 := Bernoulli(σ(hF)) (A8b)

Appendix A.4. Ground Truth Marginal Effects of Explanatory Variables

Causal diagrams [19] such as Figure 1 provide a way to graphically represent the
dependency relationships of variables and outcomes from which one can determine what
variables to include or exclude in the analysis based on the exposure–response relationship
that is sought after. Based on Figure 1, we constructed 3 ML models: (1) an induction
model that utilized explanatory variables from the beginning of induction (xI1, xI2, xI3, xI4,
and cI) and exposure at induction (tI) to predict y1; (2) a maintenance-only model that
utilized explanatory variables from the beginning of maintenance (xM1, xM2, xM3, and cM)
and exposure at maintenance (tM) to predict y2; and (3) a maintenance-from-induction
model that utilized explanatory variables from the beginning of induction (xI1, xI2, xI3, xI4,
and cI) and exposure at induction (tI) to predict y2.

In the induction and maintenance-only models, the marginal effects of explanatory
variables were represented by terms in Equations (A6a) and (A8a), respectively. For
example, in the induction model, cI affects the log odds of a favorable outcome according
to Weibull function in Equation (A4), while tI affects the log odds of a favorable outcome
according to Hill function in Equation (A5). In the maintenance from induction model,
explanatory variables affect y2 through their effects on hM. Therefore, the terms in (A6a)
also represent the marginal effects of tI and cI on y2. Because we compared ground truth
marginal effects with model-derived SHAP values, which represent the estimated marginal
effects of explanatory variables relative to an expected value, it was necessary to center
the ground truth marginal effects of explanatory variables around an expected value. The
expected value of the marginal effect of a variable v is simply the mean effect of v across all
N patients in the dataset. We represented the marginal effects with ∆ and φ to represent
marginal effects relative to an expected value (henceforth referred to as ground truth
marginal effects) (A9).

φvi = ∆vi −
∑N

j=1 ∆vj

N
(A9)

where φvi is the ground truth marginal effect of variable v on the i-th patient, and N is the
number of patients in the dataset.

For all 3 models, we focused on the ground truth marginal effects on outcomes defined
in Equations (A6a) and (A8a), which were the effects of: tI, cI on y1; cM, tM on y2; and tI, cI
on y2. Nevertheless, other variables such as xI1, xI2, and xI3 have minor utility in predicting
outcomes due to correlations with the baseline latent health status variable hI; we did not
compare nor calculate the ground truth marginal effects for these variables in this analysis.
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