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Abstract: Nano/micromotors are artificial robots at the nano/microscale that are capable of trans-
forming energy into mechanical movement. In cancer diagnosis or therapy, such “tiny robots” show
great promise for targeted drug delivery, cell removal/killing, and even related biomarker sensing.
Yet biocompatibility is still the most critical challenge that restricts such techniques from transitioning
from the laboratory to clinical applications. In this review, we emphasize the biocompatibility aspect
of nano/micromotors to show the great efforts made by researchers to promote their clinical appli-
cation, mainly including non-toxic fuel propulsion (inorganic catalysts, enzyme, etc.), bio-hybrid
designs, ultrasound propulsion, light-triggered propulsion, magnetic propulsion, dual propulsion,
and, in particular, the cooperative swarm-based strategy for increasing therapeutic effects. Future
challenges in translating nano/micromotors into real applications and the potential directions for
increasing biocompatibility are also described.
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1. Introduction

As is well-known, cancer is a serious disease that threatens human health. Today,
it remains a medical challenge despite the progress achieved so far in pharmaceutical
science and drug discovery [1]. Among the advanced techniques, nano/micromotors are
man-made miniature devices that have arbitrary, directional, or even controllable motions
to perform special tasks in microenvironments due to the energy conversion hiding behind
their mechanical movement. Various types of energy, including chemical, light, magnetic,
ultrasound, etc., have been employed for nano/micromotor propulsion and achieved the
desired effect [2,3]. Such miniature devices can be integrated with fluorescence [4,5], electro-
chemistry [6,7], or the Raman signal-enhancement substrate [8,9] for biomarker detection
or loaded with drugs for targeted site delivery and release [10–12], thus showing great
potential for disease diagnosis and treatment. Indeed, a large number of nano/micromotors
with different designs have already been introduced for cancer diagnosis and treatment.
However, biotoxicity remains a challenge that restricts them from moving from the lab-
oratory to clinical applications. These include (a) The toxicology of nano/micromotor
components (for instance, by assessing cell viability, previous research reported that Mg/Pt
Janus micromotors show a concentration-dependent toxic trend) [13]; (b) The generation of
harmful byproducts [14]; (c) The use of toxic fuels at high concentrations [15]; and (d) The
immune response caused by nondegradable components and the use of sperm derived
from other species [16–18]. Recent advances show the great efforts made by researchers to
improve the biocompatibility of nano/micromotors.
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When using nano/micromotors for cancer treatment, the disadvantage of traditional
chemical propulsion modes is the unavoidable use of toxic fuel, which hinders their
future in vivo application [16,19]. The use of natural enzymes for catalytic bubble produc-
tion [20,21] and magnetic fields [22,23], ultrasound waves [24,25], or light [26,27] shows
great promise in providing a biocompatible method for nano/micromotor propulsion.
Another major factor that leads to biotoxicity may be the materials used to produce
nano/micromotors. For this reason, cell membranes have been used to coat nano/micromotors,
which provide a biocompatible surface mimicking cells. In addition, living cells (such as
sperm bacteria or red blood cells) have been used directly as a basic skeleton to construct
nano/micromotors [28–30]. Apart from that, driving nano/micromotors in an in vivo
microenvironment becomes much more complex since the blood flow or co-existing pro-
tein/cells/tissues can weaken their motion behavior. To address this issue, dual propulsion
modes have been introduced due to their more controllable and powerful mechanical
movement [31,32]. Finally, cooperation among groups of nano/micromotors (so-called
microswarms) could help to achieve the delivery of larger doses of loading drugs and
higher therapeutic efficacy compared to individual agents, thereby indirectly lowering the
toxicity. Related details are discussed below.

For cancer biomarker detection, the integration of nano/micromotors also plays an
important role in realizing high sensing efficiency. Normally, the attachment of an analyte
to a related sensing substrate is the basis of effective detection. For example, surface-
enhanced Raman scattering (SERS)-based sensing first needs an analyte to be adsorbed
on the surface of a Raman signal-enhanced substrate (normally noble metal nanoparticles
or with three-dimensional periodic structures), and fluorescence-based sensing needs
fluorescence materials such as quantum dots or upconversion nanoparticles to interact with
the targets. To ensure the connection between the analyte and the sensing substrate, one
simple way is to mix the SERS substrate or fluorescence materials together with the analyte
in a tube by simple shaking or vortex oscillation. However, for targets in some specific
positions, such as the channels of a microchip, it is impossible to mix the liquid using
similar operations unless we wait a long time, ranging from tens of seconds to minutes
(depending on analyte concentration, electrolyte composition, diffusion distance, etc.).
To allow autonomous diffusion of the analyte, using a piezoelectric micropump [33,34]
or an electroosmotic pump [35,36] can help to enhance mass transfer in the channels
of a microchip. However, the fabrication of such a microstructure normally requires a
complex method.

The nano/micromotor described here holds promise to serve as a tool to solve the
above problems. The migration of nano/micromotors enables the active capture of analyte,
along with the micro-mixing effect to enhance mass transfer in a microenvironment. There-
fore, the nano/micromotor is a powerful tool that can help to achieve higher efficiency
in biosensing. When discussing biocompatibility with the use of nano/micromotors for
cancer detection, the situation turns out to be simple compared to cancer treatment. Usually,
the detection of biomarkers can be conducted by in vitro experiments that require only
a small amount of blood or tissue from the body. Indeed, no direct contact between the
nano/micromotors and the body occurs. However, in in situ or the real-time detection
of biomarkers in some cases, such as the intracellular biosensing of a target miRNA [37],
the targeting of intracellular SERS sensing [38], or medical imaging [39–41], as well as the
biocompatibility of nano/micromotors, remains important.

In this review, we focus on recent advances in research attempts to improve the
biocompatibility of nano/micromotors for cancer diagnosis and therapy. We discuss
bio-friendly propulsion modes, including the biohybrid propulsion mode, ultrasound
propulsion, magnetic field, light-triggered propulsion, and dual propulsion mode, as
well as the cooperative swarm-based strategy (Scheme 1). Previous studies have already
reviewed the development of nano/micromotors for diagnosis and therapy in cancer
and infectious diseases [42]. Herein, we discuss this area from a completely different
perspective: bio-friendly designs to promote their use in real applications.



Pharmaceutics 2024, 16, 44 3 of 24

Pharmaceutics 2024, 16, x FOR PEER REVIEW 3 of 25 
 

 

diseases [42]. Herein, we discuss this area from a completely different perspective: bio-
friendly designs to promote their use in real applications. 

 
Scheme 1. Schematic illustration showing biocompatible designs of nano/micromotors for cancer 
diagnosis and treatment. 

2. Bubble Propulsion by Inorganic Catalysts 
Using inorganic catalysts to generate bubbles for nano/micromotor propulsion is the 

most traditional and well-known way to obtain in-depth information (such as motion 
mechanism or different applications) in studies in this research field. A typical example is 
the Pt-based nano/micromotor. For biocompatibility purposes, magnesium (Mg), with bi-
odegradability and motion behavior in body fluids, has been employed. Figure 1 shows 
the fabrication process of such a micromotor, in which Mg microparticles were dispersed 
on a glass slide precoated with thin layer of poly(vinylpyrrolidinone) (PVP) and coated 
with degradable polymer poly (lactic-co-glycolic acid) (PLGA) loaded with doxorubicin 
(DOX) for delivery and release of chemotherapeutic agents. During micromotor propul-
sion, H2, generated by the reaction between Mg and water, plays an important role in 
enhanced ROS scavenging, thus holding promise for tumor cell treatment [43].  

Apart from cancer treatment, Mg-based micromotors also have been introduced for 
capturing and detecting CTCs using the electrochemical method, in which Mg particle 
surfaces are immobilized with Fe3O4/P/anti-EpCAM [7]. Another inorganic material with 
ideal biocompatibility is zinc (Zn), as reported by Zhou et al. As shown in Figure 1B, the 
tubular micromotor consists of poly(aspartic acid) (PASP) with a thin intermediate Fe 
layer and internal Zn layer, and the outside surface of the microtubes (negative charge) is 
further loaded with DOX (positive charge) via electrostatic interaction. Such Zn-based 
tubular micromotors can be propelled in the presence of gastric acid and permeate the 
gastric mucus layer, increasing their retention in the stomach [44]. It is well-known that 
acids like hydrochloric acid react with CaCO3 to produce CO2 bubbles. As expected, this 
chemical reaction can be utilized for nano/micromotor propulsion. Recent work reported 
by Zhang et al. is a typical example. They used yeast cells to synthesize a nano/micromotor 
by introducing inner- and outer-mineralized CaCO3. As shown in Figure 1(Ca), inner 
nano-CaCO3 is generated by the reaction between Ca2+ ions (combined with proteins and 
polysaccharides while entering yeast cells) and CO32− (changed from CO2 produced by cell 
respiration in basic environment), while outer CaCO3 is synthesized via the one-pot 
method using Na2CO3 and CaCl2 to form crystals. This micromotor showed good self-
propulsion behavior in gastric fluid (Figure 1(Cb)). Even though the application is related 

Scheme 1. Schematic illustration showing biocompatible designs of nano/micromotors for cancer
diagnosis and treatment.

2. Bubble Propulsion by Inorganic Catalysts

Using inorganic catalysts to generate bubbles for nano/micromotor propulsion is
the most traditional and well-known way to obtain in-depth information (such as motion
mechanism or different applications) in studies in this research field. A typical example
is the Pt-based nano/micromotor. For biocompatibility purposes, magnesium (Mg), with
biodegradability and motion behavior in body fluids, has been employed. Figure 1 shows
the fabrication process of such a micromotor, in which Mg microparticles were dispersed on
a glass slide precoated with thin layer of poly(vinylpyrrolidinone) (PVP) and coated with
degradable polymer poly (lactic-co-glycolic acid) (PLGA) loaded with doxorubicin (DOX)
for delivery and release of chemotherapeutic agents. During micromotor propulsion, H2,
generated by the reaction between Mg and water, plays an important role in enhanced ROS
scavenging, thus holding promise for tumor cell treatment [43].

Apart from cancer treatment, Mg-based micromotors also have been introduced for
capturing and detecting CTCs using the electrochemical method, in which Mg particle
surfaces are immobilized with Fe3O4/P/anti-EpCAM [7]. Another inorganic material with
ideal biocompatibility is zinc (Zn), as reported by Zhou et al. As shown in Figure 1B,
the tubular micromotor consists of poly(aspartic acid) (PASP) with a thin intermediate Fe
layer and internal Zn layer, and the outside surface of the microtubes (negative charge)
is further loaded with DOX (positive charge) via electrostatic interaction. Such Zn-based
tubular micromotors can be propelled in the presence of gastric acid and permeate the
gastric mucus layer, increasing their retention in the stomach [44]. It is well-known that
acids like hydrochloric acid react with CaCO3 to produce CO2 bubbles. As expected, this
chemical reaction can be utilized for nano/micromotor propulsion. Recent work reported
by Zhang et al. is a typical example. They used yeast cells to synthesize a nano/micromotor
by introducing inner- and outer-mineralized CaCO3. As shown in Figure 1(Ca), inner
nano-CaCO3 is generated by the reaction between Ca2+ ions (combined with proteins and
polysaccharides while entering yeast cells) and CO3

2− (changed from CO2 produced by cell
respiration in basic environment), while outer CaCO3 is synthesized via the one-pot method
using Na2CO3 and CaCl2 to form crystals. This micromotor showed good self-propulsion
behavior in gastric fluid (Figure 1(Cb)). Even though the application is related to gastritis
therapy instead of cancer treatment, this excellent work provides a new bubble-propelled
micromotor with high biocompatibility that, importantly, could be adapted to work in vivo
in the stomach [45].
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Figure 1. Bubble-propelled nano/micromotors using biocompatible inorganic catalysts. (A) Mg
as biocompatible inorganic catalyst for micromotor in tumor treatment: (a) Schematic illustration
of fabrication process of Mg-based micromotor, surface modification, and propulsion mechanism;
and (b) Its mechanism in decreasing intracellular ROS by H2 delivery. Adapted from [43] with
permission, copyright Elsevier Ltd., Amsterdam, The Netherlands, 2020. (B) Schematic structure
of DOX-loaded Zn-based tubular micromotor for targeted drug delivery in the stomach. Adapted
from [44] with permission, American Chemical Society, Washington, DC, USA, 2019. (C) CaCO3

as biocompatible inorganic catalyst for micromotor: (a) Schematic illustration of mechanism of
fabrication of yeast micro/nanorobot (Cur@CaY-robot) via dual biomineralization, in which inner
nano-CaCO3 inside yeast cells is biomineralized through cell respiration and outer nano-CaCO3

though axially asymmetric crystallization. (b) Time-lapse images showing self-propelled motion of a
single Cur@CaY robot. Adapted from [45] with permission, American Chemical Society, Washington,
DC, USA, 2023.

3. Bio-Hybrid Nano/Micromotor

Natural entities such as sperm cells, red blood cells, etc., possess unique proper-
ties such as limited immunogenicity, high binding specificity, and the use of bio-safe
fuel from the surrounding environment for propulsion. The introduction of biomateri-
als endows miniaturized actuators with high biocompatibility for working in biological
systems [46–48]. Natural entity-based nano/micromotors can be categorized into the fol-
lowing four groups.

(A) Cell membrane. Inspired by nature, the cell membrane, which has unique prop-
erties such as immune escape, specific recognition, prolonged circulation time, and high
biocompatibility, has attracted the interest of researchers, who coat them onto the surfaces
of micromotors. The biological function of natural cell membrane endows the micromotor
system with the ability to realize targeted drug delivery or specific binding of bacterial
toxins [49–51]. One typical example is the use of the red blood cell (RBC) membrane. Hou
et al. proposed a cell-mimetic micromotor fabricated using Ca(OH)2 microparticles with
biconcave discoidal morphology as the template, camouflaged with the RBC membrane. To
explore further applications in tumor therapy, Fe3O4 nanoparticles and DOX(an anticancer
drug) were loaded within the wall part of an RBC micromotor for magnetic navigation and
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tumor therapy (Figure 2A) [52]. Recently, Li et al. introduced a swimming micromotor with
clawed geometry by synthesizing sunflower pollen covered with magnetic Fe3O4 layers as
clawed microparticles, followed by the immobilization of an RBC membrane-camouflaged
coating. This micromotor proved to have effective magnetic propulsion even against the
flow in the rabbit jugular vein. Though no further anticancer experiments were conducted
in this work, they provided a promising and safe method of drug delivery in vitro [53].
Another example is the introduction of the cancer cell membrane, which endows gold
nano-shell functionalized CaCO3 particles with the ability to modulate immune activity, as
the coating membrane contains many membrane-bound tumor antigens. The coating layer
also enables the micromotor to target corresponding cancer cells due to the homotypic
binding of cancer cell membrane [54]. To summarize, these practical examples achieved
mimicking of related living cells to endow the nano/micromotor with similar functions,
such as biocompatibility or target recognition.

(B) Enzymes. These are mainly proteins that can transform biocompatible fuel into a
driving force by catalytic reactions. For instance, by immobilizing urease, a silica-based
tubular micromotor is able to catalyze the decomposition of urea, thus generating microflu-
idic flow via the production of NH4

+ and OH−. This micromotor will be endocytosed by
the cells and can provide enhanced delivery of anticancer drugs into cells to achieve higher
killing efficiency (Figure 2B) [55]. Another example is the modification of glucose oxidase
and catalase in which glucose oxidase catalyzes endogenous glucose to produce H2O2,
then the catalase catalyzes the decomposition of H2O2 (both as produced and natural) for
micromotor propulsion. This design shows a synergetic effect for photodynamic-starvation
therapy based on the consumption of glucose and the NIR-triggered generation of 1O2 [56].
In addition, natural platelet cells have also been transformed into biocompatible micromo-
tors, and such cell-based micromotors show propulsion behavior in the presence of urea
fuel by the surface modification of urease [57]. An enzyme-based micromotor was also
introduced for cancer-related detection, in which catalase was modified on the inner surface
of the microtube for propulsion. Based on the decreased motion speed, the researchers
realized the bio-sensing of DNA [58].

(C) Bacteria. Bacteria are born with self-swimming ability, which makes them ideal
objects for fabricating biohybrid micro-swimmers for drug-delivery purposes [59]. In
addition, some bacteria can selectively migrate to the hypoxic regions of solid tumors, which
further promotes their development as chemotherapeutic drug carriers [60]. Escherichia
coli has been incorporated with magnetic nanoparticles for spatial magnetic and hypoxia
perception, which provides the collective perception and positive migration ability of
microrobots in targeting the tumor microenvironment. Before magnetic modification,
bacteria were encoded with bacteria-phage λ repressor cI857 for the triggered expression
of the NDH-2 enzyme (respiratory chain enzyme II) and mCherry. Here, the expressed
mCherry acts as an internal fluorescence reporter for imaging-guided tracking and actuation
along with the NDH-2 enzyme, enhancing anticancer treatment by the upregulation of
H2O2 (Figure 2C) [61]. The gut-friendly bacteria Lactobacillus rhamnosus have also been
employed for cancer therapy, in which the bacteria were modified with a photoluminescent
(Au nanoclusters) and anticancer drug, which showed cytotoxicity to cancer cells [62].
In another work reported by Akolpoglu et al., Escherichia coli MG1655 was used as a
biological unit to fabricate magnetically controlled microrobots for stimulus-responsive
cargo delivery. As shown in Figure 2D, the chosen bacteria expressed biotin attachment
peptides, which allowed for the highly efficient modification of nanoliposomes (loaded
with photothermal agents and chemotherapeutic molecules) and magnetic nanoparticles
(controlled propulsion) via biotin-streptavidin-biotin connections. By applying an external
magnetic field, the as-prepared microrobots showed a controlled swimming path (square
shaped, as shown in Figure 2(Db)). In another application, bacterial microrobots were also
used for the release of anti-cancer drugs by near-infrared light activation [63].

(D) Sperm. Similar to bacteria, sperm cells are natural self-moving microswimmers
that can perform complex tasks at microscale [64]. In order to construct a sperm-based
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anticancer drug-delivery system, man-made tubular microstructures have been designed
for the magnetic guidance and release of drug-loaded sperm to an in vitro cultured tumor
spheroid [65]. In another work, to prevent the motility of sperm from being affected by
surrounding threats such as the specific binding of anti-sperm antibodies, researchers
wrapped sperm cells with a zeolitic imidazolate framework-8 (ZIF-8) to maintain their
effective propulsion [66].
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Figure 2. Bio-hybrid nano/micromotor. (A) Schematic illustration showing fabrication of RBC-
based micromotor. Adapted from [52] with permission, copyright American Chemical Society,
Washington, DC, USA, 2022. (B) Enzyme-modified tubular micromotor for cargo delivery; adapted
from [55] with permission, copyright American Chemical Society, Washington, DC, USA, 2023.
(C) Engineered hybrid bacteria microrobot for remote collective perception and imaging-guided
cancer treatment. Adapted from [61] with permission, American Chemical Society, Washington, DC,
USA, 2023. (D) Magnetically controlled biohybrid bacterial microrobots for stimulus-responsive
cargo delivery: (a) Schematic illustration of structure; (b) Controlled motion by changing direction of
applied magnetic field. Adapted from [63] with permission, copyright American Association for the
Advancement of Science, Washington, DC, USA, 2023.

4. Ultrasound Waves for Propulsion

Ultrasound, which uses sound waves created by vibrating objects and is a type of
mechanical wave, is not only widely used for medical imaging, but it also can serve as a
biocompatible propulsion mode for nano/micromotors. Compared to other energy inputs,
ultrasound has wide clinical use (for imaging), and its ability to penetrate deeply through
tissue has been well-proved. By using ultrasound as the energy input, nano/micromotors
can avoid using toxic fuel and, thus, be highly biocompatible. Ultrasound is also currently
being widely used for nano/micromotor propulsion [67–69]. Both surface acoustic waves
(SAWs) and ultrasonic standing waves (USWs) can be used for nano/micromotor manipu-
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lation. SAWs usually use piezoelectric ceramics (such as lithium niobate, LiNbO3) as the
substrate with interdigital transducers (IDTs) on the surface (Figure 3A,B) [70,71], and for
USWs, researchers tend to carry out nano/micromotor propulsion in a tailor-made cham-
ber (made from Kapton tape or PDMS) for ultrasound wave reflection and piezoelectric
ceramics stuck to the chamber for ultrasound wave generation (Figure 3C,D) [72,73].
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(A) Schematic illustration showing surface acoustic wave tweezer for collection of submicron particles
and human blood cells. Adapted from [70] with permission, copyright American Chemical Society,
Washington, DC, USA, 2023. (B) Schematic illustration showing surface acoustic wave tweezer to
remove molecules unbound to micromotors, thus lowering detection limit of cancer-related biomarker
miRNA-21. Adapted from [71] with permission, copyright American Chemical Society, Washington,
DC, USA, 2021. (C,D) Schematic illustration showing two tailor-made chambers for reflecting ul-
trasound waves when using standing ultrasonic waves for nano/micromotor propulsion. Adapted
from [72,73] with permission, copyright American Chemical Society, Washington, DC, USA, 2018,
2012.

Wang et al. synthesized nanomotors using gold nanowires (AuNWs) modified with
ovalbumin (OVA), which act as model protein antigen. The nanowires are also propelled
by ultrasound and realized antigen delivery (Figure 4(Aa)). Such acoustically active
AuNWs@OVA nanomotors retain high speed (only a little decrease from average 90 to
61 µm/s), even coating the surfaces with protein (Figure 4(Ab)) and show the ability to
enter single cells without disrupting the integrity of the cell (Figure 4(Ac)). This novel
design provides a new strategy for solving the challenge of the degradation of internalized
exogenous antigens in lysosomes while using the vaccine. These ultrasound-powered
nanomotors help in the process of antigen cross presentation and cellular immunity (with
upregulation of MHC I and MHC II-related molecule expression), which are critical compo-
nents of the immunological effect of therapeutic vaccines for tumors or viral diseases [74].
Cao et al. synthesized mesoporous manganese oxide (MnOx) using a water/oil emulsion
reaction at room temperature, followed by the loading of indocyanine green derivatives
(IDs) for mitochondrial targeting, chondroitin sulfate (CS) for specific drug delivery in
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colon tumors, and regenerated silk fibroin (RSF) to form macromolecular layers for ID
release after pH/reactive oxygen species/glutathione simulation (Figure 4(Ba)). These
nanomotors were dual-propelled by oxygen bubbles and ultrasound, and they showed
apparently higher average speed than the single-engine mode (Figure 4(Bb)). The penetra-
tion of nanotherapeutics into tumor tissue is critical to achieve efficient anti-tumor activity,
and the results show that the nanomotors could traverse the colonic mucus layer and pene-
trate into internal colon tumor tissue with the aid of ultrasound. The nanomotors would
also be internalized with partial epithelial cells after oral administration, and ultrasound
irradiation would slightly help them penetrate into healthy colon tissue (Figure 4(Bc)).
The release of Mn ion is helpful in the decomposition of overproduced H2O2 in the tumor
microenvironment to produce ·OH and O2 (Fenton-like reaction). The produced ·OH
subsequently induces chemodynamic therapy (CDT), and O2 strengthens the sonodynamic
therapy (SDT) effect as well [75].
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Figure 4. Ultrasound as biocompatible energy input to drive nano/micromotors for cancer-related
treatment. (A) Ultrasound-propelled gold nanowire nanomotors for improved antigen (ovalbu-
min) cross presentation and cellular immunity: (a) Concept of this work; (b) Time-lapse images of
tracking trajectories of nanomotor; and (c) DC 2.4 cells treated with free ovalbumin and ovalbumin-
modified nanomotors. Adapted from [74] with permission, copyright Elsevier Ltd., Amsterdam, The
Netherlands, 2021. (B) Ultrasound-propelled nanomotors with multiple functions, including colonic
mucus-traversing ability, deep tumor tissue penetration, and anti-tumor immunity: (a) Schematic
illustration of this work; (b) Motion trajectories of nanomotor under different propulsion modes and
corresponding mean square displacement (MSD); and (c) Schematic illustration of mucus-traversing
and tumor penetration of nanomotors propelled by microbubbles and ultrasound, and fluorescence
intensity showing differences with and without ultrasound irradiation in healthy control mice and
mice with orthotopic colon tumors treated with oral administration of coumarin-6 (fluorescence
probe)-modified nanomotors (n = 3, ** p < 0.001, and **** p < 0.0001; two-way ANOVA with Tukey’s
test). Adapted from [75] with permission, copyright Wiley Ltd., Hoboken, NJ, USA, 2022.
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5. Electromagnetic Wave (Light)-Based Propulsion

Electromagnetic waves such as light provide a clean, harmless, and noninvasive propul-
sion mode, making it a versatile and powerful candidate for driving nano/micromotors
that are highly biocompatible. In addition, by using electromagnetic waves for this pur-
pose, researchers can easily control the speed and direction of nano/micromotors, and no
complex or special equipment is required compared to other propulsion modes such as
magnetic or ultrasound waves [76–78]. Different wavelengths of electromagnetic waves,
ranging from ultraviolet (UV) to visible (VIS) to near-infrared (NIR) light [79–81], as well
as X-rays [82], have been used for nano/micromotor propulsion. In addition, materials
such as Ag3PO4 [83], BiVO4 [84], Ag [85], Cu@MoS2 [86], carbon nitride (f-C3N4) [87],
TiO2 [88], BiOI/AgI/Fe3O4/Au [89], ZnO/Pt [90], and Cu2O@CdSe [91] have been smartly
designed and utilized for the construction of nano/micromotors driven by electromag-
netic waves. The mechanism behind such propulsion is usually complex and can include
electrophoretic and diffusiophoretic effects or the generation of an interfacial tension or
temperature gradient [77,80,92].

Currently, using light-propelled nano/micromotors for cancer treatment is a research
hot topic. For instance, Xing et al. fabricated jellyfish-like mesoporous carbon nanomo-
tors integrated with single-atom copper (Cu-JMCNs) propelled by the thermophoretic
effect after NIR light irradiation. By integrating single Cu atoms, H2O2 was catalyzed to
produce toxic hydroxyl radicals for chemodynamic therapy, and an NIR-triggered mo-
tion of the nanomotor improved cellular uptake and tumor penetration [93]. With light
propulsion, one major drawback is the inability to be propelled in solution with high ionic
strength because existing ions would restrain the formation of concentration gradients,
which would contribute to the self-electrophoresis or self-diffusiophoresis effect around
the nano/micromotors [94,95]. To overcome the above challenge, Sridhar et al. employed
two-dimensional (2D) poly(heptazine imide) (PHI) carbon nitride to build light-propelled
micromotors (Figure 5A). Thanks to the proper interaction between the textural and struc-
tural nanoporosity and optoionic properties of particles, the proposed microswimmer
achieved propulsion in a highly ionic solution (Figure 5B). Compared to traditional one-
dimensional (1D) CNx, the PHI show both higher hydrogen evolution activity and the
ability to store light-induced electrons. As shown in Figure 5C, the authors supposed that
the mechanism of the light-simulated microswimmer motion mainly came from asym-
metric illumination and photocatalysis, which caused ion flow around and through the
materials. The cations move across the pores of the material to counteract Debye layer
collapse, thus contributing to the ionic tolerance. In addition, a pseudocapacitive photo-
charging effect occurs in the materials to further strengthen ionic tolerance with respect
to 1D CNx. The light-propelled PHI micromotors were further loaded with doxorubicin
(DOX) and showed stimulus-responsive drug release when triggered by hypoxia, pH, and
light (Figure 5D,E) [96].
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which remains a challenge in light-propelled nano/micromotors. (A) Schematic illustration of PHI
micromotor and structure of PHI macromolecules. (B) Mean speed of PHI and one-dimensional
(1D) CNx (melon)-based micromotors with an increased NaCl concentration via 385 nm irradiation.
(C) Schematic illustration of mechanism for light propulsion and related ionic tolerance of PHI
micromotor. (D) Schematic illustration of PHI micromotors loaded with DOX showing drug-release
behavior in response to ambient and hypoxic conditions. (E) Left: optical microscopy and fluorescence
images of cancer cells with DOX-loaded PHI micromotors under light/415 nm irradiation and
released drug consumed by cells with emission at 595 nm fluorescence; right: PHI autofluorescence
revealing that PHI micromotors adhered to cancer cells after some DOX release. Adapted from [96]
with permission, copyright American Association for the Advancement of Science, Washington, DC,
USA, 2022.

6. Magnetic Propulsion

Nano/micromotors propelled by an external magnetic field have advantages includ-
ing being fuel-free and having precise and controllable motion [97,98]. In this propul-
sion mode, nano/micromotors seem to be simply propelled by the external magnetic
field, yet they also involve energy conversion during the self-propulsion process. Indeed,
these nano/micromotors have potential magnetic energy that is relative to the outside
magnetic source; during propulsion, the potential magnetic energy is transformed into
kinetic energy. Various techniques have been proposed to enable the magnetic response of
nano/micromotors for directional or propulsion purposes, such as the chemical synthe-
sis of magnetic particles followed by the encapsulation or surface modification [99,100],
physical vapor deposition [101,102], electrochemical deposition [103], 3D printing using
direct laser writing [104,105], and the combination of microfluidic droplet printing and
wettability-induced drawing photolithography [106]. For magnetic guidance or propulsion,
various devices such as Helmholtz coil [107], Maxwell coil [108], and saddle coil [109] have
been designed to provide a uniform or gradient magnetic field.

For cancer treatment, Mayorga-Martinez et al. used sunflower pollen deposited on
thin-film metal layers (including Au, Co, and Au) on one side of the microsphere, thus
endowing it with magnetic response ability for micromotor propulsion. This type of
micromotor shows good performance in attracting cancer cells due to the electrostatic inter-
actions between them and can be loaded with DOX to kill cancer cells (Figure 6A) [110]. In
another work, researchers introduced magnetically actuated cystine micromotors by the
zinc-mediated self-assembly of cystine and the encapsulation of Fe3O4 nanoparticles during
the synthesis process. This cystine micromotor could be efficiently internalized in late
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endosome/phagolysosome compartments before Zn2+ ions are released for killing tumor
cells after the bio-enzymatic degradation of micromotors due to broken disulfide bonds
(Figure 6B) [111]. For cancer detection, magnetically propelled gold-nickel nanowires were
fabricated by template electrochemical deposition and used for rapid/sensitive sensing of
the cancer biomarker microRNA-21. The fluorescent dye-labeled ssDNA probe was first im-
mobilized on a nanomotor, and its target-miRNA-21 present in the solution was hybridized
with the ssDNA probe on the nanomotor surface, thus decreasing the fluorescence inten-
sity and motion speed related to the target biomarker concentration. Au-Ni nanomotors
were further physisorption loaded with DOX via the hydrophobic interaction after being
modified with poly(sodium 4-styrenesulfonate) (PSS) to provide active chemical groups
for DOX interaction. Related results show a pH-dependent drug release of DOX-loaded
nanomotors, as well as the magnetic guidance of the nanomotors on MCF-7 cells, with
efficient and controlled drug delivery (Figure 6C) [112].
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(A) Schematic illustration showing magnetic micromotor fabricated by sputtering natural sunflower
pollen with Au, Co, and Au, which was used as a drug carrier to attack and kill cancer cells. Pink
balls represent cancer cells. Adapted from [110] with permission, copyright Wiley Ltd., Hoboken, NJ,
USA, 2023. (B) Schematic illustration of magnetically propelled cystine micromotor for treatment of
prostate cancer. Adapted from [111], permission not needed for this open access article, copyright
Wiley Ltd., Hoboken, NJ, USA, 2023. (C) Top image shows magnetically propelled Au-Ni nanowires
for cancer biomarker detection; bottom image shows chemotherapeutic drug delivery. Adapted
from [112] with permission, copyright American Chemical Society, Washington, DC, USA, 2021.

7. Dual-Propelled Nano/Micromotors

Integrating two different propulsion modes into one nano/micromotor, also called
a dual-propelled nano/micromotor, can realize more flexible and efficient movement.
By employing two engines, nano/micromotors can carry out cargo transportation in
more complex situations, and it is more convenient to control their speed and direction.
The dual-propulsion mode can include bubble (chemical)/light [113], magnetic/bubble
(biocatalytic enzyme) [114], light/magnetic [115], bubble (chemical)/ultrasound [116],
ultrasound/magnetic [117], or ultrasound/light [118], which have also been used for
cancer-related treatments or detection. For instance, a combination of enzyme-based
chemical energy and magnetic field energy has been developed to drive micromotors for
synergistic anticancer therapy. Here, the enzymatic-based decomposition of glucose leads
to self-propulsion, and the magnetic energy provides controllable movement [31]. In a
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photodynamic-based cancer therapy strategy, ultrasound was employed as an efficient
and bio-safe energy for the propulsion of blood cell-mimicking (RBCM) micromotors. By
integrating Fe3O4 NPs, it is possible to orient the motion of RBCM micromotors under an
external magnetic field [119]. The hydrothermal method was utilized to synthesize dendrite-
shaped microrobots that exhibited dual light/magnetic propulsion. These micromotors
showed negative phototaxis due to the self-diffusiophoresis effect under light irradiation,
while the external magnetic field endowed them with rolling-motion behavior. By exposure
to light along with H2O2, such micromotors could realize on-site ROS generation to deplete
GSH and enhance PDT efficiency for prostate cancer therapy [120].

Dual-propelled nano/micromotors not only have been well-designed for cancer treat-
ment as described above, but they also have played an important role in related disease
detection. For instance, Báezet et al. synthesized tubular micromotors propelled by chemi-
cal catalytic and magnetic energy for gastric cancer biomarker detection [121]. Ren designed
nanomotors propelled by magnetism and bubbles, in which γ-Fe2O3 nanorods were used
to coat the catalase. The modification of folic acid (FA) and hyaluronic acid (HA) carbon
dots endowed the nanomotor with target recognition ability. This nanomotor showed
the ability to capture specific circulating tumor cells, provide imaging (fluorescence from
carbon dots), and achieve quantitative detection due to the modification of the recognition
elements (FA and HA), thus providing a new possibility for cancer detection [122].

8. Microswarm

In order to use nano/micromotors for cancer treatment or imaging, they can be de-
signed as individual units to perform the task or as microswarms. Microswarm, which
refers to the concept that large numbers of micro/nanoparticles can work together coopera-
tively, seems to not be directly related to biocompatibility. Yet it represents an important
and effective tool for further reducing nano/micromotor toxicity, thus promoting clinical
applications. For cancer therapy, generally efficacy and safety are two critical aspects
when evaluating a new drug. Thus, researchers need to design the correct dosage by
balancing the benefits and harms to achieve the desired therapeutic efficacy. A higher
curative effect means a lower dosage, which may reduce the side effects of cancer treat-
ment. Similarly, improving the cancer treatment efficacy of drug-loaded nano/micromotors
would indirectly affect their biosafety [123–125]. For drug delivery, the cooperative be-
havior of nano/micromotors would enable the use of larger doses of loading drugs for
delivery compared to individual agents, therefore enhancing therapeutic efficacy [126,127].
A recent published review by Sun’s group also pointed out that the swarm behavior of
nano/micromotors provides possibilities for drug delivery with longer retention time,
which in turn would allow significantly lower doses for higher biocompatibility [128]. For
medical imaging, researchers have also proved that with ultrasound imaging, introduc-
ing microswarms acting as imaging contrast would reduce the minimal required dose of
nanoparticles, indicating a lower dosage for potentially higher biocompatibility [129,130].

A conventional microswarm manipulated by a photothermal-based mechanism mainly
relies on a light-simulated temperature gradient or interfacial tension gradient, thus pro-
ducing fluid flow for object motion. However, this strategy may suffer from the heat
damage generated by light irradiation. To address this issue, Shi et al. developed cold
Marangoni flow for microswarm actuation, which allows for the targeted gene delivery
but avoids heat damage to targeted cells. They manipulated the microswarm in a water
droplet surrounded by silicone oil, and by the irradiation of infrared light, a temperature
gradient was produced at the water–silicone oil interface due to the strong light absorption
of the oil and very weak light absorption of water, thus further causing the interfacial
tension gradient to contribute to the strong Marangoni flow. Importantly, in this work,
they found no significant heat transfer in the water due to the strong convection near
the water–silicone oil interface in the special reverse Marangoni flow. It should be noted
that in a conventional case that occurs near the water–air interface, the Marangoni flow
moves from the higher temperature area to the surrounding area. Thus, here they propose
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a biocompatible strategy for microswarm manipulation compared to the conventional
method that is normally accompanied by photothermal damage (Figure 7A) [131]. Apart
from the biocompatibility of the nano/micromotor and the fuel or other energy input that
need to be considered, another challenge that restricts the use of these micro/nanodevices
in in vitro and in vivo applications is the complex outside microenvironment. For instance,
the flow inside a blood vessel would make such micro/nanoparticles follow the stream. In
turn, they are unable to be controlled. To address this, Ahmed et al. proposed the use of an
acousto-magnetic microswarm to propel against such flow. They used an outside rotating
magnetic field to turn superparamagnetic particles (about 3 µm) into a microswarm, fol-
lowed by an ultrasound field to guide the assembled microswarm toward the capillary wall,
thus achieving upstream rolling and rheotaxis. Here, both energy inputs (magnetic and
ultrasound) are highly biocompatibility and can penetrate deeply into the body, providing
a new strategy for delivering targets to hard-to-reach sites and go against the blood flow,
which is important for future clinical applications (Figure 7B) [132].
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cold Marangoni flow generated at water/oil interface after light irradiation and comparison between
cold (I,II) and conventional (III,IV) Marangoni flow; (I,III) show simulated heat distribution and flow
field distribution; arrows indicate the streamlines; (II,IV) show experimental results of microswarm
formation. Adapted from [131] with permission, copyright Wiley Ltd., Hoboken, NJ, USA, 2023.
(B) Schematic illustration shows concept of acousto-magnetic propelled microswarm against the flow,
and microscopy images show formation of microswarms under the outside rotating magnetic field
and ultrasound field at 0 s (a), 0.08 s (b), 0.45 s (c). Adapted from [132] with permission, copyright
Springer Nature, New York, NY, USA, 2023.

9. In Vivo Nano/Micromotor Visualization

When using nano/micromotors for targeted drug delivery in vivo, it is difficult to
track them in real time because visible light cannot penetrate the tissues. In consideration
of this, medical-imaging technologies based on different mechanisms such as ultrasound,
positron emission tomography, or magnetic resonance have been introduced. Ultrasound
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not only can drive nano/micromotors, as mentioned above, but it also is a powerful
imaging technique based on the reflection of mechanical waves. Wang et al. realized the
manipulation of a magnetic microswarm near the boundary of vessels, with the ability to
navigate upstream and downstream even in flowing conditions due to the reduced drag
force from blood flow and strong interactions between nanoparticles. When ultrasound
waves are produced and travel to the microswarm, the Doppler effect occurs, which can
subsequently be detected by a Doppler ultrasound imaging device. Thus, the position
of the microswarm can be tracked in real time (Figure 8A) [133]. It should be noted that
the spatial resolution of ultrasound imaging technology is at the scale of millimeters,
which is insufficient for imaging individual micro/nanorobots, which are typically at
micrometer scale. Thus, it is necessary to use a microswarm with cooperation behavior.
Another medical imaging technology, positron emission tomography (PET), has also been
used to track microswarms, in which short-lived radioactive substances, including 124I on
gold nanoparticles or 18F-labeled urease, were labeled on nanomotors with an enzyme-
based engine that showed swarm behavior. During in vivo experiments, the radio-labeled
nanomotors underwent positive beta decay and emitted positrons to further interact with
ordinary electrons, followed by particle annihilation, γ-ray emission, and, finally, ray
detection. Due to the highly efficient tissue penetration of γ-rays, researchers determined
by analysis that the biodistribution of nanomotors could be realized after being injected
intravenously in female mice (Figure 8B) [134].
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Figure 8. Medical imaging technology for microswarm tracking. (A) (a) Shows schematic illustration
of magnetic microswarm navigation in blood vessels; (b) Is formation process of a microswarm;
(c) Is Doppler ultrasound signal around rotating microswarm in blood, showing Doppler signals
in stagnant and flowing blood near microswarm, as well as tracking of microswarm in real time.
Adapted from [133], permission not needed for this open-access article, copyright American As-
sociation for the Advancement of Science, Washington, DC, USA, 2023. (B) Schematic illustration
showing 18F- and 124I-radio-labeled nanomotors that can be tracked by positron emission tomography
(PET). Adapted from [134] with permission, copyright American Association for the Advancement of
Science, Washington, DC, USA, 2023.

Magnetic resonance imaging (MRI) has also been utilized for tracking or imaging
purposes. In one study, Fe5C2@Fe3O4 nanoparticles were fabricated for both magnetic tar-
geting and T2-weighted MRI and showed great potential for imaging-guided therapy [135].
The same group recently developed FeO@mSiO2/Au-CAT Janus nanorobots for enhanced
tumor penetration and therapy. With the high spatiotemporal resolution and deep penetra-
tion of MRI, the migration of nanorobots can be monitored in a non-invasive way in real
time [136].

Table 1 provides some typical examples of the use of biocompatible energy for
nano/micromotor propulsion.
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Table 1. Some typical nano/micromotors with biocompatible modes designed for cancer diagnosis
and treatment.

Biocompatible
Driving Mode Micromotor Design Application Ref.

Inorganic chemical-based energy

Mg Mg microparticles coated
with PLGA and DOX
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Table 1. Cont.

Biocompatible
Driving Mode Micromotor Design Application Ref.

Magnetic field

Rotating
magnetic field

Magnetic helical hydrogel
(PVA/MA/Fe3O4)
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10. Conclusions and Perspectives

Owing to rapid advances in nanotechnology and material chemistry, nano/micromotors
show great potential for cancer detection and treatment. Yet biotoxicity usually restricts
them from being further employed in clinical applications. Currently, the use of nano/
micromotors for cancer therapy is still in the early research stage. However, some in vivo
applications have been attempted in animal experiments. While we focused on the use
of nano/micromotors for disease therapy from a wider perspective, we found that Zn-
based [44] and Mg-based [145] micromotors have been tested in animal stomachs. Slippery
micropropellers have been used to penetrate the vitreous body of porcine eyes [146],
magnetically controlled microrobots with clawed geometry and red blood cell membrane
coating have been injected into the blood vessels of rabbits [53], and Doppler ultrasound
has been used for tracking magnetic microswarms in porcine coronary artery ex vivo [133].
All of these examples indicate that nano/micromotors are a promising technology for
cancer diagnosis and therapy. In this review, we discussed the biocompatibility aspect of
recent developments of nano/micromotors to show how researchers have tried to reduce
biotoxicity by introducing bio-safe propulsion modes, integrating biomembranes or living
micro-entities (bacteria or sperm), etc. Even though researchers are trying their best to
conquer this bottleneck, more breakthroughs are needed to promote the advancement of
this area.

Recent advances have shown the great success of fabricating biocompatible bio-hybrid
nano/micromotors by introducing active proteins or living micro-entities (cell membrane,
enzyme, sperm, microorganism, etc.). Although most of them exhibited biosafety in cell
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viability or hemolysis tests, their immune response also needs to be considered before
they can be used in further applications. Using ultrasound as a bio-friendly energy input
shows advantages such as noninvasive and deep-tissue penetration. However, a medium
to conduct or propagate its energy is still needed, and in some instances, appropriate
cavity structures for wave reflection are required. Light also has been developed as a
noninvasive, clean, and harmless propulsion mode, although a critical drawback that
restricts further in vivo application is the opaque quality of tissues. Therefore, more special
devices such as optical fiber-based devices should be designed to induce the external
light inside the body [147]. Magnetic propulsion does not require an energy propagation
medium, reflection cavity, or tissue transparency, and nano/micromotors can be controlled
easily by changing the direction of the external magnetic field, which makes it a promising
candidate for in vivo applications. Yet this modality needs the nano/micromotors to have
a good response to the external magnetic field to overcome obstacles such as blood flow
or other complex situations inside the body. Therefore, future efforts should focus on
developing new magnetic materials with low toxicity but good magnetic response. Apart
from that, the degradability of the materials, the size effect of the nano/micromotor, and
comparisons between individual nano/micromotors all deserve further investigation.

Another critical point is that when designing biocompatible nano/micromotors for
cancer diagnosis, various strategies such as fluorescence-based strategies, colorimetric
methods, electrochemistry, SERS-based biosensing, etc., have been integrated for analyte
detection. Particularly, speed change is a unique feature of nano/micromotors, in that the
speed can be reduced or increased after meeting specific analytes. Such change could easily
be observed and recorded by normal light microscopy (visual signals), which provides a
new strategy for bio-sensing. Future work should also focus on designing related cancer-
diagnosis methods using motion-based sensing [58,148,149]. In the design of biosensors
for bio-molecular detection, the motion-based strategy is a unique and effective method
that originated from the self-propulsion behavior of nano/micromotors [130,150]. Yet this
detection strategy mainly depends on the tracking of individual nano/micromotors, which
does not work for on-site detection inside the opaque body. Therefore, innovations in the
tracking of separate nano/micromotors would provide new possibilities for on-site disease
diagnosis by using motion-based strategies.

In addition, for cancer diagnosis, micro-mixing, along with the enhanced mass
transfer produced by micromotor propulsion, has been utilized to enhance biosensing
efficiency [139,151–153]. Still, nano/micromotors with different motion behaviors (mi-
croswarm versus individuals) have not been investigated. A recent work [154] shows that
the collective behavior of microswarms would be helpful in generating high convection and
micro-mixing for enhanced mass transfer. Even though researchers are focusing on using
microswarms for water remediation, it is important to investigate whether microswarms
could help enhance biosensing efficiency compared to the micro-mixing effect caused by
individual nano/micromotors. Secondly, even though ultrasound imaging is a powerful
tool for dynamic tracking of miniaturized actuators inside the body, only microswarms
can currently be detected and tracked since there is limited spatial resolution due to the
diffraction limit and related wavelength of ultrasound waves [155]. As a result, under-
standing the dynamic position of an individual nano/micromotor inside the body remains
a challenge at the moment.
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