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Abstract: With direct application to current and future consumer healthcare products, this research
sheds light on the importance of packaging and its potential effects on both Active Pharmaceutical
Ingredient (API) delivery and stability. Industrially sourced, proprietary experimental formulations
(PEFs), specifically oral cleansers, based on salicylic acid and hydrogen peroxide, discolored over
time at different rates, depending on packaging type used. This discoloration stemmed from an
interplay of two factors, involving both spontaneous formulation degradation and the interaction of
both degradants and salicylic acid with the internal surface of the packaging. This manuscript reports
on the investigation to uncover the origins of discoloration. To investigate this real-world, industrial
pipeline problem, we exploited the high dimensionality and simple sample preparation uniquely
afforded by NMR. Using a combination of 1D/2D NMR and diffusion-ordered NMR spectroscopy
(DOSY) to leverage molecular mass estimations from, we not only quickly confirmed the identities of
these degradants, but also assessed their formation as a function of temperature and pH, providing
insight into the mechanisms underlying their formation. We were able to identify catechol as the main
source of discoloration over a period of several weeks, being formed at the ppm level. Furthermore,
we evaluated the formulation–container interaction, employing NMR, ICP-MS, and ATR-IR. Despite
this comprehensive analysis, the root causes of discoloration could only tentatively be assigned to a
surface Ti complex of salicylic acid and other hydroxy carboxylic acids. Through the understanding
of formulation degradation pathways, we were able to support further toxicology assessment, vital to
both consumer safety and the manufacturer. This work underscores the invaluable role of NMR in the
analysis of intricate proprietary mixtures with a consumer-centric purpose. Our findings demonstrate
that conventional analytical techniques falter in the face of such complexity, requiring extensive
preparation and pre-analytical processing, highlighting the novelty and crucial relevance of NMR
research to manufacturers and consumers. Such an analysis is of value in the pursuit of materials
within the consumer-healthcare space, which meet the requirements for successful recycling or re-use.

Keywords: salicylic acid; NMR; formulation; discoloration

1. Introduction

Oral health products, such as toothpaste, mouthwash, denture cleaners, and dental
gels, are essential components of daily oral hygiene routines for millions of people world-
wide. These products typically contain active ingredients, such as fluoride, antimicrobial
agents, and desensitizing agents, that play crucial roles in preventing dental diseases and
maintaining oral health [1]. However, one of the significant challenges faced by manufac-
turers and consumers of these products is the degradation of active components over time,
leading to reduced efficacy and potential safety concerns [2]. Active components in oral
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health products are susceptible to various degradation mechanisms, including chemical
degradation, physical instability, and microbial degradation. Chemical degradation, such
as hydrolysis, oxidation, and photodegradation, can occur due to exposure to moisture,
oxygen, light, and temperature fluctuations during storage and use [3]. Physical instability,
such as phase separation, particle aggregation, and crystal growth, can compromise the uni-
form distribution and bioavailability of active components in formulations [4]. Microbial
degradation, resulting from contamination with bacteria and fungi, can lead to spoilage
and the deterioration of product quality [5]. For example, fluoride, a widely used active
ingredient in toothpaste for its caries-preventive properties, can degrade over time due to
interactions with other ingredients, exposure to air and moisture, and inadequate packag-
ing [6]. This degradation can result in reduced fluoride levels in the product, compromising
its effectiveness in preventing tooth decay [7]. Analyzing and troubleshooting degradation
issues in oral health products are crucial for several reasons:

• Maintaining Efficacy: Active components play a pivotal role in the efficacy of oral
health products. Understanding and mitigating degradation pathways ensure that
products deliver the intended benefits to consumers, such as cavity prevention, plaque
reduction, and gum disease management [8].

• Regulatory Compliance: Regulatory agencies, such as the Food and Drug Administra-
tion (FDA) in the United States and the European Medicines Agency (EMA) in Europe,
impose strict guidelines on the quality, stability, and safety of oral health products [9].
Failure to address degradation issues may lead to non-compliance with regulatory
requirements and potential product recalls.

• Protecting Brand Reputation: Product quality and consistency are essential for main-
taining consumer trust and brand reputation [10]. Addressing degradation issues
promptly demonstrates a commitment to product excellence and customer satisfac-
tion [11].

Many of the above issues are dealt with “in house” and are often the subject of internal
reports rather than peer-reviewed discussion. It is for this reason and to espouse the value of
a detailed analysis to formulation development that this work is presented. The degradation
of active components in consumer oral health products presents significant challenges
that impact product efficacy, safety, regulatory compliance, and brand reputation [12].
Analyzing and troubleshooting degradation issues are essential for ensuring product
quality, safety, and effectiveness, ultimately contributing to improved oral health outcomes
for consumers [13,14].

1.1. NMR Techniques

Nuclear magnetic resonance (NMR) techniques have firmly established themselves
as invaluable tools for the assessment of component degradation and the exploration
of physical interactions within pharmaceutical formulations [15–17]. Although NMR is
considered less sensitive compared to techniques like LC-MS or HPLC, it compensates
with its exceptionally high resolution and dimensionality. One of its notable advantages
lies in its ability to analyze concentrated samples quantitatively without the necessity for
extensive separation steps [18].

Diffusion ordered spectroscopy (DOSY) NMR relies on the inherent property of
molecules to diffuse through a solution at different rates. The rate of diffusion is pri-
marily determined by the size and shape of the molecule. In DOSY NMR, a series of
NMR spectra are collected at different gradient strengths, which induce a gradient of the
magnetic field. The gradient strength affects the precession frequency of nuclei in the
sample, allowing for the differentiation of species based on their diffusion coefficients. By
analyzing the data from these spectra, it is possible to construct a diffusion profile, which
reveals the individual contributions of each species present in the sample [19].

DOSY NMR, in particular, emerges as a powerful technique for delving into the physi-
cal interactions between components, often eluding detection by many mass spectrometry
(MS) techniques [18]. DOSY’s unique capability to differentiate components based on their
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hydrodynamic radius adds an extra layer of sophistication, enhancing discrimination in
pharmaceutical and industrial processes [20]. This ability to “filter” components based on
their size is especially advantageous in complex formulations, where various molecular
species may coexist.

In the context of this research, proprietary experimental formulations (PEFs) featuring
hydrogen peroxide, salicylic acid (SA), Sodium dodecyl sulphate (SLS), an acidity regulator,
and proprietary flavoring were evaluated at different temperatures over various time
periods to better understand the pathways to degradation. To augment the rigor of this
study, experimental formulations were also prepared to further explore the apparent
mechanisms. The choice of these components reflects a deliberate selection to simulate
real-world industrial formulations, where the interplay of multiple ingredients is both
intricate and crucial.

The utilization of NMR techniques, including DOSY, in this study serves as a testament
to their efficacy in addressing the challenges posed by complex formulations. While MS
techniques may offer higher sensitivity, the unparalleled resolution and discrimination
capabilities of NMR, especially in probing physical interactions, make it an indispensable
tool in pharmaceutical and industrial research [18].

By exploiting the advantages of NMR, this research not only contributes to the under-
standing of degradation pathways but also sheds light on the nuances of physical interac-
tions between components. In an industry where the quality and stability of formulations
are paramount, the insights gleaned from this study hold promise for refining manufactur-
ing processes and ensuring the efficacy and safety of consumer healthcare products.

1.2. Rationale and Observations

This research was initiated by an observation by Haleon PLC (Weybridge, UK) that
certain packaged experimental denture cleanser formulations were discoloring over a
2-month period when stored at 25–40 ◦C. Whilst degradation to conjugated/complexed
compounds was likely the cause of discoloration, there appeared to be two different
processes occurring, depending on the composition of the container (HDPE (White), HDPE
(Natural), PET, and glass).

The yellowing of the internal packaging was taking place over 6 weeks at 40 ◦C and
occurred only with HDPE (White). However, for all container types, the formulation itself
developed a distinctive orange appearance over a 6-week to 2-month timeframe, when
stored at 25–40 ◦C. A representative example is shown in Figure 1. The obvious hypothesis
was that formulation degradation over time would lead to the direct adsorption of colored
degradants onto the internal surfaces of the container, but only HDPE (White) showed
this persistent container yellowing, suggesting that passive adsorption was not the cause.
Hence, the authors separated the two processes into those associated with packaging
discoloration and those associated with formulation discoloration.
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Figure 1. Full proprietary formulation stored in HDPE (White). (a) Formulation and container at
0 days is White. (b) Formulation after 6 weeks at 40 ◦C. (c) Container discoloration after 6 weeks at
40 ◦C.
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1.2.1. Packaging Discoloration

Packaging discoloration intensified over time and at elevated temperatures used to
simulate long-term storage (Figure 1). Notably, HDPE (Natural), PET, and glass containers
showed no internal surface discoloration even after 6 weeks at 40 ◦C. The discoloration
was specific to HDPE (White), the composition differing only in the presence of TiO2 (50%)
in the HDPE (White) polymer mix.

1.2.2. Formulation Discoloration

Formulation discoloration occurred regardless of container type. Discoloration ap-
peared within 2 months, even in glass at 25 ◦C, and became more pronounced at 40 ◦C
and 50 ◦C used to accelerate degradation for stability measurement. The objective was
to identify the cause(s) of discoloration within the proprietary experimental formulations
(PEFs) and establish a pathway for their formation. Once identified, these causative agents
could be quantified to assess their toxicological impact.

2. Materials and Methods

Proprietary formulation samples were received from Haleon PLC (Weybridge, UK)
after temperature (◦C)- and humidity (psf)-dependent treatment (25/60, 40/75, 50/75) in
different packaging types (HDPE (White), HDPE (Natural), PET, and glass). Samples were
provided in 50 mL glass jars or 500 mL HDPE/PET bottles with 0.63 mL aliquoted from
each to prepare NMR samples. Samples consisted of a base chassis of salicylic acid (Merck
Life Sciences, Gillingham, UK) and H2O2 (Merck Life Sciences, Gillingham, UK) with
specific excipients added and removed to evaluate the effect on the formulation stability
and salicylic acid state.

The reference numbers for the samples are in Supporting Information (Table S1), in-
dicating the specific formulation sub-set conditions, packaging, and additions that were
evaluated for stability effects. Samples were submitted for NMR experiments that quan-
titatively monitored the chemical composition relative to thermal variability, after total
assignment of all detected compounds in formulations.

2.1. PEFs

Samples, unless specified otherwise, were provided by Haleon PLC (Weybridge,
Unied Kingdom). Samples consisted of a base chassis of 0.3% w/v glycerol base flavoring
OptamintTM, 0.18% salicylic acid (Merck Life Sciences, Gillingham, UK) and 1.3% H2O2
(30% (w/w) in H2O, containing stabiliser (Merck Life Sciences, Gillingham, UK)), and 0.5%
SLS (Merck Life Sciences, Gillingham, UK). Conditions, packaging, and time frame of the
analysis are included in Table S1. Samples were made up in different packaging types
and conditions infarcted upon them at Haleon PLC (Weybridge, UK) labs and delivered
to Kingston for the analysis at times detailed in Table S1. Samples were delivered in
packaging that experiments took place in on the day that experiments finished. Upon
receipt at Kingston University, samples were logged, with receipt and production dates
recorded. Samples not prepared and analyzed by NMR on the day of delivery were
refrigerated and sealed to minimize changes in formulation composition. The evaluation
of differences between refrigerated and immediately analyzed samples is presented in
Table S2.

Samples were transferred directly to NMR tubes (Wilmad 7’ 5 mm high precision)
(Merck Life Sciences, Gillingham, UK) (0.63 mL) using 1 mL sterile pipette tips (Merck
Life Sciences, Gillingham, UK) with a Pipet-Lite LTS Pipette L-2000XLS+ (Mettler Toledo,
Leicester, UK) in a fume hood to minimize the potential contamination of samples. Un-
opened glass vials of D2O with an internal reference TSP (99.9 atom% D, 0.05 wt.% 3-
(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt) (Merck Life Sciences, Gillingham,
UK) were added to NMR tubes (Wilmad 7’ 5 mm high precision) (Merck Life Sciences,
Gillingham, UK) (0.07 mL). A maximum of 1 h was allowed before samples were analyzed
via NMR to allow for interleaved triplicated experiments to be run between samples.
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ATR-IR and inductively coupled plasma optical emission spectroscopy (ICP-OES)
were used for the surface analysis of packaging and elemental analysis, respectively. ICP-
OES samples were prepared with the addition of nitric acid (70%) to make 2% nitric acid, to
the solution and to different packaging types. Packaging acid preparations were agitated
for 24 h before the ICP-OES analysis, with solutions being immediately analyzed after
acidification. The ATR-IR analysis was conducted on packaging tokens (2 cm2) that were
cut out of emptied and dried packaging, with the internal surface being analyzed. This was
conducted for HDPE (White), HDPE (Natural), and PET packaging of formulation bottles.

2.2. Model Samples

In-house sample preparation for further condition evaluation and validation of spe-
cific steps in the process followed proprietary sample chassis composition as detailed in
Section 2.1. Amounts were determined based on proprietary formulation specifications,
and pH adjustment was performed as the final step using 10% NaOH/10% HCl (Merck
Life Sciences, Gillingham, UK) with pH monitored using a pH meter (Thermoscientific
Orion 2—Thermofisher Scientific PLC, Hemel Hempstead, UK).

To model the effect of pH on the series of oxidation reactions responsible for degradant
formation, a range of simplified solutions comprising 0.5% H2O2, 0.18% salicylic acid, 0.5%
SLS, and 10% NaOH were added at varying levels to give a range of pH between 2 and 9.
These were subsequently prepared for NMR as set out in Section 2.1.

2.3. NMR

All samples contained 10% D2O (99.9 atom % D, contains 0.05 wt.% 3-(trimethylsilyl)
propionic-2,2,3,3-d4 acid, sodium salt) (Merck Life Sciences, Gillingham, UK) to provide
a lock signal for NMR and maintain an in situ aqueous environment while serving as a
chemical shift and diffusion reference. Fresh NMR tubes (Wilmad 7’ 5 mm high precision)
(Merck Life Sciences, Gillingham, UK) were used for each sample to ensure consistency
and minimize contamination with common cleaning solvents.

A range of NMR experiments, including 1H 1D, 1H 13C HSQC, 1H-1H TOCSY, and
1H 2D DOSY NMR, were conducted on a Bruker Avance III 600 MHz NMR (Bruker UK
Ltd., Coventry, UK) with a TXI probe. Standard acquisition parameters for experiments
included 1D 1H: noesygppr1d P1 (90-degree flip angle pulse) = 7 µs, flip angle = 90◦,
D1 (relaxation delay) = 10 s, NS = 64, O1P = 4.7 ppm, D8 (mixing time) = 0.01 s, PLW9
(low power pulse) = 7.2567 × 10−5 W during the relaxation delay and mixing time for the
appropriate saturation of water peaks. Two-dimensional experiments included 1H-13C
HSQC using pulse hsqcedetgpsisp2.4, a 2D H-1/X correlation via double inept transfer
with NS = 32, D1 = 1.5 s; 1H-1H TOCSY using pulse dipsi2esgpph, NS = 16; 2D 1H DOSY;
pulse sequence ledbggppr2s with a linear pulsed field gradient over 32 steps, NS = 16,
P30 = 2000 µs, D20 = 0.1 s. All NMR processing was undertaken using Topspin 4.2 (Bruker
UK Ltd., Coventry, UK)

2.4. ATR-IR and ICP-MS

ATR-IR was conducted on a Thermo ScientificTMiD5 ATR accessory for a Nicolet
IS 5 spectrometer (East Grinstead, UK) with absorbance measured over wavenumbers
450–1750 cm−1. ICP-MS (Agilent 7700 Series/ASX-500 Series Autosampler) (Agilent Tech-
nologies, Wokingham, UK) was conducted with standard ICP and helium gas ICP to
distinguish polymeric species that may be present within the solutions. Standard 2% NO2
blanks and sample 2% NO2 blanks were run alongside 0–100 ppm elemental reference
solutions to give ppm calibration for ICP-MS data.

3. Results and Discussion

With it being apparent that there were potentially two mechanisms operating to dis-
color either the packaging or the formulation, the results are considered separately below.
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3.1. Formulation Discoloration
3.1.1. Initial Steps

The initial characterization of degraded vs. non-degraded PEFs was achieved using
a mixture of 1D and 2D NMR techniques. This enabled the identification of expected
components and degradants maleic acid, catechol, 2,3-dihydroxybenzoic acid (2,3-DHBA)
(Figure 2).
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The oxidation of salicylic acid by hydrogen peroxide is not without precedent and
the mechanism (Figure 3) indicates how the identified degradants, including formic acid,
may be formed [5,11]. For comparison, 1H NMR spectra of pure salicylic acid are shown in
Supporting Information Figure S1 to indicate the presence of 13C satellites when zoomed in.
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To validate the characterization of the degradants, DOSY spectra were used to generate
an MW vs. LogD calibration curve to determine the approximate MW of the assigned
degradant peaks (Figure 4). Combining the observed 1H signals with the DOSY spectra
enabled the identification of the degradants [22–24] (Figure 4).

Pharmaceutics 2024, 16, x FOR PEER REVIEW 7 of 15 
 

 

OH
OH O2

O

HO
O

OH
O

HO

OHO

HO2
- O

HO

O

OH
+

OHO

HO [O]

OHO

HO

HO

OHO

HO

HO

OO-

HO

HO
+ H+

Ka

OO-

HO

HO

H
+

Kb
OH

OH
+ CO2

salicylic acid 2,3-dihydroxybenzoic acid

2,3-dihydroxybenzoic acid catechol

catechol muconic acid maleic acid

O

OH
H

oxalic acid formic acid  
Figure 3. Mechanism for the proposed in situ salicylic acid oxidation steps that took place within 
the bulk formulation, yielding inherently colored catechol and illustrating potential source of decol-
orization of formulation within proprietary samples [21]. 

To validate the characterization of the degradants, DOSY spectra were used to gen-
erate an MW vs. LogD calibration curve to determine the approximate MW of the assigned 
degradant peaks (Figure 4). Combining the observed 1H signals with the DOSY spectra 
enabled the identification of the degradants [22–24] (Figure 4). 

 

Pharmaceutics 2024, 16, x FOR PEER REVIEW 8 of 15 
 

 

 
Compound Estimated MW (Da) Actual MW (Da) 

Salicylic Acid 141.2 ± 0.5 138 
2,3-DHBA 158.4 ± 20 154.1 
Catechol 107.1 ± 33.2 110.1 

Formic Acid 46.8 ± 5 46 
Muconic Acid 144.5 ± 40 142.1 
Malonic Acid 100 ± 1 104.1 
Maleic Acid 112.2 ± 0.8 116.1 

 

Figure 4. (Top) Two-dimensional DOSY spectrum for proprietary formulation in glass container at 
7 weeks at 40 °C. (Middle) Degradants tentatively assigned based on diffusion to predict MW. In-
ternal diffusion standards were trimethylsilylpropionate (TSP), formic acid, and salicylic acid. All 
diffusion values were referenced to TSP [25–27]. (Bottom) DOSY-estimated MW vs. Actual MW for 
observed compounds 

A further validation of this observation was achieved through control sample spiking 
(see Supporting Information Figure S2). It was quite apparent that the oxidation product 
responsible for the yellowing over time was catechol and the increase in its concentration 
over time correlated to the discoloration of the solution in all packaging. It is also worthy 
to note that decarboxylation only occurs from 2,3-DHBA. There was no NMR evidence of 
phenol being formed from the direct decarboxylation of SA, nor were quinone or hydro-
quinone degradants of the SA. 

3.1.2. Impact of Packaging on Rate of Formulation Discoloration 
Concentrations of the degradants over time, stored in the different packaging mate-

rial, are shown below (Figure 5) and there is no statistically significant difference for the 
evolution of the catechol, which is largely responsible for the discoloration of the PEF. The 
rate of maleic and formic acid formation is greater for PET than HDPE. The comparison 
of catechol formation in the PEF for both HDPE and PET with the same in glass packaging 
showed no significant difference, supporting the hypothesis that the discoloration of the 
PEF over time is driven directly by the oxidation of SA. 

Figure 4. (Top) Two-dimensional DOSY spectrum for proprietary formulation in glass container
at 7 weeks at 40 ◦C. (Middle) Degradants tentatively assigned based on diffusion to predict MW.
Internal diffusion standards were trimethylsilylpropionate (TSP), formic acid, and salicylic acid. All
diffusion values were referenced to TSP [25–27]. (Bottom) DOSY-estimated MW vs. Actual MW for
observed compounds.

A further validation of this observation was achieved through control sample spiking
(see Supporting Information Figure S2). It was quite apparent that the oxidation product
responsible for the yellowing over time was catechol and the increase in its concentration
over time correlated to the discoloration of the solution in all packaging. It is also worthy to
note that decarboxylation only occurs from 2,3-DHBA. There was no NMR evidence of phe-
nol being formed from the direct decarboxylation of SA, nor were quinone or hydroquinone
degradants of the SA.
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3.1.2. Impact of Packaging on Rate of Formulation Discoloration

Concentrations of the degradants over time, stored in the different packaging mate-
rial, are shown below (Figure 5) and there is no statistically significant difference for the
evolution of the catechol, which is largely responsible for the discoloration of the PEF. The
rate of maleic and formic acid formation is greater for PET than HDPE. The comparison of
catechol formation in the PEF for both HDPE and PET with the same in glass packaging
showed no significant difference, supporting the hypothesis that the discoloration of the
PEF over time is driven directly by the oxidation of SA.
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3.1.3. Temperature Effects

The PEF was stored in glass and sampled over a protracted period to gauge the effects
of temperature on the evolution of the degradants. Unsurprisingly, elevated temperatures
correlate positively to degradant formation, and temperature acceleration is used routinely
for stability determination. Interestingly, the kinetics of the catechol forming reaction oxi-
dation reaction, which is the main cause of the formulation discoloration, are significantly
more retarded at lower temperatures, when compared to other oxidative degradation
pathways, implying a substantially higher activation energy for the decarboxylation step.
Catechol is observed at RT, but over a substantially longer timeframe (Figure 6).
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3.1.4. pH Effects on Degradation in Simplified Solutions

The evolution of the degradants in simplified solutions (Figure 7) was unsurprisingly
faster than for the PEFs, likely owing to the micellation of formulation components and po-
tential reactions of components of the flavoring element resulting in uncolored degradants.
New signals in the aliphatic region evolving over time lend credence to this suggestion,
but owing to the proprietary nature of the formulations, this will not be discussed further.
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pH significantly influences degradant formation kinetics, showing non-uniform be-
havior linked to both degradant formation and subsequent reactions [28]. This aligns with
previous literature demonstrating pH below 4 being optimal for the oxidation of salicylic
species in uncatalyzed wet oxidations [29]. For instance, the highest 2,3-DHBA formation
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occurs at pH 4.5, while catechol formation/stabilization is favored at pH < 4. Muconic acid
has the shortest lifespan among degradants, as its rapid conversion to maleic acid at pH
4.5 makes muconic acid undetectable. Although formic acid could result from oxalic acid
(Figure 7), its low initial concentration, increasing over time, suggests that SA degradation
alone is not the sole source of formic acid evolution.

3.2. Packaging Discoloration

In TiO2-supplemented HDPE bottles (HDPE (White)), noticeable discoloring of the
internal packaging surface occurred rapidly at room temperature (2 weeks). Catechol,
the source of solution discoloration, did not form appreciably under these conditions.
Conversely, in HDPE without White pigmentation (HDPE (Natural)), PET, and glass
packaging, no packaging discoloration was observed. However, as mentioned earlier, slight
solution discoloration was noted for all formulations containing salicylic acid subjected to
thermal treatment at 40–50 ◦C for 2–3 weeks or stored at 25 ◦C for 6–8 weeks. This suggests
two mechanisms: one involving colored degradant formation and the other involving
direct interactions between a component of the PEF and the packaging.

The surface discoloration specific to HDPE White packaging implicated the TiO2
pigment. The absence of discernible peaks in NMR spectra after several isopropyl alcohol
extractions of the packaging (24 h incubation of packaging) indicated that this was not
merely a loose association of degradants with the surface, rather, a specific chemical
adsorption/reaction. Isopropyl alcohol was the only solvent used for extraction screening
as it is standard procedure within an industrial environment to determine leaching from
packaging into packaged formulations.

To investigate whether soluble TiO2 complexes could be contributing to the yellow-
ing of the solution and surface of HDPE White, an ICP-MS analysis was conducted on
proprietary formulations in both White and Natural HDPE. However, the concentrations
of titanium determined did not significantly differ between packaging samples at any
time or temperature of stress, as illustrated in Supporting Information Table S3. The fact
that the Ti concentrations for both HDPE (White) and HDPE (Natural) are both very low
supports the principal contention that the discoloration of the internal surface of the con-
tainer is occurring by a direct reaction with Ti on the surface, not liberated Ti species in
the formulation.

For HDPE (White), the extended TiO2 network means that only the surface could react
with potential chelating species such as salicylic acid/maleic acid. Should they form, the
complexes would remain on the surface and undissolved in the solution. The evolution of
this distinctive yellow color over time on the surface of HDPE (White) appears to coincide
with the formation in the solution of maleic acid, and the relative abundance of SA would
make surface Ti complex formation by either specificity feasible. To evidence this surface
reaction, fragments of discolored HDPE (White) compared with fresh HDPE (White) were
analyzed by ATR-IR (Supporting Information Figure S3).

IR absorption bands at 1552 and 675 cm−1 are indicative of a metal carboxylate via
the attenuated C=O vibrational stretch (sym) and M-O-C vibrational stretch
(asym), respectively.

There is a literature precedent for the formation of titanium complexes, which react
readily with carboxylic acids, such as SA and maleic acid, to give a range of colored
compounds; however, they do not form spontaneously. TiO2 is a stable extended structure;
however, as per the study by M. Kakihana et al., titanium oxide can be activated by peroxide
ions [30]. The peroxo ion (O2)2− binds to Ti in a h2-fashion, occupying two coordination
sites, and (O2)2− is bonded to the metal in a triangular bidentate manner (Figure 8).
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Figure 8. Proposed arrangement of surface titanium, activated by H2O2. Peroxo titanium complex
with carboxylate and hydroxy carboxylate ligands. Adapted from [30]. The remaining two sites (X
and Y) bonded to Ti come from two oxygen atoms of the oxo group bridging two further titanium
atoms. This is represented below for both carboxylate and hydroxy carboxylate ligands, e.g., salicylic,
citric, and acetic acids.

The hypothesis posits that Ti(OH)4 or TiO2·xH2O, formed by the surface reaction
of hydrogen peroxide from the solution, can form a highly coordinated surface peroxo-
hydroxo titanium complex, represented as [Ti(O2)(OH)3]−. This complex subsequently
creates colored surface chelates with salicylic acid (SA) and suitable oxidative degradants
over time. Notably, both dicarboxylates and β-hydroxycarboxylic acids have been demon-
strated to form yellow/orange complexes through this mechanism (Supporting Information
Figure S4) [30]. It is important to note that this mechanism for discoloration cannot be
proven based on the data, and potentially XRD and/or SEM data could be used to evidence
this further.

4. Conclusions

In summary, two distinct discoloration mechanisms have been suggested (Figure 9):

(1) HDPE (White) packaging discoloration: The potential ligation of peroxide-activated
titanium (Ti) on the HDPE surface, by either SA or oxidative pathway degradants,
may result in the formation of a colored surface layer. This activation of the TiO2
occurs via attack by H2O2. This Ti complexation process does not occur in glass, PET,
or HDPE (Natural) due to the absence of TiO2.

(2) Discoloration in SA and peroxide formulations: The peroxide-mediated oxidation of
SA leads to catechol formation through 2,3-dihydrobenzoic acid decarboxylation. Ad-
ditionally, components of the proprietary flavoring in the formulation are oxidized at
the expense of SA, explaining the difference in the oxidation rate of SA for proprietary
vs. experimental formulations.
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When developing commercial formulations, well-established APIs, solubilizing agents,
acidity regulators, and other excipients are typically used to create viable products. How-
ever, these components can interact chemically and physically, resulting in undesirable
consumer properties such as the odor, taste, texture, or appearance.

This work represents a novel approach by applying DOSY and 1D 1H NMR techniques
to troubleshoot these formulation interactions quickly and effectively. This innovative
method enabled multiple identifications, which significantly influenced the initial choice of
packaging materials and the selection of excipients.

The novelty of our work lies in the practical application of these advanced analytical
tools to improve product quality and enhance the overall consumer experience. This
approach has the potential for broader applications beyond our specific study [31]. It can be
adapted to address similar formulation challenges in plastic manufacturing, recycling, and
re-filling processes. This approach not only facilitates the optimization of product stability,
but also mitigates the inadvertent formation of problematic compounds, contributing to
the development of sustainable and consumer-friendly solutions in the field.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics16030320/s1. Figure S1: NMR spectra 1D 1H
of salicylic acid in H2O/D2O: (Top) aromatic peaks; (Bottom) Zoomed in with satellite peaks of
aromatic peaks assigned; Figure S2: 1H NMR spectrum (zoomed) of (a) 2,3-dihydroxybenzoic
acid (b) maleic acid (c) o-catechol and (d) the proprietary formulation in glass container 7 weeks
at 40 ◦C; Figure S3: HDPE White (no discolouration) versus yellow surface analysis comparison
with ATR-IR. Peaks that present for yellowed surface but are absent in non-discoloured surface are
highlighted [12,13]; Figure S4: To visually demonstrate the rapid formation of colored compounds,
hydrogen peroxide and SA were added to Ti(OMe)4, closely resembling the TiO2 system in HDPE
White. This phenomenon was also observed with the oxidized derivative maleic acid, which exhibited
a strong orange color when exposed to Titanium methoxide and hydrogen peroxide, indicating a
similar coloration interaction with oxidized derivatives of salicylic acid. (Left to right) Ti(OMe)4 and
H2O2; Ti(OMe)4 and H2O2 and SA; Ti(OMe)4 and SA within 1 min of combination; Table S1: Batch
numbers and conditions for all samples analysed listed below in table; Table S2: Table of qNMR
integral values over 24 h time range of for a representative PEF sample to show negligible change in
component concentration whilst refrigerated; Table S3: ICP-MS data acquired for different packaging
type PEFs at stored at 40 ◦C over 6 weeks.
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