
Citation: Jahangiri, S.; Yu, F.

Fundamentals and Applications of

Focused Ultrasound-Assisted Cancer

Immune Checkpoint Inhibition for

Solid Tumors. Pharmaceutics 2024, 16,

411. https://doi.org/10.3390/

pharmaceutics16030411

Academic Editors: Xiaowei Zeng and

Donald E. Mager

Received: 5 February 2024

Revised: 5 March 2024

Accepted: 11 March 2024

Published: 16 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Review

Fundamentals and Applications of Focused Ultrasound-Assisted
Cancer Immune Checkpoint Inhibition for Solid Tumors
Sepideh Jahangiri 1,2 and François Yu 1,3,*

1 Microbubble Theranostic Laboratory, Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
2 Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
3 Department of Radiology, Radiation Oncology and Nuclear Medicine, University of Montreal,

Montreal, QC H3T 1J4, Canada
* Correspondence: francois.yu@umontreal.ca; Tel.: +1-514-890-8000 (ext. 31268)

Abstract: Despite spectacular clinical successes across several cancer types, immune checkpoint
inhibition is effective only in subgroups of patients and suffers from significant systemic toxicities,
highlighting the need to understand and locally overcome the mechanisms of therapeutic resistance.
Similarly to other therapeutics, immunotherapies face delivery challenges (for example, antibodies
need to reach their targets) and immunological barriers that are unique to solid tumors and their
microenvironment. Interestingly, focused ultrasound (FUS), with or without microbubbles, which
has been shown to enhance gene and drug delivery, notably in oncology, has been recently found to
trigger immunological responses. In recent years, there has been a strong emphasis on understanding
the biological and immunological effects of FUS for cancer therapy, and FUS is now emerging as
an approach that can improve cancer immunotherapy. We herein review: (1) the immunological
barriers implicated in ICI resistance; (2) the fundamentals of FUS +/− MB and the current knowledge
on leveraging FUS +/− MB bioeffects for improving ICI therapy efficacy; (3) the immune profile
of tumor models that have been successfully treated with FUS and ICI; and finally, (4) we discuss
the challenges ahead for translating FUS and MB treatments to the clinic, highlighting the exciting
perspectives for this new research area.
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1. Introduction

Onco-immunotherapies, and specifically immune checkpoint inhibition (ICI), can
restore the ability of the host’s immune system to fight cancer. ICI first emerged in the
clinic for patients with melanoma, with a 26% overall response rate [1,2]. Monotherapy or
combination therapy is now used in first-line therapy for advanced melanoma, non-small
cell lung cancer [3], head and neck squamous cell carcinoma [4], and renal cell carcinoma [5].
However, ICI is not successful in a significant proportion of patients, nor in refractory cancer
types. To improve immunotherapy efficacy and reduce systemic toxicities, there is a need
to understand and find ways to overcome the mechanisms of therapeutic resistance.

Focused ultrasound (FUS) is an image-guided, non-invasive therapeutic modality
that uses ultrasound waves to target tissues. Recently, FUS has been shown to elicit
immunomodulation properties that could enhance immunotherapy [6]. Depending on
the FUS parameters, adjuvant FUS can damage a targeted tumor (cytotoxic effects) or
modulate the immune responses in a tumor, potentially overcoming some immune barriers
to cancer therapy. The rationale builds on known bioeffects from blood–brain barrier (BBB)
opening [7], ablative high-intensity focused ultrasound (HIFU) [8], and drug delivery [9]
literature. For example, FUS can temporarily disrupt the BBB, delivering therapeutic agents,
such as ICIs, directly to the tumor site [10]. Other studies have shown that FUS can increase
immunogenic cell death and antigen presentation to turn an immunosuppressive (cold)
tumor microenvironment (TME) into an inflamed (hot) TME [11].
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In this review, our objective was to survey and categorize anticancer FUS studies,
emphasizing the immunological barriers of tumors, the biological and immunological
effects of FUS, and the heterogeneity of tumoral immune profiles. We thus begin this
review with a short background on cancer development from an immune perspective
(Section 2). Immune barriers within the TME that foster tumor growth and prevent an
effective immune response are briefly discussed in Section 3. The bioeffects and immune
effects of the major FUS regimes are reviewed in Section 4. In Section 5, we review the
immune profiles of tumor models that have been treated with FUS to portray the state of
the art. Finally, the current and potential clinical challenges and limitations of FUS + ICI
are discussed in Section 6.

2. Cancer from an Immune Point of View and Immune Check Point Inhibition

From an immune perspective, cancer results from a failure of the immune system to
recognize and eliminate abnormal/mutated cells. The immunoediting theory describes
cancer as a dynamic process in which the immune system continuously interacts with the
mutating cells and influences their fate [12,13]. Initially, in the elimination phase, T cells
and natural killer (NK) cells can recognize and eliminate abnormal cells. However, over
time, the immune positive selection pressure eventually drives the escape of a subgroup of
mutant cells from immune surveillance, allowing their proliferation. Cancer cells typically
achieve immune escape by altering their immunogenicity (mostly by downregulating
MHC-I receptors resulting in antigen masking) and establishing an immunosuppressive
TME. Thus, cancer immunotherapy consists of (re-)activating the immune system for
identifying and eradicating tumor cells.

The discovery of programmed cell death-1 (PD-1 and its ligand, PD-L1) and cytotoxic
T lymphocyte-associated protein 4 (CTLA-4) revolutionized cancer immunotherapy [14].
PD-1 and CTLA-4 are co-inhibitory receptors that normally function as breaks for the
adaptive immune response, preventing damage to normal healthy tissues (autoimmune
diseases) and leading to immune tolerance [15]. Signaling through these pathways con-
tributes to the regulation of initial T cell activation, fine-tuning of T cell fate and functions, T
cell tolerance, and return to immune homeostasis [16]. Hence, for an efficacious anticancer
immune response, effector T cells must overcome immune checkpoint inhibitory signaling
to exert their full functions. Currently, mono/combination therapy with pembrolizumab
(commercial aPD1), is the first-line treatment for melanomas [17], metastatic triple-negative
breast cancer [18], non-small cell lung cancer [19,20], advanced urothelial carcinomas [21],
and cervical cancer [22]. The FDA approved ipilimumab (aCTLA-4) in 2011 for advanced
melanoma [23]. New checkpoint pathways are being discovered (CD39, CD73, LAG3,
TIM3, NKG2, etc.) [24], promising to increase response rates by combining non-redundant
pathways. Increasing the proportion of responders to ICI is an active area of research
because a complete understanding of the mechanisms of resistance to ICI remains elusive.

3. Immunological Barriers and TME Immune Profile

Immunological barriers in tumors refer to the various obstacles or mechanisms cancer
cells use to evade the immune system. Tumors compromise immune responses by prevent-
ing T-cell activation, function, and survival. Firstly, cancer cells undergo metabolic repro-
gramming, including TME acidosis, heightened activity of indoleamine 2,3-dioxygenase
(IDO), and an augmented adenosinergic pathway (Section 3.1). Increased IDO activity and
adenosine (Ado) are important modulators of immune suppression. Secondly, immune
suppressive chemokines, like transforming growth factor beta (TGF-β) and interleukin 10
(IL-10), exert their inhibitory effects on immune cells, fostering an immunosuppressive
TME (Section 3.2). Another key immunological barrier is an impaired tumor mutational
burden (TMB) and tumor-associated antigens (TAAs), which dramatically shape the TME
immune profile. These tumors with low TAA and TMB levels typically do not respond
well to immunotherapy, and they are reviewed in Section 3.3. Ultimately, the combination
of all these factors leads to distinct patterns known as inflamed, excluded, and desert



Pharmaceutics 2024, 16, 411 3 of 26

tumor immune phenotypes (Section 3.4). Understanding the dynamic interplay between
immune barriers and TME immune profiles is crucial for developing innovative therapeutic
approaches to overcome these challenges and to optimize the efficacy of ICI therapy in
different tumor contexts.

3.1. Metabolic Reprogramming: Adenosinergic Signaling

Metabolic reprogramming is intricately linked to cancer cell growth. Orchestrated by
various factors such as oncogenes, tumor suppressor genes, growth factors, and alterations
in the TME, this reprogramming leads to resistance to traditional therapies. In our explo-
ration, we narrow our focus to adenosine triphosphate (ATP) due to the reported impacts
of FUS on this molecule. ATP and Ado are critical metabolic and immune regulators that
modulate TME immunosuppression. Extracellular ATP (eATP) levels are higher in the
TME (hundreds of micromolar) compared to physiological concentrations in the nanomolar
range in healthy tissue. eATP concentration is regulated by cell surface ecto-nucleotidases.
CD39 hydrolyzes ATP to ADP and AMP, whereas CD73 degrades AMP to Ado [25]. CD39
and CD73 are overexpressed in the hypoxic TME, which suggests their implication in tumor
progression and immune suppression [26]. Ado is an immune suppressor binding to its
receptors in T and B cells, DCs, and NK cells. The activation of Ado receptors inhibits
proximal TCR signaling, as well as CD28 co-stimulation and IL-2R signaling, which are
critical for T-cell activation, survival, and cytokine production [27–29]. This results in im-
paired T-cell function and reduces immune responses. Additionally, Ado binding increases
the expression of immunosuppressive cytokines like IL-10, Foxp3, TNF-α, and IL-6, as
well as co-inhibitory receptors such as PD-1, CTLA-4, LAG3, and TIM3. The upregulation
of these co-inhibitory receptors is associated with the differentiation of regulatory T cells
(Tregs) [30] and the exhaustion of effector T cells, a state of functional impairment that
occurs during chronic infections or cancer [31–33].

3.2. Immunosuppressive Cytokines: TGF-β and IL-10

Immunosuppressive cytokines released from tumor cells or suppressive immune cells
(such as Tregs, MDSCs, and TAMs) are key mediators of immune escape. TGF-β and IL-10
are overexpressed in cancers and impose immunosuppression by reducing the expression
of effector cytokines associated with Th1, Th2, and Th17 subsets. This means IL-10 and
TGF-β can suppress CD4+ T cell production of pro-inflammatory cytokines such as IFN-γ,
IL-2, and IL-17 [34].

TGF-β suppresses cytotoxic T cells (CTLs) and NK cells and abrogates DC antigen
presentation [35]. TGF-β in a positive feedback loop drives Treg differentiation; however,
the presence of IL-6 or IL-21 can inhibit Treg differentiation and instead promote the
differentiation of Th17 cells. This phenomenon is known as cytokine-dependent Treg/Th17
plasticity and is thought to be important in maintaining a balance between Treg and Th17
cell populations in the TME [36]. Cancer stem cells, Tregs, regulatory B cells, TAMs,
MDSCs, and cancer-associated fibroblasts mediate the overexpression of TGF-β in the TME.
Moreover, hypoxia stimulates the overexpression of TGF-β within the TME. Breathing
supplementary oxygen can potentially convert the immunosuppressive TGF-β-enriched
TME to a more normal stroma [37].

IL-10 is known to suppress the production and activity of pro-inflammatory cy-
tokines such as IL-17, IL-6, and IL-12/23, promote the differentiation and function of
anti-inflammatory Treg cells, and inhibit the activity of macrophages and Th17 cell re-
sponses [38]. IL-10 induces immune tolerance in T cells by selectively inhibiting TCR
activation (CD28 co-stimulatory signaling dependency). However, T cells with strong
TCR activation (independent of CD28) are not affected by IL-10 [39]. Additionally, IL-10
downregulates antigen-presenting cell (APC) function and upregulates the expression of
CTLA-4.

Both TGF-β and IL-10 have bi-directional functions, meaning that in the pre-neoplastic
state or the early stage of carcinogenesis, they act as tumor suppressor genes that inhibit
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cell proliferation and induce apoptosis [38,40]. Several studies have provided evidence
that deficient IL-10 signaling promotes tumor development. In humans, IL-10 deficiency is
associated with an increased risk of developing lymphoma [38,40]. Persistent IL-10 and
TGF-β signaling, on the other hand, introduce selective pressure to overcome the tumor-
suppressive effects of TGF-β or IL-10 [41]. This is known as the paradox of TGF-β and
IL-10 and is associated with genetic mutations in the proteins involved in these pathways
or changes in the TME [42]. At the same time, TGF-β signaling in the stromal cells within
the TME can promote cancer progression and immune escape.

3.3. Genomic Instability, Tumor Mutational Burden, and Tumor-Associated Antigens

Genomic instability is defined as the tendency of cancer cells for increased genetic al-
terations (DNA mutation and chromosomal rearrangements) during cell division. Genomic
instability results from defects in DNA repair systems, resulting in the accumulation of mu-
tations in cancer cells. Tumor-associated antigens (TAAs), tumor mutational burden (TMB),
and microsatellite instability (MSI) are measures of genomic instability that have been
associated with increased immunogenicity and better responses to immunotherapy [43].
TMB and TAAs are both related to genomic alterations but represent different aspects
of tumor biology. TAAs refer to antigens that are overexpressed or aberrantly expressed
by cancer cells. TAAs are recognized by the immune system and can elicit an immune
response, although they may not be as immunogenic as neo-antigens generated by a high
TMB [43].

TMB refers to the total number of mutations present in the DNA of a tumor cell.
High TMB can lead to the production of neo-antigens [43,44]. Microsatellites are DNA
elements consisting of repeated sequences of 1–6 nucleotides. Microsatellite instability
(MSI) is defined as the generation of alternate-sized repetitive microsatellites [45]. A small
subset of CRC patients (15%) exhibit high MSI and have an inflamed TME, whereas the
majority of CRC patients (85%) are microsatellite stable (CRC-MSS) [46]. Tumors with high
TMB and an inflamed TME, including melanoma and locally advanced urothelial cancers,
are good responders to ICI therapies [43,47–52]. Tumors with high TMB and high MSI,
including metastatic bladder cancer, NSCLC, and CRC-MSI, are usually good responders to
ICI therapy. In contrast, tumors with high TMB but without inflammation (small cell lung
cancer (SCLC) and bladder cancer) and tumors with inflammation but without TMB (renal
cell carcinoma, hepatocellular carcinoma (HCC), gastric cancer, head and neck cancers, and
triple-negative breast cancer (TNBC)) are low responders to immunotherapy [43]. Recent
research has suggested that combining TMB and PD-L1 expression may provide a more
accurate prediction of response to immunotherapy than either biomarker alone [43].

The successful anti-tumor immune response process starts with TAA recognition
by APCs. Subsequently, APCs activate effector immune cells, such as CTLs, initiating
anti-tumor responses. However, the journey of effector cells to the tumor site and their
infiltration into the tumor tissue can be challenging in the hostile TME. If the effector cells
reach the tumor site, they must recognize and bind to the TAAs on the tumor cell surface.
This recognition triggers the effector cells to attack and kill the tumor cells. As tumor cells
are destroyed, they release more TAAs that APCs can process. This, in turn, activates more
effector cells, enhancing subsequent anti-tumor activity.

3.4. TME Immune Profiles and Resistance to ICI Therapy

For some cancers, ICI alone can restore anticancer immune responses. However, this
is not the case across cancer types or even across patients within a cancer type. The TME
immune profile has been proposed to stratify candidate patients for immunotherapy. The
immunoscore describes the level of two infiltrated lymphocyte populations: (1) all tumor-
infiltrating lymphocytes (TILs = CD3+) and (2) CTLs (CD8+) and their spatial distribution
in the tumor [53]. The immunoscore ranges from I4 (highly lymphocyte infiltrated) to I0
(absence of lymphocytes) and classifies cancers into three subcategories, namely inflamed
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with I4-I3 (hot), immune-excluded with I1-I2 (low and moderate immune cell infiltration),
and immune desert with I0 (cold), as depicted in Figure 1 [43,54,55].

Inflamed tumors are typically linked to favorable responses to ICI therapy. Histopatholog-
ical examination of inflamed tumors reveals a distribution of TILs in the tumor parenchyma in
close contact with cancer cells. However, the expression of immune cell exhaustion markers,
like PD1/PDL1, can inhibit the activation of infiltrated effector immune cells [43,54]. These
tumors also generally present a high genomic instability, leading to a high TMB and ele-
vated TAA levels. It has been reported that the fraction of patients who have a higher TMB
and pre-existing anti-tumor immune responses have a greater survival benefit from ICI
therapy [43,56]. Therefore, high TMB and TAA levels, genomic instability, an elevated pres-
ence of B cells, increased expression of IFN-γ, and low expression of TGF-β are biomarkers
of inflamed tumors associated with better prognosis following ICI therapy [43,54]. NSCLC
and melanoma are good examples of “hot” or inflamed phenotypes [43,50–52].
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Figure 1. Tumor immune phenotypes defined by the lymphocyte presence, activation, and distri-
bution in the TME. Inflamed tumors are infiltrated by TILs, present a high expression of IFN-γ and
PD-L1, and typically respond to ICI. Immune-excluded tumors restrict TILs to the tumor periphery,
with a prevalence of myeloid and suppressor cells presenting strong TGF-β signaling with reduced
antigen presentation. Immune desert tumors exhibit a complete loss of immune activity (no TILs),
and present an altered metabolome, resulting in quick cell proliferation [57]. Some tumor examples
for each immunophenotype are shown in the figure. Acronyms: NSCLC: non-small cell lung cancer;
CRC: colorectal cancer; HR+ BC: hormone receptor positive breast cancer.

Immune-excluded tumors are poor responders to ICI therapy. In histopathological
examination, lymphocytes are typically found in the tumor margins with high TGF-β
expression, enhanced myeloid presence, and angiogenesis [43]. Mariathasan et al. (2018)
reported a key role for TGF-β in promoting the excluded TME phenotype. They have also
shown that TGF-β suppression can sensitize immune-excluded tumors to ICI therapy, turn
immune-excluded tumors to the inflamed type, and augment inflammation in the TME in
EMT6 breast cancer animal models [58]. An increased myeloid population within the TME,
low TMB, and low MHC-I are associated with the immune-excluded phenotype. MC38
and EMT-6 tumor models are examples of immune-excluded tumors in which MDSCs
are prevalent and T cells are excluded from the tumor margins. Combination therapy of
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aTGF-β and aPDL1 in both MC38 and EMT-6 mouse models increased T-cell infiltration and
distribution, provoked anti-tumor immunity, and inhibited tumor growth [58]. Pancreatic
ductal adenocarcinoma, TNBC, and hepatocellular carcinoma are examples of immune-
excluded cancers.

Immune desert or “cold” tumors are usually resistant to ICI therapy. Immune desert
tumors lack immune infiltration and antigen presentation and exhibit high proliferation
rates. This phenotype is characterized by the absence of T cells, low TMB, and inade-
quate antigen presentation. The low expression of MHC-I leads to poor T-cell priming,
further contributing to the limited immune response in these tumors. Chemokine secre-
tion of immune attractants like CXCL1, CXCL2, and CCL4 that recruit DCs are markedly
downregulated, which further prohibits T-cell priming and infiltration in immune desert
tumors [43]. Accumulating evidence demonstrates aberrant WNT/β-catenin signaling
favoring malignant transformation and promoting immune escape and ICI resistance [59].
Additionally, unrestrained cancer cell proliferation results in increased hypoxia and aci-
dosis, which alters T-cell metabolism, TCR engagement, function, and proliferation [57].
Early-onset cancers, like pediatric and juvenile malignancies, and aggressive adulthood
cancers like glioblastoma, small cell lung cancer (SCLC), prostate, and HR+ breast cancers
are recognized as cold tumors [43,54]. The potential relation of these immune profiles with
FUS therapy will be discussed later in this paper.

4. Focused Ultrasound (FUS) Modalities for Cancer Therapy

Diagnostic ultrasound imaging is an established imaging modality for disease diag-
nosis and management. Ultrasound can also be used therapeutically, as supported by
several clinical trials evaluating the efficacy of ultrasound, with or without microbub-
bles (MBs), to open the blood–brain barrier (NCT03712293, NCT02343991, NCT05733312,
NCT03714243, and NCT05317858) for neurodegenerative disease therapy or in combina-
tion with chemotherapy (NCT03477019) or immunotherapy (NCT03237572, NCT04116320,
and NCT04021420) for cancer treatment and management. FUS treatment offers a novel
targeted, non-invasive, non-ionizing treatment that can replace or complement traditional
therapies (surgery, chemotherapy, radiotherapy) to improve patient quality of life and
survival [60]. FUS takes advantage of mechanical sound waves, typically >20 kHz that
can be focused deep (~10 cm) into the body. FUS modalities used in cancer therapy differ
by their sonication parameters and the type of stress induced. We grouped them into five
categories, namely thermal ablation high-intensity focused ultrasound (T-HIFU), mechani-
cal ablation HIFU (M-HIFU), hyperthermia (HT), pulsed focused ultrasound (pFUS), and
ultrasound-targeted microbubble cavitation (UTMC). T-HIFU and M-HIFU are ablative,
whereas HT, pFUS, and UTMC are typically non-ablative. HIFU treatment usually leads
to more necrosis than apoptosis, while UTMC causes more apoptosis than necrosis [6,61].
Beam characteristics and mechanisms of action of each FUS modality are elaborated in
Sections 4.1–4.4 and are summarized in Figure 2 and Table 1.
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Table 1. Differences in sonication parameters, physical mechanisms of action, and biological and
immunological effects of FUS modalities.

FUS Modality Sonication
Parameters

Physical
Mechanisms
and Effects

Biological Effects Immune Effects

Ablative High
Intensity
FUS

T-HIFU [62–66] ISPTA > 1000 W/cm2

P = 3–70 MPa
F = 0.2–20 MHz
DC% = 100%

-Temperature
increase to
~60–85 ◦C
-Stable and inertial
cavitation

-Coagulative tissue
necrosis
-Increase TAAs
-Increase DAMPs
-Increase
lymphatic drainage

-Inflammatory cytokines
-Maturity of DCs
-Increase TIL population
-Heat-shock
protein release

M-HIFU [66–70] -Histotripsy
ISPTA < 300 W/cm2

P = 20–80 MPa
F = 0.2–3 MHz
DC% ~0.01%

-Boiling histotripsy
ISPTA < 600 W/cm2

P = 10–20 MPa
F = 0.2–3 MHz
DC% ~4%

-Mechanical
histotripsy (inertial
cavitation,
micro-jetting,
streaming, and
shear stress)

-Boiling histotripsy
(MB boiling;
thermal and
mechanical effect,
shockwaves)

-Coagulative tissue
fractionation and
liquefaction
-TAA increase
-Non-thermally
damaged TAA release
-Microhemorrhage

-Immunogenic cell death
-Better APC activation
than HT
-TIL increase

Non-
ablative

HT [66,71–75] ISPTA > 10 W/cm2

P = 0.1–5 MPa
F = 0.2–3 MHz
DC% = 0.5–100%

-Temperature
increase to ~45 ◦C

-Blood perfusion
increase
-Tissue oxygenation
improvement
-Thermally controlled
drug release
-Protein and DNA
damage-induced cell
arrest and apoptosis
- IFP reduction

-HSP70 increase
-Increase in M1
macrophages and
NK cells
-DC activation
-Increase in TNFα
and IFNγ
-Decrease in MDSCs
and IL-10

Low
Intensity
FUS

pFUS [76–78] ISPTA < 100 W/cm2

PNP = 0.1–10 MPa
F < 3 MHz
DC% = 0.5–20%

-Mostly
non-thermal effects
-Mild heating
(<5 degrees)

-Mechanical forces
without
significant heating
-Low cellular damage
-Immunomodulation
- DNA strand break
-Calreticulin
translocation

-Expression of CCTFs
and CAM
-Immune cell homing
-Innate and adaptive
immune response within
the TME (NK cells, DCs,
Th1 cells, and CTLs)
-Increase in inflammatory
immune cells in TDLNs
and the spleen

UTMC [67,79] ISPTA < 10 W/cm2

PNP = 0.1–4 MPa
F = 0.2–3 MHz
DC% = 0.5–50%

-Sonoporation
-Shear stress

-Targeted drug release
-Vascular
permeabilization
-BBB/BTB opening
-Reduction in IFP
-Reduction in hypoxia
-ATP release

-Vascular inflammation
-IL-2 and IFNγ increase
-TILs
-Expression of regulatory
genes in MDSCs
-Decreased expression of
genes responsible for
T-cell anergy (i.e., Grail,
Itch, Cbib, Grg4)

Acronyms: ISPTA: spatial peak temporal average intensity; F: frequency; P: pressure; DC%: duty cycle (%); HIFU:
high-intensity focused ultrasound; T-HIFU: thermal HIFU; M-HIFU: mechanical HIFU; pFUS: pulsed focused
ultrasound; TDLN: tumor-draining lymph node; UTMC: ultrasound-targeted microbubble cavitation.

4.1. Thermal Ablation HIFU (T-HIFU)

T-HIFU is FDA-approved for treating several solid malignancies (e.g., pancreas, bone,
liver, prostate, breast, and kidney) [80]. For T-HIFU, near continuous (DC% close to 100%)
high-intensity US waves are used at a frequency of ~1–8 MHz, a spatial peak temporal
average intensity (ISPTA) > 1000 W/cm2, and a high pressure of 3–70 MPa to heat the tumor.
The energy of the US beam is absorbed by the targeted tissue, heating it to 60–85 ◦C. T-HIFU
leads to coagulative thermal necrosis. Surrounding tissues around the focal spot, which
receive lower temperatures, typically become apoptotic [81].
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Figure 2. An overview of the relationship between ISPTA, temperature, pressure, and thermal
damage for different FUS modalities. There is minimal thermal damage below the thermal threshold.
Thermal damage is strongest for T-HIFU, which has the greatest ISPTA. Acronyms: ISPTA: spatial
peak temporal average intensity; T-HIFU: thermal HIFU; M-HIFU: mechanical HIFU; pFUS: pulsed
focused ultrasound; UTMC: ultrasound-targeted microbubble cavitation.

T-HIFU achieves primary tumor control but is not always effective at generating
abscopal effects, suggesting that HIFU may fail to prime an adaptive anti-tumor immune
response. The high thermal stress induced by HIFU destroys the vasculature and tissue
structure, which may limit the ability of immune cells to reach the tumor site and sup-
port antigen presentation [6]. T-HIFU releases many immune-activating molecules such
as TAAs, damage-associated molecular patterns (DAMPs), and heat-shock proteins (like
HSP73, HSP72, HSP70, HSP60 and HSP27). These immunostimulatory molecules are
recognized by APCs (i.e., DCs) and initiate leukocyte recruitment and infiltration to the
TME [82]. Activated DCs in the HIFU-ablated region secrete IL-12 and IFN-γ to recruit
and activate CTLs. CTLs release TNF-α and IFN-γ, further stimulating the anti-tumor
immune responses [83]. T-HIFU, despite quickly destroying tumor integrity and shrink-
ing the tumor mass, is yet unable to markedly provoke immune stimulation within the
TME due to the massive coagulative necrotic region. T-HIFU monotherapy is insufficient
for stimulating adaptive immune responses [6,84]. Another limitation of this technology
could be that elevated temperatures may denature released TAAs and thus dampen the
anti-tumor immune response. Interestingly, combining ICI therapy with T-HIFU ablation
could foster systemic and long-term anti-tumor immunity in tumor models prone to distal
metastasis or recurrence [6,84,85]. The tissue intrinsic characteristics, like the level of stro-
mal condensation or the ratio of residual mesenchymal cells to tumoral cells, determine the
success of HIFU-mediated anti-tumor immune responses, which can determine the extent
of immune priming or tolerance. Therefore, HIFU parameters needed to be optimized for
every tissue [6,76].



Pharmaceutics 2024, 16, 411 9 of 26

4.2. Mechanical Ablation HIFU (M-HIFU)

M-HIFU refers to ablative boiling histotripsy and non-thermal histotripsy modalities of
FUS. Histotripsy is derived from the Greek “histo”, meaning tissue, and “tripsy”, meaning
to crush or grind. During a histotripsy procedure, a high-pressure US beam is focused
on a small area of tissue, creating bubbles of gas. These bubbles expand and collapse
rapidly, leading to micro-jetting, streaming, and shear stress that mechanically pulverize
the tissue [6,86,87]. It typically uses short pulses of US waves (micro- to millisecond pulses)
with a low duty cycle (0.1–4%), frequencies below 3 MHz, and ISPTA > 50 W/cm2 at very
high pressures (10–80 MPa).

M-HIFU can fractionate tissue into sub-cellular fragments with or without thermal
damage. Boiling histotripsy refers using longer (milliseconds) pulses, which induce both
mechanical and thermal ablation in the targeted tissue [88]. Non-thermal histotripsy
uses very short pulses of HIFU that create rapid expansion and collapse of gas bubbles
without causing thermal effects [70]. Boiling histotripsy can destroy cells and tissues
at a faster rate than histotripsy; however, it also increases the risk of thermal damage to
surrounding healthy tissue. It is important to note that the choice of pulse duration depends
on the type of tissue and the desired outcome, and it represents a delicate balancing act
between effective fragmentation and minimal thermal damage [89]. In contrast to T-HIFU,
histotripsy produces intact antigens (non-thermally damaged) in a mechanically-dominated
mechanism, which is believed to improve antigen presentation and anticancer immunity. It
is also more precise than T-HIFU and leaves the surrounding normal tissue undamaged
since there is no thermal diffusion [6].

Lesions produced by boiling histotripsy exhibit microhemorrhage, immune cell infil-
tration, and a homogenate of cellular debris [81,90]. Released TAAs are captured by APCs
and migrate to the TDLNs and the spleen, where APCs are in close contact with T cells
to activate them. Released DAMPs include calreticulin [91–93], HSP70 [93,94], and the
local and systemic release of HMGB1 [92,93], inducing cancer cell death [95]. Calreticulin
is an endoplasmic reticulum-associated protein that is exposed on the surface of dying
tumor cells after non-thermal histotripsy treatment [92]. This can act as an “eat-me” signal,
promoting the clearance of tumor cells by immune cells. Following histotripsy, the elevation
of IFN-γ is the most consistently reported cytokine by several studies [92,93,96,97]. The
upregulation of IL-1, IL-2, IL-6, IL-10, IL-13, IL-18, and TNF-α is reported to indicate an
immune response in the TME [92,93,96].

Following non-thermal histotripsy, innate immunity (NK cells, DCs, and macrophages)
is recruited to the tumor [92,98]. In a melanoma model, an intratumoral increase in NK cells,
DCs, macrophages, and neutrophils was found 10 days post-treatment. Interestingly, infil-
trative CTLs were also increased at both primary tumor and metastatic lesions, indicative
of an adaptive immune anti-tumor response [92]. Histotripsy-mediated CTL infiltration
induces immunogenic cell death through ferroptotic cancer cell death in melanoma and
hepatocellular murine models [98]. In a thymoma mouse model (EL4), boiling histotripsy
was compared with T-HIFU [99]. In boiling histotripsy, microhemorrhages were found in a
narrow transition zone between the disintegrated sonicated region and the viable non-focal
tumor tissue. The infiltration of granulocytes and macrophages was markedly increased
4 days after treatment. However, in the T-HIFU group, no immune cell infiltration was
identified [99].

4.3. HIFU-Induced Hyperthermia (HT)

In HT, the US duty cycle can be adjusted (0.5–100% range) at frequencies of 0.2–3 MHz,
ISPTA > 10 W/cm2, and intermediate pressure levels of 1–5 MPa. In HT, tissue temperature
is increased mildly to 40–45 ◦C but is maintained for a longer duration (30 to 90 min). HT is
most effective in low-perfused tumor tissue that cannot dissipate heat [100]. Typically, HT
is associated with drug delivery using thermosensitive drug carriers, e.g., thermosensitive
liposomal doxorubicin in liver cancer patients [81,90], murine breast cancer models [75], or
murine ovarian carcinoma [101]. Other pleiotropic effects of HT include cell cytoskeleton



Pharmaceutics 2024, 16, 411 10 of 26

distortions [102], protein and DNA damage leading to cell cycle arrest, DNA repair abroga-
tion, and ultimately apoptosis [103]. The putative biological mechanisms are mediated by
HSP upregulation, p53 activation, mitochondrial injury, and caspase 2 activation. Also, HT
induces vasodilation that increases blood perfusion and oxygenation to the TME, reducing
hypoxia, acidosis, interstitial tumor pressure. HT markedly inhibits the DNA repair system
and thus can sensitize cancer cells to chemotherapy [103]. The effects of HT are strongly
dependent on the tumor type, temperature elevation, and exposure time [104]. Gouarderes
et al. (2020) indicated that HT could loosen the tight structure of the extracellular matrix
(ECM) and disrupt the connective tissue, enabling drug penetration 2.5 times greater than
that in untreated tumors [105], reducing the interstitial fluid pressure, and increasing the
number of infiltrated CAR-T cells [106].

From an immune perspective, HT stimulates multiple pathways of innate and adaptive
anti-tumor immune responses. HT is associated with increased DAMPs in the TME,
including, eATP release, surface-expressed calreticulin, HMGB1, HSP90, and HSP70 [107].
The release of DAMPs within the TME activates quiescent DCs to recruit inflammatory
immune cells to the site, resulting in CTL activation by inducing granzyme B expression
and increasing IFN-γ, IL-10, and IL-6 secretion [6]. Thermal stress has been shown to
differentiate mature DCs through increased levels of HSP90. Tumor-specific CTLs and NK
cell-mediated anti-tumor immunity are stimulated by HT [108,109]. HT acts directly on
both lymphocytes and the vascular endothelium to increase lymphocyte diapedesis and
migration by upregulating LFA-1 and ICAM-1, respectively [110,111].

Recent studies proposed that both HIFU thermal modalities—T-HIFU and HT—can
enhance TAA and CTL infiltration but are not sufficient to increase ICI efficacy in ani-
mal models [75,85,112,113]. Therefore, additional stimuli such as immunoadjuvants or
chemotherapies may be necessary to augment cross-presentation and cross-priming medi-
ated by APCs.

4.4. Pulsed FUS (pFUS)

pFUS employs non-ablative short pulses to induce acoustic cavitation and acoustic
radiation forces. pFUS typically uses DC% = 0.5–20% at low frequencies (<3 MHz) with
relatively high ISPTA (<100 W/cm2) and a peak negative pressure of 0.1–5 MPa [76–78].
Pulse intervals minimize the effects of temperature elevation (<5 ◦C), lower energy de-
position, and allow tissue cooling [114]. pFUS can be used for enhanced drug delivery
(doxorubicin) to KPC-bearing mouse models [115]. Another study used low-powered
pFUS (5 to 20 W/cm2) to break down the integrity and stiffness of the ECM, allowing deep
tissue transportation of nanoparticles in a tumor model of lung adenocarcinoma (A549 cell
line). Histological staining confirmed pFUS-mediated ECM remodeling without vascular
damage [116].

pFUS can induce apoptosis, reduce viability in cancer cells, and increase TIL density
in tumor tissue [117]. Bandyopadhyay et al. (2016) reported that pFUS can increase anti-
gen presentation, reverse the tumoral T cell tolerance by increasing cytokine secretion,
reduce the anergy-related gene expression profile, and increase the percentage of acti-
vated/matured DCs. In this study, pFUS treatment followed by ablative M-HIFU induced a
complete rejection in 80% of B16-bearing mice, markedly improved recurrence-free survival,
and reduced local or distal metastasis, indicative of abscopal immune activity [118]. In con-
trast to HIFU, pFUS stimulates inflammatory responses with limited cellular damage [114].
pFUS induced a spike of several pro-inflammatory cytokines (TNFα, IL-1α, IL-1β, IFN-γ,
GMCSF) on day 1 post-pFUS and returned to baseline on day 3. pFUS also induced the ex-
pression of ICAM-1 and VCAM-1 at day 0 and day 1 [114]. Aydin et al. (2019) also studied
the proteomic profile in the TME following pFUS treatment. They reported DNA strand
breaks at peak negative pressure (PNP) > 6 MPa and a downregulation of immunosuppres-
sive response at PNP > 4 MPa in the B16 tumor model 24 h post-sonication [76]. Cohen
et al. (2021) studied anti-tumor immune responses in B16 and 4T1 models. Following
pFUS, there was a 75% concordance for anti-tumor cytokines and inflammatory markers
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(including TNFα, IL-1a, IL-1b, IL-17, IL-6, and VCAM-1), indicating a TME shift toward a
hot TME. However, the anti-tumoral cellular immune response was only found in the 4T1
model. Therefore, the anti-tumor immune phenotype following pFUS is strongly depen-
dent on the tumor type [77]. Moreover, their transcriptomic data revealed that over 12 h
post-treatment, the KRAS and EMT signaling pathways were upregulated in B16 tumors,
indicating proliferative and aggressive features, while these pathways were downregulated
in 4T1 tumors consistently, with greater tumor growth inhibition in the 4T1 model [77].
This study highlighted that intrinsic features of the primary tumor, like desmoplastic and
ECM characteristics, affect the strength of the generated response following FUS treatment
and exemplify the necessity of fine-tuning FUS parameters for every tumor type.

4.5. Ultrasound-Targeted Microbubble Cavitation (UTMC)

UTMC uses low-intensity pulsed ultrasound at a DC% of 0.5–50%, frequencies 0.2–3 MHz,
ISPTA < 10 W/cm2, and low to moderate pressure (0.1–4 MPa) combined with a systemic
injection of MBs [6,90]. MBs have been used as US contrast agents for diagnostic imaging
for several decades and are making their way into the therapeutic field [119]. Current
commercial MB formulations comprise a gas core (typically perfluorocarbon or sulfur
hexafluoride) stabilized by an amphiphilic membrane (lipid, polymer, or protein). MBs
undergo volumetric oscillations (stable cavitation) and/or violent collapses (inertial cavi-
tation) when subjected to US (Figure 3). MB stable and inertial cavitation produces shear
stress on the nearby cell membranes and vessel boundaries, which can lead to mechan-
ical damage (either reversible or irreversible). The infusion of MB typically reduces the
pressure threshold, causing bioeffects compared to pFUS or M-HIFU. Transient membrane
opening is termed sonoporation and can be exploited for drug or gene delivery [81,87,120].
Microstreaming helps to push the drug through the tumor stroma, thereby facilitating
therapeutics delivery through the transvascular–interstitial–intracellular barriers [121].
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UTMC treatment alters cellular metabolism, including modifications in cell mem-
brane potential [122], calcium signaling [123,124], purinergic signaling [125,126], MAPK
(mitogen-activated protein kinase) activation, and mTOR (mechanistic target of rapamycin)
activation [127] while suppressing ERK 1/2 signaling [128]. UTMC induces endoplasmic
reticulum (ER) stress that is characterized by the accumulation of misfolded proteins in the
ER [129].

UTMC can augment immune cell infiltration to the site of interest [9,106,130–132].
This approach has been reported to enhance drug concentration and improve therapy
efficacy by 20–80% [119,133]. MB oscillation can break down tight junctions between
vascular endothelial cells and compromise vessel integrity [119,134]. Therefore, UTMC-
induced vascular permeabilization enhances drug delivery [130,135] in the cornea [136],
gastrointestinal tract [137], skin [138], and neural system [139–141]. Heath et al. (2012)
investigated the benefit of combined UTMC with cetuximab (an antibody targeting EGFR)
in a mouse model of head and neck squamous carcinoma; they showed a 30% increase
in cetuximab delivery following UTMC [135]. In parallel, Amate et al. (2020) reported
that UTMC and the subsequent sonoporation on the vasculature system promoted local
antibody concentration and extravasation in solid tumors [130].

Several groups have investigated the potential of UTMC cavitation in BBB opening
for enhancing drug delivery or the homing of immune cell adoptive transfer (CAR-T cells,
NK cells, and vaccine DCs) in brain tumor mouse models [139,142–145]. Meng et al. (2021)
recently demonstrated enhanced trastuzumab delivery in four patients with progres-
sive intracranial HER2+ brain metastases in a single-armed open-labeled clinical study
(NCT03714243) using MRI-guided UTMC. Trastuzumab + UTMC (six treatments for every
single patient) was reported safe without hemorrhage or edema. Importantly, an increased
standardized uptake value ratio of 101 ± 71% and a 19 ± 12% decrease in tumor size
were found. Their results demonstrate the first evidence in humans of non-invasive, non-
ionizing, spatially targeted, and safe mAb delivery through the BBB using MR-guided
UTMC [146].

Recently, UTMC has been reported to decrease tumoral IFP [147,148] and therefore
increase drug delivery to head and neck squamous cell carcinoma in mice and anaplastic
squamous cell carcinoma in rabbits [78,148]. UTMC with oxygen MBs can overcome hy-
poxia, increase tumor oxygenation to 20 mmHg, and radiosensitize an in vivo breast tumor
model [149]. Ho et al. (2019) demonstrated that UTMC, with oxygen MBs and doxorubicin,
induces tumor oxygenation, inhibits the HIF-1α/VEGF pathway, and normalizes vessel
structure by increased pericyte coverage while also increasing doxorubicin concentration in
the TME [150]. Therefore, UTMC treatment can enhance tumor perfusion, relieve hypoxia,
and offer a promising strategy for addressing dysfunctional and tortuous vasculature to
improve anti-tumor therapies. Nevertheless, the impact of UTMC on immune cell distri-
bution within a disrupted ECM network, as well as the undetermined bioeffects resulting
from sonoporation and/or microstreaming, are areas that require further investigation.

Given that UTMC can be adjusted to either shut down [151–155] or preserve tumoral
perfusion, it becomes essential to distinguish the effect of flow on the immune response.
Ablative UTMC, which shuts down flow, has been found to increase the expression of HSPs
and their translocation to the cell surface, thereby enhancing NK cell-mediated cytolysis
in 4T1 and TPSA23 tumors [156]. Additionally, Hunt et al. (2015) discovered that ablative
UTMC increased the presence of mature CD45+/CD3+ immune cells in the TME [157].
On the contrary, non-ablative UTMC, in addition to increasing local drug concentration,
enhances anti-tumor responses by inducing vascular inflammation (ICAM-1, VCAM-
1) [158], facilitating CTL infiltration [90], decreasing cancer cell proliferation [158], and
promoting immunogenic cell death [6]. UTMC induces the polarization of tumor-associated
macrophages from M2 to M1 [159]. In a murine pancreatic ductal adenocarcinoma model,
a single UTMC treatment increased tumoral cytoplasmic HMGB1 and enhanced antigen
presentation by macrophages, CTLs, and CD4+ cells only in TDLNs at 2 days after UTMC,
which resulted in reduced tumor growth [160]. However, most of these changes had
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subsided after two weeks, demonstrating the need for additional treatments or combination
with other therapeutics.

Mechanical perturbation by UTMC increases DAMPs (eATP, HMGB1, HSP60, HSP70,
and calreticulin), favors DC maturation (MHC-II and B7 proteins), and stimulates adaptive
immune responses [118,126,160,161]. Kovacs et al. (2017) found that sterile inflammation
was induced in the parenchyma following UTMC treatment for BBB opening. DAMPs
(HSP70, TNF-α, IL-18, and IL-1 but not ATP or HIF1α) increased post-sonication, lasting
24 h [142]. Moreover, increased levels of cytokines, chemokines, trophic factors (CCTFs),
and vascular inflammation (ICAM-1) potentiated the pro-inflammatory immune responses
following BBB disruption. The differential gene expression following BBB/BTB opening at
6 and 24 h post-UTMC revealed an increased gene expression of pro-inflammatory markers,
including TNF-α, IL-6, CXCL family members, and ICAM-1, which potentiate immune cell
trafficking and activation [162]. Moreover, increased DC infiltration into the meninges and
intracranial tumor lesion indicated a better antigen presentation (correlated with increased
expression of TAP1 and TAP2) to effector immune cells, while DC level was not changed in
TDLNs. In this study, despite elevated cytokine expression, TILs did not increase at 2 days
or 4 days post-treatment [162]. The latter could be improved by repeating UTMC treatment
as well as choosing a later time point (7 days instead of 2–4 days).

5. Immune Profiles, FUS Bioeffects, and ICI

The three main objectives for successful ICI therapy for solid tumors are (1) tumor
regression, (2) TAA release leading to T-cell activation, and (3) pro-inflammatory cytokine
release to inhibit immunosuppressive cells (Tregs and MDSCs) and activate effector cells.
To have a robust anti-tumor response, effector T cells need to be activated via MHC-I
ligation of APCs like DC to CD8+ receptors on CTLs [163]. Mechanical or thermal FUS
modalities have been shown to increase tumor antigen presentation to activate effector T
cells and induce direct immunological effects [6,164,165]. The different FUS modalities and
their mechanisms of action in inducing an immune response are reviewed in this section,
with a particular emphasis on the tumoral immune phenotypes and TMB.

A growing number of publications have reported encouraging results combining FUS
and ICI therapy at the preclinical stage on cancer models with different immune profiles.
These studies are summarized in Table S1 (Supplementary Data), and if they induced
an anti-tumor immune response, they are graphically depicted in Figure 4. Based on
Figure 4, melanoma (inflamed TME with high TMB) and TNBC (immune-excluded TME
with low TMB) are the most extensively studied models. CRC-MSI (inflamed TME with
high TMB), HER2+BC (immune-excluded TME with low TMB) and glioma (immune desert
TME with low TMB) are the second-most studied. pFUS has been primarily studied in
melanoma (inflamed TME and high TMB), and TNBC (immune-excluded TME and low
TMB). UTMC has been studied in many models, but mostly in immune-excluded models
(please note that MC38 is CRC-MSI but is immune excluded). T-HIFU is predominantly
investigated in HER2+BC, while M-HIFU is frequently employed across different TME
immune phenotypes.

The FUS + ICI combination can be split into approaches that: (1) shut down blood
perfusion [85,166], either by T-HIFU or M-HIFU +/− MB treatment, or (2) improve blood
perfusion [90,150], usually by HT, pFUS, and UTMC. Each modality exhibits different
success rates in inhibiting tumor growth, overall survival rate, and response rate.
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5.1. Ablative FUS + ICI

Silvestrini et al. (2017) demonstrated that priming with TLR agonist -CpG- and aPD-1
in a HER2+BC metastatic breast cancer model (NDL, immune-excluded TME, and low
TMB) upregulates innate anti-tumor responses and alters infiltrated macrophage polariza-
tion after T-HIFU [85]. The follow-up study identified mechanistic potential differences
between this combination and ICI monotherapy. First, there was a greater systemic antigen
cross-presentation in the TDLNs in the combined treatment group vs. either monother-
apy (16% vs. 10% or 0.1% of CD45+ cells, respectively). Second, the combined treatment
polarized macrophages and DCs toward a CD169-expressing subset (phagocytosis) and
enhanced tumoral release of IFN-I [174]. Sheybani et al. (2020) demonstrated that partial
T-HIFU is not sufficient to elicit a robust T-cell response in a TNBC model (4T1, immune-
excluded TME and low TMB) [112]. The combination of gemcitabine and the partial T-HIFU
restricted tumor growth, but only minimal changes in intratumoral CTL were achieved. The
addition of aPD-1 to T-HIFU + gemcitabine moderately improved growth inhibition when
given before or after T-HIFU. Partial (2%) M-HIFU treatment on a large neuroblastoma
model (Neuro2a, immune desert TME with low TMB) induced cellular and chemokine
responses but was not sufficient to debulk the tumor and had no survival benefit [96]. The
addition of aCTLA-4 and aPD-L1 to M-HIFU resulted in some complete tumor rejection
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and increased long-term survival from 0% (in either monotherapy) to 62.5% (in the com-
bined treatment). M-HIFU increased NK cells in the spleen and TDLNs, systemic IL-2,
IFN-γ, and DAMPs while decreasing CD4+ FOXP3+, IL-10, and VEGF-A at 24 h, 48 h,
and 72 h post-treatment. Combined treatment with M-HIFU + aCTLA-4 + aPD-L1 signifi-
cantly enhanced CTLs, DCs, Th cells, and Tregs in TDLNs and reduced systemic IL-10 [96].
M-HIFU and T-HIFU were compared in murine melanoma models (B16GP33, inflamed
TME with high TMB) and hepatocellular carcinoma (Hepa 1–6, immune-excluded TME
with high TMB). This study reported a stronger immune stimulation following M-HIFU
treatment [92]. Additionally, M-HIFU was more effective in abscopal immune responses
based on the number of pulmonary metastases. Moreover, immunogenic TAA was higher
in M-HIFU and was correlated with calreticulin translocation and HMGB1 release. In this
study, M-HIFU enhanced the efficacy of aCTLA-4 in both melanoma and hepatocellular
carcinoma models [92]. Similarly, Abe et al. (2022) compared M-HIFU and T-HIFU in
a breast cancer model, a TNBC model (E0771, immune-excluded TME with low TMB),
and a HER2+BC model (MM3MG-HER2, immune-excluded TME with low TMB) [175].
They reported a more potent immune response and tumor growth inhibition in the M-
HIFU-treated groups, with TAM polarization toward the M1 subtype in the M-HIFU group.
This study reported that combining M-HIFU with aPD-L1 mediated superior immune
responses, increased CTL and NK infiltration, and an abscopal effect. Fite et al. (2021) also
compared M-HIFU and T-HIFU in combination with aPD-1 in a multi-focal breast cancer
mouse model (NDL, immune-excluded TME with low TMB) [84]. M-HIFU and T-HIFU
monotherapies provoked innate immune responses (increased NLRP3, Jun, MEFV, IL-6,
and IL-1β) but no adaptive immune response. They found increased IL-6, IL-1β, MDSCs,
and tumor regrowth. CTL infiltration into the TME was only found when T-HIFU was
combined with aPD-1 [84].

Ablative UTMC treatment was combined with aPD-1 in a CRC-MSS model (CT26,
inflamed TME with low TMB) [166]. Here, shutting down the blood perfusion induced
more tumor necrosis and growth inhibition than when UTMC or aPD-1 was applied
alone. Also, enhanced IFN-γ expression improved T cell activation. This group applied
the same methodology of combined UTMC, aPD-L1, and paclitaxel in a TNBC model
(EMT6, immune excluded with low TMB). This resulted in several complete responders
compared to (chemo)immunotherapy alone, demonstrating the effectiveness of ablative
UTMC treatment in cancer therapy [176]. Ablative UTMC was employed to explore
immunogenic cell death in a TNBC model (4T1, immune excluded with low TMB); UTMC
induced the translocation and expression of calreticulin and enhanced IL-12 and TNF-α,
leading to increased infiltration of DC and CTL in both the tumor and TDLNs [177].

5.2. Non-Ablative FUS + ICI

HT has been tested for thermally-activated chemotherapeutic release, wherein priming
with ICI therapy greatly enhances complete tumor regression [75]. This study combined
TLR9 antagonist (CpG) and HT doxorubicin (Dox) encapsulation within liposomes and
increased tumor antigen cross-presentation even at distant tumor sites. Complete tumor
rejection was greatest in metastatic HER2+BC (NDL, immune-excluded TME with low
TMB) when one week of aPD-1 priming was added to the HT + CpG + Dox protocol,
which provoked systemic adaptive immunity. They reported enhanced Dox delivery
and improved efficiency of combination therapy, with 90% of treated mice completely
rejecting the tumor. The combined group with primed immunotherapy (CpG and aPD1)
represented the highest level of TAA presentation and cross-presentation, which improved
CTL infiltration in both treated and distant tumors [75].

Anti-tumor immune responses were more robust following mechanical perturbation
compared with HT or T-HIFU, but the mechanism is yet to be discovered [6]. pFUS was
used in a pancreatic murine model (KPC, immune-excluded TME with low TMB) to en-
hance the anti-cancer efficacy of aCTLA-4 and aPD-1, wherein the combined treatment
extended mouse survival and increased CTL and DC infiltration [178]. Treatments combin-
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ing UTMC and ICI have shown enhanced recruitment and activation of DCs (immediately),
Tregs (transient, increased on day 1 but subsided by day 3), and CTLs (continuous increase
starting from day 1 through day 18) [6]. Additionally, these treatments have been found to
reduce the gene expression of anergy pathways, resulting in tumor growth suppression and
prolonged survival in mice [118,161,166]. Several groups have combined UTMC with aPD-
L1 to increase the delivery of aPD-L1 to brain tumors. Sheybani et al. (2021) reported that
the timing of ICI injection is crucial for increasing its delivery [179]. In this study, admin-
istering aCD47—an immune checkpoint molecule on the surface of macrophages—after
UTMC treatment showed the highest aCD47 concentration with decreased tumor growth
and increased mouse survival [179]. Li et al. (2021) demonstrated that UTMC, resulting in
increased perfusion, improved the efficacy of aPDL1 treatment and increased infiltration of
CTLs by 24%. Their treatment of CRC-MSI (MC38, immune excluded with high TMB) led
to tumor vascular normalization and improved survival rates in the UTMC + aPDL1 group.
The treatment also enhanced CTL activity, as evidenced by increased IFN-γ and granzyme
B [90]. Therefore, normalizing tumor vascularization is proposed as an efficient way of
either decreasing IFP or increasing TILs [90,148]. UTMC was compared with T-HIFU in a
MC38 murine model in combination with aPD-L1 [180]. Although the authors reported
ablative UTMC, we believe it should be considered non-ablative, given that tumor perfu-
sion was maintained after UTMC. In this study, UTMC was more efficient in inducing an
abscopal effect; mechanical perturbation by UTMC improved mouse survival following
UTMC + aPD-L1 therapy by increasing the expression of DAMPs; enhancing the tumor
infiltration of CTLs, DCs, TAMs; and reducing Tregs and MDSCs [180].

UTMC has also been used to target the spleen to modulate circulating immune cells
instead of tumor-infiltrative ones. In a murine model of Lewis lung cancer (NSCLC, in-
flamed TME with high TMB), the splenic area was treated by UTMC to reduce CD71+

erythroid progenitor cells (CECs) [181]. CECs are immature red blood cells that contribute
to immune regulation [182,183]. CECs inhibit CTLs, CD4+ T cell proliferation, and Th
cell differentiation within the TME, mainly through the suppression of IFN-γ via TGF-β
induction. Therefore, Tan et al. (2021) used UTMC to alleviate splenic CEC immunosup-
pression. Splenic CEC reduction increased splenic CTLs (MI = between 0.98 and 1.03).
The combination of splenic UTMC with systemic aPD-L1 inhibited tumor growth and
enhanced the frequency of splenic IFN-γ+ CTLs and IFN-γ+ CD4+ cells while reducing
TGF-β+ CD11b+ cells [181].

Overall, it appears that mechanical perturbations (ablative or non-ablative) may be
more efficient than T-HIFU in promoting anti-tumor immune responses. However, more
comparative studies are needed to optimize and characterize how FUS modalities induce
immunomodulation.

6. Translational Challenges and Outlook

Preclinical studies have provided evidence that FUS +/− MB can induce innate
and adaptive immune activation, particularly when combined with ICI. Notably, sev-
eral ultrasound devices are FDA approved, such as Sonablate, Ablatherm, Focal-One,
Tulsa-pro® [184], and EdisonTM [185] for HIFU. Additionally, Exablate, NaviFUS®, and
Sonocloud1/9® are typically used for UTMC to enhance drug delivery [186]. Sonal-
leve [187] and Sonotherm [188] are other FDA-approved devices used for HT. FDA-
approved MBs include Sonovue®, SonazoidTM, and Definity® [189]. Currently, three clinical
trials are underway to evaluate the safety and effectiveness of combined HIFU + aPD-1
therapy (NCT03237572 in metastatic breast cancers and NCT04116320 in advanced solid tu-
mors) and UTMC + aPD-1 (NCT04021420 in melanoma brain metastases). These important
trials are expected to help delineate the potential of FUS +/− MB in the clinical setting.

In this context, it seems crucial to continue investigating and understanding the mech-
anisms that make FUS and ICI synergize and to capitalize on these findings. Unraveling the
intricate mechanisms of action of FUS +/− MB therapy, whether used as a standalone treat-
ment or in combination with chemo-, radio-, or immunotherapy, will be crucial in bringing
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FUS +/− MB to the clinical arena. For instance, it is imperative to acknowledge that the
immune system functions as a complex and interconnected system; while T cells play a
crucial role as cytotoxic effector cells, it is essential to recognize that they do not operate in
isolation. Rather, their function involves an intricate interplay among numerous mediators
at both the cellular and molecular levels. For example, a recent study by Joiner et al. (2022)
delineated the involvement of B cells in improving anti-tumor immune responses following
a single treatment of UTMC in a pancreatic mouse model [190]. In this fashion, attention
to the functionality of other kinds of immune cells and, in particular, different cytokines
is indispensable to improve the efficiency of combined FUS + MB. This point may assist
researchers in identifying the key contributors to immunity induced by FUS +/− MB
treatment because, in some reports, despite the presence of partial or complete responders,
no changes in the status of CTLs were observed [166,176].

It is likely that more personalized strategies in FUS + MB-mediated cancer therapy
will be needed, guided by the identification of biomarkers stratifying the responders to
FUS or to a precise type of FUS therapy. Furthermore, the cancer biology and cancer
genetics should be considered to determine which kind of monotherapy or combined
therapy (chemo-, immuno-, or radiotherapy) is suitable for applying to the right FUS
modality, including the tumor type, patient, and timing. Combining several drugs is not
always beneficial, as it may increase irAE for immunotherapies or severe toxicity in the
case of chemotherapies [191]. Nowadays, the eligibility criteria for ICI therapy appear to be
transitioning from the origin of tissue and the immunoscore to the molecular and cellular
characterization of tumors. Personalized multi-omics and complete immune profiling could
allow for the identification of signatures of candidate tumors before therapy. For example,
the roles of other cell types beyond T cells (myeloid cells, fibroblasts) could be detrimental
to the ability of FUS treatments, either alone or in combination with other therapeutics, to
improve ICI efficacy. Understanding these interactions will enable scientists to determine
if there is a suitable FUS modality for each tumor and patient, narrowing the gap toward
personalized FUS immunotherapy.

While preclinical studies are encouraging, it is essential to recognize that animal
physiology differs from human physiology. Furthermore, the intrinsic intra and inter-
patient variability in cancer genetics can also influence treatment efficacy. In this review
(see Figure 4), we aimed to categorize FUS studies among different preclinical tumor
models that have been studied. The main objective was to categorize the TME immune
profile. This will hopefully help in the identification of gaps and opportunities for future
studies. However, several factors limit the applicability of these models to human tumors,
and it is important to consider these factors when analyzing Figure 4 and Supplementary
Table S1. Firstly, syngeneic tumors are not naturally occurring; instead, they are generated
by implanting a specific MHC-matched cell line derived from fully developed tumors,
typically through subcutaneous implantation. Secondly, the tumor cell lines used in
syngeneic models originate from various tissue types or organs, which have distinct
TMEs that differ from the site of subcutaneous implantation. Lastly, these implanted
tumors progress at a much faster rate compared to spontaneously occurring tumors. These
observations underscore the fact that syngeneic tumor models do not accurately reflect the
typical progression of tumors in patients. In contrast, genetically engineered mouse (GEM)
models of cancer, either germline or conditional, offer greater physiological relevance, as
they replicate the appropriate kinetics and stepwise progression from tumor initiation to
tumor establishment at the specific site of tumor origin [192]. This discrepancy in tumor
initiation and growth location between subcutaneous syngeneic models and GEM models
likely results in different inherent immune infiltration profiles and, consequently, diverse
anti-tumor immune responses. For instance, spontaneous lung or pancreatic tumors in
GEM models elicit weak T-cell responses within the tumor that diminish over time, whereas
subcutaneously implanted tumors derived from cell lines of the same spontaneous tumors
induce significantly greater T-cell infiltration and anti-tumor responses [193,194].
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7. Conclusions

In closing, FUS +/− MB treatment is promising in various clinical disorders, including
cancer, offering non-invasiveness, spatial targeting, and real-time imaging capabilities.
In this review, we described the biological and immunological effects of FUS, allowing
researchers to overcome immunological barriers, provoke anti-tumor immune responses,
and improve the efficiency of cancer ICI therapy. Preclinical studies have been collected
and categorized comprehensively based on their immune profiles. Our data collection
indicates that melanoma and TNBC are the most extensively FUS studied models. CRC-
MSI, HER2+ breast cancer, and glioma are the second-most studied. pFUS was exclusively
studied in melanoma and TNBC tumor models, while UTMC was frequently applied to an
immune-excluded TME with low TMB. Notably, T-HIFU was mostly studied in HER2+BC
models so far and was not studied in other immune-excluded or immune desert models.
Finally, our analysis also supports that various cancer types, especially immune desert
tumor models, such as prostate and HR+ breast cancer, for example, have not yet been
investigated using FUS, presenting an unexplored opportunity for future research in this
growing, challenging, and promising field.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pharmaceutics16030411/s1, Table S1: Summary of bioeffects following
targeted FUS with/without MB treatment.
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