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Abstract: Data handling and provisioning play a dominant role in the structure of modern
cloud–fog-based architectures. Without a strict, fast, and deterministic method of exchanging
data we cannot be sure about the performance and efficiency of transactions and applications.
In the present work we propose an architecture for a Data as a Service (DaaS) Marketplace, hosted
exclusively in a cloud environment. The architecture includes a storage management engine that
ensures the Quality of Service (QoS) requirements, a monitoring component that enables real time
decisions about the resources used, and a resolution engine that provides semantic data discovery
and ranking based on user queries. We show that the proposed system outperforms the classic
ElasticSearch queries in data discovery use cases, providing more accurate results. Furthermore,
the semantic enhancement of the process adds extra results which extend the user query with a more
abstract definition to each notion. Finally, we show that the real-time scaling, provided by the data
storage manager component, limits QoS requirements by decreasing the latency of the read and write
data requests.

Keywords: cloud; fog; mongodb; daas; data as a service; performance analysis; qos ensurance;
content discovery; qos monitoring

1. Introduction

1.1. General Concepts

One of the most-used expressions regarding data-driven IT is “data are the new oil”.
Given the gravity of this statement, many concepts and technologies have arisen in order to address
the needs of this new era. More specifically, this paper revolves around two main concepts; Data as
a Service (DaaS) and the Data Marketplace. In order to fully exploit the data produced by any given
sector, there is a need to streamline the process of collection, storage, access, utilization and, finally,
delivery to the end user. DaaS aims at creating a service-based model that will cover the complete
lifecycle of the data through distributed interconnected services that address the requirements of
each aforementioned step of the streamlined process. To better understand the involvement of DaaS
in the lifecycle of data, it is important to mention the main characteristics of a DaaS solution. It is
important that a DaaS solution can provide data and deliver them at different levels of granularity
depending on the end users’ needs. Given the heterogeneity of the data delivered, even from a single
data producer, it is necessary to be able to handle different data sources with different types of data
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in terms of content, schema, and type of delivery (e.g., streaming, batch). Network heterogeneity,
as well as the addition and reduction of data sources, are strongly considered in this type of solution.
Last but not least it is necessary to have a monitoring and evaluation mechanism in order to maintain
the expected Quality of Service (QoS) and Quality of Data (QoD).

Despite the requirement coverage of the data lifecycle from the DaaS model, data still need to be
discoverable and presented to the end user in a uniform way. The Data Marketplace concept aims
at creating a marketplace in which users are able to discover data with the desired content and quality.
In order to create a Data Marketplace, the most important step is to describe and deliver the data
as a product. Converting data into a product is a procedure that is well defined by the DaaS model,
as described in the previous paragraph. In order to sell data as product specific, metrics must derive
from them. Potential buyers need to know the volume, cost, value, quality, and other important metrics
that evaluate the data [1].

Although there is significant work on the conversion of data as a product in the context of
Data Marketplaces (also described in Section 2), in many sectors (critical infrastructure, edge, cloud,
and fog computing) the data are evolving in a direction where static data degenerate to hold no value.
These types of sectors require a service-based model for data delivery in order to explore the huge
amount of data that is created and processed in real time [2]. This new era of data has created the need
for Data Marketplaces that not only deliver data as a product but most importantly create DaaS
products [1].

DaaS product creation requires not only the definition of data as a product but also the definition
of the service that delivers the data, as a product. The most important characteristic of the service that
is needed to be identified and described in order to achieve this goal is the definition of the QoS of
the service that delivers the data.

As far as the DaaS Marketplace is concerned the QoD metric production, as well as delivery,
is firmly established. One of the less evolved procedures is the QoS part of the product creation.
This paper aims at describing and establishing specific software components in order to enable
the delivery of DaaS products.

The enhancements proposed in the context of the DaaS Marketplace are based on three main
needs identified for these types of marketplace:

• Content discovery: A semantically enhanced content discovery component that aids the data
buyer to find the most suitable data as far as the content is concerned. Also, aids the data provider
to better describe their data in order to make them more easily discoverable.

• QoS evaluation: An assessment tool that produces analytics and QoS metrics for the services that
provide the data, in order to aid the data buyer not only to assess the QoD but also the QoS in
which the data are delivered.

• DaaS repository scalability: A scalability component that enables the dynamic scaling of the DaaS
Marketplace repository in order to ensure business continuity and fault tolerance.

The remainder of this document is organized as follows: the remainder of the present section
presents the current literature and related work on the domains we are exploring. Section 2 offers
the general architecture of the proposed system, as well as descriptions of the components included in it.
In Section 3 we present the evaluation tests, the metrics used, and the results of our evaluation. Finally,
in Section 4 we present a short discussion on the methodologies and technologies used, the evaluation
results, and possible future work.

1.2. Related Work

Since the beginning of the development and establishment of digital marketplaces, significant
research has been undertaken into incorporating recommendation systems in order to enhance them [3].
One of the most recent research works is related to how ElasticSearch [4] can be used to improve
a recommendation system [5]. In fact, ElasticSearch is a very powerful cutting-edge search engine,
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developed for text analysis. Given its enormous capabilities, it has been included in many research
publications that highlight the selection of ElasticSearch to evaluate and correlate semi-structured
data with very rich text content, such as LinkedIn profiles [6], job market data [7], and healthcare
data [8]. As far as numerical data is concerned, a very promising project has been developed,
combining the usage of ElasticSearch with the well-known vector-based algorithm (K-NN), in order
to produce image correlation software [9]. In addition, ElasticSearch has been used for large-scale
image retrieval [10]. For these reasons we chose to implement the data discovery service of the DaaS
Marketplace on top of an ElasticSearch installation.

The terms “Data Marketplace” and “Data as a Service (DaaS) Marketplace” have been around
for quite some time. Only in recent years have companies and researchers focused on these terms
and what could they possibly mean to today’s society. The idea of a marketplace that sells data to
people who want to obtain them and use them to their preference is a concept that many scholars are
studying today, and are even testing real-life scenarios. The same applies to Marketplaces that sell
services (components that contain data) to potential buyers.

However, how will potential buyers know which Service from the DaaS Marketplace best fits their
needs and suits their requirements? For example, a buyer might have physical machine limitations,
meaning that the computer system might have moderate specifications and therefore might not be
able to properly run every service of the Marketplace. In a few words, the QoS in each and every
one of those services available in a Marketplace should be analyzed. This concern raises a need for
Marketplace assessment. In the case of Data Marketplaces, QoD should be the main concern. In the case
of DaaS Marketplaces, however, QoS should come first, followed by data monitoring and evaluation.

The majority of proposals and concept implementations for Data/DaaS Marketplaces found in
the literature do not specify a monitoring system. For example, proposals for Decentralized Internet of
Things (IoT) [11] and Scientific [12] Data Marketplaces analyze their implementation, but do not cover
the assessment part at all. However, we have to acknowledge that other monitoring and evaluation
attempts have been proposed by few other researchers/scholars. Some of those attempts are briefly
presented below.

In a course called Advanced Services Engineering, held during summer of 2018, the Technical
University of Wien (TUW) addressed some ways with which a data quality evaluation tool could
be implemented for Data (and DaaS) Marketplaces [13]. More specifically, TU Wien proposed that
an evaluation tool could be developed using cloud services, or by using human computation capabilities
(which actually means that Professionals and Crowds can act as data concern evaluators). However,
the aforementioned tool is more focused on the QoD spectrum, rather than the QoS, which means that
a tool with QoS operations has yet to be found.

Another implementation is Trafiklab, an open data marketplace distributing open public transport
data, linking together public transport authorities and open data users [14]. Trafiklab’s Technical
Platform enables the usage of the API management system for monitoring and analyzing API
performance and/or errors. However, unlike the ideal tool that we are searching for, Trafiklab cannot
extract metrics and monitoring data from the physical machine itself. It still remains a suitable
solution when it comes to API-only metrics, but not for a complete Data and DaaS Marketplace
assessment scenario.

Moreover, according to a recent study which analyses the implementation of a Data Marketplace
for the Internet of Things [15], the researchers proceeded to evaluate the Marketplace, but the metrics
they excluded were from the physical machine itself. This means that if the machine is also running
other processes, the data would not be representative and therefore the whole evaluation part would
be false. This choice is suitable, if we decide that the physical machine on which the Marketplace is
running will have all its resources “dedicated” to it.

In the field of service monitoring, there have been attempts to monitor individual services, for
example, Docker Containers. After all, a Data/DaaS Marketplace would easily operate inside a Docker
Container [16]. A group of researchers tried to measure the performance of Docker Containers by
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combining (at least) three monitoring tools. Their results were not promising. They concluded that
there are no “dedicated tools that cover a wide range of performance metrics”. The tools used by
the aforementioned researchers are inadequate in the case of a potential Data/DaaS Marketplace to
a Docker Container.

An excellent monitoring system for docker containers is “CoMA” [17]. This monitoring agent
aims to provide solid metrics from containers. It could be the perfect solution for most Docker clients
who wish to retrieve the basic statistics from their containers. However, CoMA extracts data only
for the monitoring of CPU, memory, and disk (block I/O). This means that it could not be used for
a Data/DaaS Marketplace scenario, where more metrics (such as response time, jitter etc.) are needed.
CoMA is indeed an excellent implementation of a Docker Container monitoring system, but is not
a suitable solution to a containerized marketplace’s monitoring needs.

There is another Docker Container monitoring implementation [18], which also extracts metrics
only for the CPU and the memory. Note that this is one of the oldest implementations. This module’s
main aim is to be helpful for multiple Docker providers (Kubernetes, Dockersh, Docker Swarm API
etc.). However, it is not suitable for the Data/DaaS Marketplace scenario that we are describing. In our
case we need more metrics than this module is able to provide, such as response time, lag, latencies,
network requests, and other server-side metrics, for possible server-side implementations.

Although ElasticSearch as a whole, or as a combination of its component tools, has not previously
been used for DaaS monitoring, there has been an implementation in the fields of IaaS and scientific
application monitoring [19]. Why is the “Elastic Stack” (as ElasticSearch and its extra tools are usually
called) a good solution for monitoring? It is rather simple. ElasticSearch can run on remote physical
machines and is easy to deploy, extremely lightweight, compatible with a variety of operating systems,
and free, to name a few of its advantages. Therefore, using the Metricbeat module to constantly collect
metrics and send them to a main ElasticSearch database (and perhaps filter them through Logstash
or visualize them through Kibana) is one of the simplest and most efficient monitoring solutions.
Nevertheless, we cannot just use the Elastic Stack because, as we mentioned, it does not cover all our
needs. Thus, it is a good basis for our monitoring solution but it was necessary to build upon it.

In conclusion, there have been a plethora of attempts to implement a monitoring system for Data
and DaaS Marketplaces, but none offers a complete solution. A number of researchers and scholars
have mentioned the need for a powerful monitoring system, but there is none that can extract
sufficient valuable metrics from both the Marketplace (the container on which it is operating) and its
physical machine for the developers to produce analytics and correlation data. As a result, one of this
paper’s proposed solutions is the answer to a complete monitoring scenario that covers the needs of
a containerized Data/DaaS Marketplace.

Before the development of any software in the present era, the need to plan how the relevant data
will be stored, retrieved, and protected arises. This need is fundamental in the design of the software
itself because each software application is currently created in order to somehow use or produce
data, which is also the core functionality of a DaaS Marketplace. As stated by Google’s Eric Schmidt,
“Every two days now, we create as much information as we did from the dawn of civilization up until
2003” [20]; thus, it is only natural that an increasing number of software applications are being created
in order to discover, use, and/or sell this data.

When talking about data storage systems we have two main families: the traditional, ACID
databases like SQL, and the newer NoSQL datastores, which are more chaotic and mostly free of
the strict ACID rules. Both of these families have their strengths and weaknesses that will not be
presented here as this is outside of the scope of this work. Instead, we will mention that according
to the literature, for applications using Big Data, SQL databases are usually inadequate because they
cannot handle the volume of data being written and read at any given time. In these cases, NoSQL
datastores are often the only viable solution [21,22].

NoSQL datastores in turn are separated into four categories based on the data representation they
are using. These categories are described in the following table (Table 1).
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Table 1. NoSQL datastore families, examples and short descriptions [21,23].

Data Format Examples Description

Key-Value Riak, Redis,
Couchbase

These databases use a key-value data format in order to create
primary keys, which improve their performance when the single

primary key architecture is possible.

Document MongoDB, CouchDB,
Terrastore

These databases provide the advantage of storing all
information concerning an object in a single document, using

nested documents and arrays. This improves the performance,
minimizing the queries needed to retrieve all requested data

and removing the need to join tables. It also provides the ability
to create indexes based on any datafield in a document, not only

primary keys.

Column family HBase, Cassandra,
Amazon DynamoDB

These systems initially resemble an SQL datastore, having
columns and rows, but they provide the ability of inserting
unstructured data. This is possible because instead of using
regular columns, they use column families that are grouped

together in order to form a traditional table.

Graph Neo4J, FlockDB,
InfiniteGraph

These datastores are based on the relations between each
datapoint, which is called a node. These nodes and the relations

between them form clusters of data in the form of graphs.
The datastores perform well when the relation between the data
points is more important than or at least as important as that of

the actual data contained in the nodes. Their intolerance to
horizontal partitioning makes them hard to use in data intensive

production environments.

There are some clear advantages to NoSQL datastores, such as their inherent elastic scaling
capabilities and ease of handling big data, the economics of their scaling out feature, and their flexible
data models that can evolve over time as the application itself evolves [21]. NoSQL datastores do not
need a pre-defined data model or a serious demand study. Both the data structure and the cluster
architecture can be changed in real time or in semi-real time. Thus, if the application suddenly needs
a different JSON schema to cover the clients’ needs, new data can be inserted into the datastore and it
completes the process, without concerns about downtime due to long-running alter table queries.
In addition, if the volume of users suddenly increases, more, small, cheap machines can be added to
the cluster to handle the extra volume. The traditional SQL datastores would require investment of
a significant amount of money in order to buy stronger servers or scale up the existing data servers.

Our use case is a platform that provides Data as a Service, using Virtual Data Containers (VDCs).
These containers are described in detail using a JSON document, called the Blueprint. More information
about the VDC and the Blueprint can be found in Section 2.2.1. The fact that JSON is the dominant
data format in the project and that the VDCs can be saved in binary format as part of BSON led us to
choose the document datastore family, and specifically the MongoDB system. MongoDB has some
clear advantages in data intensive applications that are clearly described by Jose and Abraham [21].
These advantages include the sharding functionality, which enables scaling out the database during
runtime while retaining data availability and integrity, the high performance due to the embedded
document structure, the high availability provided by the replica sets architecture of the cluster,
and the flexibility of not having to pre-define a data schema, which is instead created dynamically
following the needs of the application.

Docker is a tool providing virtualization technology that creates lightweight, programmable
containers, based on pre-created images [24]. Combining the fast and efficient virtualization technology
that Docker provides, we can exploit the sharding capabilities of MongoDB in order to automate
the scale out and scale in functions of the MongoDB cluster during runtime, according to the real-time
performance data of the cluster. Docker has been used in order to automate the setup of MongoDB
and Cassandra clusters [25,26] and to provide a micro-service architecture [27], but to our knowledge
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it has not been used to combine these two together to provide real-time modifications to the MongoDB
cluster (creation, destruction, scaling out, and scaling in).

The cluster management schema that MongoDB provides is one of the reasons that it is so popular;
it is used by multinational companies, such as MTV Network, Craigslist, SourceForge, EBay, and Square
Enix, amongst many others [22]. MongoDB provides scaling out in three layers: the cluster layer,
the application layer, and the data layer. The cluster layer consists of the Configuration servers,
which handle the indexing and sharding capabilities of the cluster, and identify where data are located
and which node to contact for each request. The application layer consists of the Mongos servers.
These servers provide the access points of the cluster, and ensure that the cluster is accessible from
the outside world, receiving queries and serving responses. Finally, the data layer consists of shard
servers, which hold the raw data. They are usually grouped in replica sets in order to ensure data
integrity and availability, as each chunk of data is replicated once in each shard server in the same
replica set. This means that if an application needs to serve a large number of clients, more Mongos
servers can be added to handle the queries. Similarly, if penta-bytes of data need to be stored, more
shard servers can be added to enlarge our data storage capacity.

2. Materials and Methods

2.1. Architectural Conceptualization

The general concept under which the software components were developed was the advancement
of DaaS Marketplaces in key processes of the complete lifecycle of the services it provides. As described
in Section 1 and depicted in Figure 1, there are three main pillars in which the advancements took
place. Firstly, in a DaaS Marketplace it is important that the services that provide the appropriate data
in terms of content that the buyer needs can be found easily and intuitively. In order to achieve this
goal, a semantically enhanced content discovery component was created. This component is able,
through Domain-Specific Ontologies (DSO), to map simple tags to complex queries in order to retrieve
the best candidate services from an ElasticSearch repository. Content discoverability is crucial for
a Data Marketplace, but in a DaaS Marketplace it is also important to be able to find the most suitable
service in terms of the quality it provides. For this reason, a QoS evaluation component was introduced
in order to monitor and evaluate key metrics of running instances of the services. These metrics are
then analyzed and a QoS assessment is delivered to the potential buyer. In this stage, it is important
to mention that the computational load created due to the complexity of the queries for retrieving
candidate services, as well as the network and database load created due to the files being sent to
the user in order to deploy the service on a physical machine, create fluctuations in the resources needed
to operate the backend of the DaaS Marketplace. To better handle the heterogeneity of the workload,
a component responsible for scaling the repository in real time, during operation, was created.
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2.2. Components Description

2.2.1. Semantic Resolution Engine

The use case DaaS platform adopts the Service-Oriented Computing principles [28], one of which is
visibility. This requires the publication of the description of a service in order to make it available to
all its potential buyers. In this case, this is fulfilled via the so-called VDC Blueprint that is created
and published by the data owners. The Virtual Data Container (VDC) provides an abstraction layer
that takes care of retrieving, processing, and delivering data with the proper quality level, while
in parallel putting special emphasis on performance, security, privacy, and data protection issues.
Acting as middleware, it lets the data consumers simply define their requirements of the needed
data, expressed as data utility, and takes the responsibility for providing those data timely, securely,
and accurately, while also hiding the complexity of the underlying infrastructure [29]. Following
the general definition of the VDC, its corresponding Blueprint is a JSON file that describes, except
for the implementation details and the API that the VDC exposes, all the attributes and properties
of the VDC, such as availability, throughput, and price [30]. This part is critical for the VDC to be
considered as a product with specific characteristics that could be used as information metadata by
the data buyers. The Blueprint consists of five distinct sections, each one of which provides different
kinds of information regarding the VDC. Although a thorough analysis of those sections is outside
the scope of this paper, the separation is mentioned in order to highlight that the Semantic Resolution
Engine parses only the specific section of the Blueprint that refers to the content of the data that
the VDC provides, thus enhancing the scalability of the overall system. Inside this Blueprint section,
the data owners use descriptive tags (keywords) in order to make their data more discoverable in
terms of content. Given the Blueprint’s creation and storage in the repository, the engine is responsible
for finding the most appropriate Blueprints based on the content of data that the VDC delivers.
This resolution process takes as input some terms as free text from the data consumers and then
provides a list of candidate Blueprints that match one or many of those terms. The returned Blueprints
are ranked based on their scores that reflect the level of matching against the set of user terms.
For the Blueprint retrieval, the engine relies on ElasticSearch [4], which is one of the leading solutions
for content-based search. However, in order to enrich the resolution results, meaning more Blueprints
that the data consumer might be interested in, the Semantic Resolution Engine exploits the class
hierarchy that the ontologies provide. When the consumer provides the input terms, the engine forms
the query for the ElasticSearch database, also taking into account semantic relations of those terms.
Those relations are extracted from Domain-Specific Ontologies (DSO), which domain experts provide
to the marketplace. For instance, in the case of the e-health domain, when a doctor is looking for data
about patients’ tests, the engine also returns Blueprints that contain the Blood, Oral, Urine, Ocular, etc.
tags, since those are subclasses of the superclass Test (Figure 2).
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Although validated against medical ontologies, the engine can be used in any domain, since
the corresponding DSO, which actually serves as a reference vocabulary, is the only dependence that it
has. The high-level architecture of the Semantic Resolution Engine is presented in Figure 3:
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The implementation of the engine aims at enhancing the core functionalities offered by ElasticSearch
towards two directions: both the discovery and the ranking. It is developed on one hand to extend
the search results, capturing semantic relations between different terms, and on the other to revise
the ElasticSearch default scoring algorithm, used to rank those results. Regarding the discovery
aspect, ElasticSearch is capable of handling synonyms during the analysis process. Furthermore,
the engine takes full advantage of ontologies to also handle two more types of semantic relation.
More precisely, in case the requested term is a class, then the following relation types are considered:
Equivalent (for exact or synonym terms), SuperClass/SubClass, and Sibling. In case the requested
term is an individual, then the corresponding types are: same (for exact or synonym terms),
property (for individuals with property relation where the requested term is the subject), and siblings
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(for individuals that belong to the same classes). For example, if a doctor is searching for medical
data about patients from Milan, the engine returns Blueprints that provide such data not only from
Milan, but also from Italy, since Milan isPartOf Italy (property relation between individuals Milan
and Italy), as well as from Rome, since both of the individuals Milan and Rome belong to the same
class ItalianCity (Figures 4 and 5, respectively).
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However, the score of each Blueprint reflects the relevance of the data that it offers, according to
the different semantic relation type that each one captures. Consequently, the first aforementioned
Blueprint is ranked higher than the other two and the third is ranked lower, if all the other factors
that affect the overall score remain the same. In particular, regarding the ranking aspect, the Semantic
Resolution Engine implements an algorithm that calculates an objective score for each returned
Blueprint, instead of the relevance score that ElasticSearch uses by default. The goal is to enable
the development of a fair and unbiased search engine as a core part of a DaaS Marketplace. In detail,
the algorithm ignores factors that are involved in the ElasticSearch relevance score calculation, such as
the term frequency (TF) and the inverse document frequency (IDF), which make no sense in the context
of the proposed marketplace. Regarding IDF, if many Blueprints in the repository contain a term, this
does not imply that the term is less important than another term which few Blueprints include. Thus,
ignoring IDF, the score of a matched Blueprint is independent of other Blueprints given a specific
query. To conclude, based on the introduced scoring algorithm, the factors that affect the score of
a returned Blueprint are: the number of terms (T) from the query that are captured by the Blueprint
tags, a boost coefficient (C) that corresponds to the semantic relation type of each captured term
(16, 4, and 2 for the three different types), and the total number of tags (N) included in the Blueprint.
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The last is a constant factor, independent of the query. The formula for the score calculation is given in
Equation (1):

T∑
i = 1

Ci
√

N
, (1)

In the following running example, the DaaS Marketplace aims at delivering medical data to various
users such as doctors, researchers, or any developers that intend to create cloud-based applications
which would consume those data. The storyline begins with a domain expert (i.e., doctor, biomedical
engineer, etc.) that provides the relevant DSO to the marketplace. Thereafter, data owners that are
willing to sell medical data via the Marketplace, create and store their Blueprints in the repository.
As mentioned before, a Blueprint contains, among other tags, those that describe the content of the data
that the VDC provides. An example of those tags is depicted in Figure 6.
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Then, the Semantic Resolution Engine is responsible for discovering those Blueprints from
the repository that match the user’s preferences. It is worth noting that without the usage of the engine,
but instead simply relying on ElasticSearch, the Blueprint depicted in Figure 6 would not be included in
the result set, though it might be of some interest to the user. In fact, the engine returns that Blueprint,
due to the semantic relation between the term test and the tag blood or the relation between Milan
and Rome, according to the snippets of the DSO depicted in Figures 2 and 5, respectively. Applying
Equation (1) to this specific Blueprint, its overall score is derived from the equality in Equation (2):
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2.2.2. SEMS

The Service’s Evaluation and Monitoring System (SEMS) aims to provide a complete solution
to the Data as a Service Marketplace’s “complete assessment issue” (that is, the lack of a complete
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monitoring and evaluation system), and eventually further improve it as a component. The purpose of
SEMS is to monitor both the service and the physical machine on which it operates, in order to provide
real-time metrics and evaluation scores. Those metrics shall be obtainable from all the potential buyers,
for them to decide whether the service is a good choice (according to their requirements) or not.

In a few words, SEMS monitors both the physical infrastructure and the DaaS Marketplace that
runs on it. Its functionality is quite simple, but manages to achieve the desirable result. Briefly,
SEMS consists of the following: (i) An ElasticSearch database storing the raw monitoring data.
(ii) ElasticSearch’s MetricBeat module. MetricBeat is a monitoring tool installed on the physical
machine and monitors both the system and the DaaS Marketplace running on it. MetricBeat forwards
all the monitoring data to ElasticSearch every 10 seconds. (iii) ElasticSearch’s Kibana module. Kibana
offers a user interface (UI) to ElasticSearch. It is useful in testing scenarios and for easily checking
monitoring data. (iv) A Java Spring Boot Application. This tool obtains the monitoring data from
ElasticSearch, calculates the necessary metrics and creates an HTTP GET Request for end users
to have access to them. At the outset, the existence of a database for storage of raw monitoring
data (before the final metrics calculation process) is essential. The selection of ElasticSearch would
appear to best fit the needs of SEMS. ElasticSearch is a distributed, RESTful search and analytics
engine capable of addressing a growing number of use cases. The database is the “depository” for
all the raw monitoring data being sent from the MetricBeat modules. MetricBeat is the next basic
SEMS component. Each physical machine containing a DaaS Marketplace will also have a MetricBeat
module installed and running. The module will draw monitoring data from both the machine
and the Marketplace every 10 seconds. Each MetricBeat dataset includes specific information (such as
IDs) that are unique to every physical machine and Marketplace. In this manner, the correct data
selection from the ElasticSearch database will be achieved. The Kibana UI, one of ElasticSearch’s
prime tools, will serve as an easy method of testing and checking the data inserted into ElasticSearch.
For example, in the case that an extra metric needs to be added, or an error appears in the data,
browsing all the insertions through Kibana will help the process of adding or resolving. Regarding
the final component, in order for SEMS to be implemented, a need arises for a main basic module that
will orchestrate the raw monitoring data collected and undertake the necessary computation needed
for the final metrics to be created. Furthermore, it should create an HTTP GET Request for the end
user to type and retrieve the aforementioned metrics. This main module is, in practice, a Java Spring
Boot Application. More specifically, its functionality can be split into two parts, as already mentioned.
In the first part, the tool “listens” to an HTTP GET Request. The user only specifies the Marketplaces’
container ID, which runs on a physical machine. As soon as the application detects the incoming
request, it initiates the searching process through all the data stored in ElasticSearch. It uses the current
time and the Marketplaces’ ID as search variables. Note that the Marketplaces’ data are already in
the ElasticSearch database, since MetricBeat sends them every 10 seconds (as analyzed before).

Then, we move to the second part where the tool proceeds to the necessary calculations for three
main metrics to be generated: CPU percentage used, RAM memory percentage used, and response time.
Each of these refer to both the Marketplace and its physical machine. Finally, the application returns to
the user the aforementioned three metrics, in JSON format (as a response to the request). If any error
occurs a message will be shown to the user. More metrics can be added to SEMS; we selected the three
highlighted as initial examples.

SEMS also acts as the Recommendation System via the real-time metrics it extracts. In a few
words, raw monitoring data are drawn from Data Marketplace Products (DaaS components) and are
collected into a central physical machine, where the metrics/results extraction takes place (using
the aforementioned raw monitoring data). One can see the raw data collected by the Visualization
Tool, i.e., a User Interface (such as Kibana). After the metrics extraction is complete, the results are
ready for the end user to view in real time. Moreover, these results serve as recommenders, meaning
data that automatically fill the Recommendation System.
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The Recommendation System is the final step of the process. It takes as an input the results
of SEMS, which are the calculated DaaS metrics, in order to produce the complex queries that will
generate the user-based score (recommendation) of the DaaS Products’ Blueprints. For every DaaS
Product’s Blueprint that is in the list of candidates, the Recommendation System queries the purchase
repository in order to find the purchase history of every Blueprint and also the application requirements
of the buyers that acquired it. After correlating the stored application requirements with the current
requirements, as well as with the real-time metrics provided by SEMS, it produces a score taking under
strong consideration this correlation. Thus, it generates a recommendation that depends on what
the users wanted from the Blueprint of the particular product and how well this Blueprint served
the application’s needs. By correlating the different requirements, the system takes the scores of users
that had similar application requirements into strong consideration. This helps the Recommendation
System to generate more user-centric recommendations instead of the technical filtering and raking
provided by the other components.

SEMS can also be used by the repository scaling service described in Section 2.2.3 for decision
support. It is structured in a way that can be easily understood and used by both the developers
(behind the tool) and the users. SEMS’s running sequence will not be disturbed if any changes
should occur to the physical machine, the Data Marketplace, or the DaaS products. It can run on any
system (both the Product and the physical machine), independent from its computational capabilities.
Given a specific Marketplace’s DaaS product, SEMS draws monitoring data from two MetricBeat
modules, one inside it and one in its physical machine. If any changes happen to the Marketplace
and the MetricBeat inside it stops working, data from the physical machine’s MetricBeat will still be
drawn. In both cases, SEMS will continue to function.

The technologies used are relatively simple. SEMS takes full advantage of ElasticSearch’s tools.
It uses an ES Database, the Kibana User Interface for raw data (data in the database) visualization,
and the MetricBeat monitoring tool. Finally, it uses the Spring Boot functionalities and capabilities,
through a Java Spring Boot Application. A general architecture is shown in Figure 8.
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2.2.3. Repository Manager

The Marketplace Repository Scaling Framework (MaRScaF) was developed in order to aid the DaaS
Marketplace functionality, providing support to business continuity, datastore elasticity, and QoS
assurance domains. It is a toolkit that contains a plethora of APIs readily available to serve the needs
of a growing and evolving marketplace for DaaS platforms. It is developed in Python and it can
support raw Docker and Kubernetes infrastructure, providing great flexibility in the choice of database
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topologies and architectures. In essence, any machine, located either in the cloud, at the physical
location of the marketplace, or even at the edge of the network, can be used to store data as part of
the repository cluster. It also provides real time scaling capabilities, enabling the Marketplace to handle
rapidly changing number of users.

As we mentioned, MaRScaF is developed in Python 3, providing numerous APIs that are separated
into four main categories:

1. The MongoDB APIs, which handle the configuration of the MongoDB cluster, as well
as the communication needed to ensure that the configurations are correctly applied and the status
of all machines is within acceptable thresholds.

2. The Docker APIs, which handle the Docker hosts, the images hosted in them, and the containers
that are or will be parts of the MongoDB cluster.

3. The Kubernetes APIs, which also handle the Docker hosts, images, and containers, but on a higher
level using the Kubernetes orchestration APIs.

4. The Scaling APIs, which provide the coordination APIs that combine all others in order to provide
the services promised by MaRScaF.

We will focus on the Docker and Scaling APIs as these are being used in the evaluation run in
the present work. As shown in Figure 9, the three APIs that are being used during the deployment
face of the MongoDB cluster are the Create Cluster API, the Build Image API and the Run Container
API. The first receives a JSON file that contains the initial configuration of the cluster to be created.
This includes the machines used, the ports, the IP addresses, their roles (Mongos server, Configuration
server, or Shard server), and other relevant information. Then, this API uses the Build Image API in
order to ensure that all necessary images are present in the Docker hosts and that they are ready to spawn
new containers. If an image is not present it is automatically created using pre-created Dockerfiles that
are populated by the configurations passed to the Create Cluster API. Then, the Run Container API is
called, which starts the necessary containers and configures the MongoDB cluster, returning the final
access point and a debug status message to the user who, in this case, is the DaaS Marketplace.
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Figure 10 shows the real-time APIs, which provide scaling and cluster destruction capabilities.
It can be seen that the monitoring module provided by SEMS monitors the MongoDB cluster and its
Docker hosts in order to provide real-time information, identifying choke points and other critical
situations. If such a situation arises, the Scale out API is called by providing a JSON file with
configuration about the server to be added. This API then calls again the image creation API
and the Run Container API in order to create the new server and then reconfigures the MongoDB
cluster, adding the new server dynamically during operation. This process takes less than 10 seconds if
the image is already in the Docker host and about 2 minutes if the image needs to be built.
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3. Results

We evaluated the performance of our data recommendation services versus the usage of simple
ElasticSearch queries. This recommendation service, as discussed earlier, is used in order to improve
the data discovery process in the DaaS environment and the overall quality of experience (QoE) of
the user. Both the ElasticSearch and the recommendation services are also scalable in order to ensure
that they will follow the increasing needs of the DaaS Marketplace, performing always at the same
QoS levels.

ElasticSearch provides two configuration options during data retrieval queries: (a) the algorithm
used and (b) the learning weight. For the first option we tested three different algorithms, the Gaussian
(GA), the linear (LIN), and the exponential (EXP). For the learning weight we again tested three
different values—10, 25, and 50—which in essence configure how quickly the scoring in the algorithms
changes between two similar values that are examined by the internal scoring function.

In Figure 11, we can see that the proposed recommendation system more accurately fulfilled
the user’s search in most tests. In detail, we can see in blue the percentage of cases in which the proposed
system returned a more fitting result than a simple ElasticSearch, and, in red, the percentage of cases
in which the simple ElasticSearch query returned a more fitting result than the proposed system.
The difference between the algorithms is small but the best, being closest to the 50% threshold of equal
performance between the two systems, is the GA10 algorithm, with 62.30% for the proposed system
and 37.70% for ElasticSearch. Thus, we continued our experiment with the GA10 algorithm in order to
provide ElasticSearch with the most favorable conditions.
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We also performed the same experiment using the 10-fold cross-validation methodology on
the GA10 algorithm of ElasticSearch versus the proposed system, to evaluate the behavior on queries
without an exact match in the ElasticSearch data indexes. The results are now more in favor of
ElasticSearch, lessening the difference in percentages. Nonetheless, there is a clear superiority of
the proposed system in all cases as shown in Figure 12.
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The repository scaling component was developed in order to maintain high QoS standards
by automatically evolving the storage capabilities and architecture of the DaaS marketplace.
For the evaluation and tests, we ran an artificial load experiment on a sharded MongoDB cluster
that was created using the scaling component. The load was produced using a jMeter script that
created clients performing read, update, and write operations on our cluster. We used the monitoring
component described earlier in order to take snapshots of various QoS-related metrics every 10 seconds
of operation. The cluster was running on a single machine using Docker containers as its nodes.
We used five different cluster architectures:

1. Single shard cluster: 1 Mongos, 1 configuration server and 1 shard server
2. Double shard cluster: 1 Mongos, 1 configuration server and 2 shard servers
3. Triple shard cluster: 1 Mongos, 1 configuration server and 3 shard servers
4. Single to Double: A single shard cluster that was scaled to a double shard cluster
5. Single to Double to Triple: A single shard cluster that was scaled to a double shard and then to

a triple shard.

We measured the latency for three categories of operations: (a) command operations, which include
configurations, balancing, and other internal operations, as well as administrative commands on
the cluster; (b) reads, which include the read operations on data hosted in the cluster; and (c) writes,
which include all write, replication, and update operations. The artificial load and monitoring were
executed for 180 seconds per experiment, providing sufficient time to build up load and test the scaling
with up to two extra servers. Here we discuss only the single shard and the two scaling experiments in
order to have a more compact presentation of results.

3.1. Single Shard

The first experiment is used as a baseline, and shows how a single shard cluster can handle
the artificial load we created. The results show that as the operations gather, the latency (in milliseconds)
for all three types of operations increases (Figures 13–15).

The same is not true for the average latency per operation. We notice that in read operations,
the average latency increases as more requests come in (Figure 16), while in command operations it
appears to be reducing (Figure 17). For write operations, we notice a logarithmic graph (Figure 18),
possibly due to caching of the semi-randomized values created by the artificial load scripts.
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3.2. Single to Double Shard

This experiment shows the effects of scaling the cluster during operation. We notice a small
spike in latencies during the addition and configuration of the new server, which is normal since
many internal operations need to be executed in order to integrate the new server to the cluster. After
the short spike, the curve returns to its normal behavior but at a lower level, achieving less peak latency,
as shown in Figures 19 and 20, which provide a comparison between the baseline single shard cluster
(grey) and the scaled cluster (black).
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For the command operations we can see the same spike in activity but, since all of the overhead
of the scaling is translated in internal operations and the Mongos and configuration servers are not
scaled, we can also see that the latency in these operations is increased by a certain amount, as shown
in Figure 21.
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3.3. Single to Double to Triple Shard

This experiment shows more clearly the effects of scaling a MongoDB cluster in real time, during
operation. We notice a spike in activity during the scaling process, which is possibly the result of
a number of internal operations in order to integrate the new servers in the cluster and put them to use
as discussed in the previous experiment. After the short spike, the latency drops below the level prior
to the scaling and then starts to follow its normal curve for all three categories of operations, as shown
in Figures 22 and 23, which provide a comparison between the baseline single shard cluster (grey)
and the scaled cluster (black).
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This means that we are achieving lower peak latencies for the monitored duration and load.
The exception here is the command operations, where the latencies are following the same trend
as the others, but with increased average latency, as shown in Figure 24, possibly due to the plethora of
internal operations needed for the scaling process; these operations have an overhead on the Mongos
and configuration servers, which were not scaled like the shard servers.
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Our results show a clear superiority of the proposed recommendation system over the simple
ElasticSearch queries, enhancing the QoE of the DaaS Marketplace user. This, combined with
the semantic enhancements, is a valuable tool in knowledge discovery both in our use case and in any
cloud- or fog-based environment. Moreover, the tests conducted with the repository scaling framework
prove that we can ensure the QoS requirements of a cloud-based application by adding more data
servers as the need arises. This process takes less than 10 seconds, and is thus a real-time solution,
tackling demand spikes that are common in real world scenarios.

A further experiment of interest would be to examine the way the scaling of the Mongos
and Configuration servers of the MongoDB cluster affects the increasing load on the cluster in practice,
in order to explore if this has any value regarding the QoE of the DaaS Marketplace. Moreover,
we could also examine other data stores, such as HDFS or MySQL, in order to examine their scalability
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