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Abstract: The prevalence of Parkinson’s disease increases a tremendous medical and economic burden
to society. Therefore, the effective drugs are urgently required. However, the traditional development
of effective drugs is costly and risky. Drug repurposing, which identifies new applications for existing
drugs, is a feasible strategy for discovering new drugs for Parkinson’s disease. Drug repurposing is
based on sufficient medical knowledge. The local medical knowledge base with manually labeled data
contains a large number of accurate, but not novel, medical knowledge, while the medical literature
containing the latest knowledge is difficult to utilize, because of unstructured data. This paper proposes
a framework, named Drug Repurposing for Parkinson’s disease by integrating Knowledge Graph
Completion method and Knowledge Fusion of medical literature data (DRKF) in order to make full
use of a local medical knowledge base containing accurate knowledge and medical literature with
novel knowledge. DRKF first extracts the relations that are related to Parkinson’s disease from medical
literature and builds a medical literature knowledge graph. After that, the literature knowledge graph
is fused with a local medical knowledge base that integrates several specific medical knowledge
sources in order to construct a fused medical knowledge graph. Subsequently, knowledge graph
completion methods are leveraged to predict the drug candidates for Parkinson’s disease by using
the fused knowledge graph. Finally, we employ classic machine learning methods to repurpose
the drug for Parkinson’s disease and compare the results with the method only using the literature-
based knowledge graph in order to confirm the effectiveness of knowledge fusion. The experiment
results demonstrate that our framework can achieve competitive performance, which confirms the
effectiveness of our proposed DRKF for drug repurposing against Parkinson’s disease. It could be a
supplement to traditional drug discovery methods.

Keywords: drug repurposing; Parkinson’s disease; knowledge graph completion method; knowledge fusion

1. Introduction

Parkinson’s disease is a neurodegenerative disease that occurs more frequently in the
elderly. According to the latest statistics from the authoritative institution, The Michael J.
Fox Foundation for Parkinson’s Research (MJFF), only in the United States, the total cost
of Parkinson’s disease to individuals, families, and the government is $51.9 billion each
year, which fully shows the large medical and economic burden of Parkinson’s disease on
society. Therefore, it is very urgent to develop effective drugs to treat Parkinson’s disease.
In view of the good effects of dopaminergic medications on Parkinson’s disease and the
slowing of the pathogenesis of Parkinson’s disease [1], the exploration of levodopa drugs
is the mainstream research direction for the treatment of Parkinson’s disease. However,
this method also has the disadvantage that the long-term use of this drug will cause motor
complications of patients [2]. Therefore, the exploration of levodopa drugs is risky, and it is
difficult to achieve huge breakthroughs. In recent years, drug repurposing has been playing
an increasingly important role in drug development research [3], such as amantadine [4],

Future Internet 2021, 13, 14. https://doi.org/10.3390/fi13010014 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-6354-7922
https://doi.org/10.3390/fi13010014
https://doi.org/10.3390/fi13010014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi13010014
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/1999-5903/13/1/14?type=check_update&version=1


Future Internet 2021, 13, 14 2 of 13

which was originally used to treat influenza infections, was found to have a very positive
effect on Parkinson’s disease. Therefore, it is very promising to explore the treatment of
Parkinson’s disease by drug repurposing.

Drug repurposing is a new exploration and development of the application of existing
drugs. The traditional development of new drugs is a time-consuming, costly, and high-risk
process [5]. The great cost of traditional pharmaceutical development can be significantly
reduced by drug repurposing, since drug repurposing could explore new indications of
existing drugs and bypass several stages of de novo [6]. Compared with traditional pharma-
ceutical methods, drug repurposing is more efficient, low-cost, and riskless. Recently, drug
repurposing has become the focus of the attention of major research institutions in view of
the advantageous features of drug repurposing. Drug repurposing has greatly reduced
the time cost of the drug development process due to the rapid growth of biomedical
knowledge and related big data. Researchers can determine new drug targets, on average,
in 1–2 years [7]. In addition, the R&D investment that is required for drug repurposing
is lower than traditional drug R&D methods. Increasing drug repurposing approaches
have been proposed in recent years due to the advantages and huge potential of drug
repurposing in the medical field. The review conducted by Xue and Li [5] provides a
detailed introduction of the drug repurposing approach.

In the field of drug repurposing against Parkinson’s disease, most studies often obtain
data from medical literature that contains large novel knowledge to construct a medical
knowledge graph. However, the knowledge extracted from medical literature through
data mining tool without manually labeling is not accurate and complete. The data of a
medical knowledge bases, such as DrugBank, which combines detailed drug data with
comprehensive drug target information has high accuracy, but these knowledge bases do
not contain the latest medical knowledge. In order to improve this problem, this study
proposed a drug repurposing framework for Parkinson’s disease by integrating medical
literature data and knowledge base. Firstly, we extract novel medical information in the
medical literature and integrate them with the data in the local medical base to build a
fused knowledge graph that combines novel medical knowledge with accurate medical
knowledge. Subsequently, we employ knowledge graph completion methods utilizing
fused knowledge graph to predict the drug candidates for Parkinson’s disease. Finally,
we employ machine learning methods to make classification on the Parkinson’s disease-
drug pair data sets to predict the drug candidates for Parkinson’s disease and make a
comparative experiment in order to confirm the effectiveness of knowledge fusion. Our
proposed DRKF mainly includes literature retrieval and acquisition, extraction of entities
and their relationships in medical literature, construction and fusion of medical knowledge
graph, knowledge graph completion methods to make prediction of drugs, and machine
learning-based classification for repurposing the drug candidates. This paper further
explores the drug repurposing research of Parkinson’s disease integrating knowledge
fusion and knowledge graph completion method.

The main contributions of our work are as follows:

• we combine novel knowledge and accurate knowledge by integrating the literature-
based knowledge graph with a local medical knowledge base;

• we apply relatively effective knowledge graph completion methods to predict the
drug candidates for Parkinson’s disease and discover that ConvTransE get a better
prediction results; and,

• we employ classic machine learning methods to repurpose the drug candidates
against Parkinson’s disease and compare the results with the method only using
literature-based knowledge graph to confirm the effectiveness of knowledge fusion.

The paper is organized, as follows. Section 2 introduces the related work of computa-
tional drug repurposing. Section 3 introduces the data sets and the method for repurposing
drug candidates for Parkinson’s disease. Section 4 introduces the experimental process and
analyzes the results. Section 5 summarizes the conclusion.
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2. Related Work

In recent years, drug repurposing combining with computational methods has been
developing rapidly. Increasing computational methods have been proposed to explore the
drug-disease relationship for implementing drug repurposing [8]. Li et al. [9] developed
a combination of network mining and text mining to extract the relationship between
diseases and proteins in the molecular interaction network and retrieve drugs that are
indirectly related to certain diseases in the PubMed abstract, and then combine the drugs,
proteins, and disease relationships to construct a disease-specific drug–protein network.
Rastegar et al. [10] obtained the drug-disease relationship by extracting the drug–gene and
gene–disease relationship and rank score from the medical abstract and then verified the
performance of the method by comparing with Comparative Toxicogenomics Database.
Wu et al. [11] determined the modules that are closely related to diseases and drugs
by establishing a weighted network model of disease and drug heterogeneity, and then
obtained information regarding potential drug-disease candidates for drug repurposing.
Napolitano et al. [12] proposed a drug-based drug repurposing prediction method that
is based on machine learning algorithms. It integrated drug chemical structure, protein–
protein, and gene–gene similarity information, and then utilized classification methods
in order to classify drugs to implement drug repurposing. To the best of our knowledge,
the drug repurposing method integrated literature-based knowledge and the medical base
has rarely been explored. Therefore, there is great room to discovery drug repurposing by
employing these methods.

Knowledge graph is the data basis for achieving drug repurposing, which could
organize, manage, and utilize massive amounts of information. The information in the
knowledge graph is generally organized in the form of triple (h, r, t), where h, r, t represent
the head entity, relationship, and tail entity, respectively. This form is very intuitive and
widely used in knowledge graph completion tasks. However, the knowledge graph, in
reality, is often sparse and incomplete. Therefore, it is of great necessity to expand the
knowledge graph through knowledge fusion. Knowledge fusion is to merge knowledge
graphs from multiple sources. Entities are the basic units of knowledge graphs. These
data have diversity and heterogeneity in different knowledge graphs. The basic problem is
to study how to integrate descriptive information about the same entity or concept from
multiple sources. Knowledge fusion can make the knowledge graph contain richer and
more accurate information. Combining it with the knowledge graph completion learning
method can greatly improve the effect of drug repurposing.

Knowledge graph completion method employing knowledge graph to achieve knowl-
edge reasoning has broad prospects. It learns to project entities and relations of knowledge
graph into computable low-dimensional vectors, and then achieves knowledge inference
and reasoning. The dependent relations between entities of knowledge graph make these
entities and relations contain rich structural information. We can obtain these latent in-
formation of entities and relations through those knowledge graph completion methods,
and then implement the tasks of node classification [13] and link prediction [14]. The classic
knowledge graph completion methods include TransE [15], DistMult [16], ComplEx [17],
etc. The combination of knowledge graph completion method and knowledge fusion can
provide a new idea for the research of drug repurposing.

The research of drug repurposing for Parkinson’s disease just recently appeared. In re-
cent research of drug repurposing for Parkinson’s disease, the relative representative of
which is the following one. Zhu et al. [18] proposed a framework that includes biomedical
entities and their relationship extraction, the construction of knowledge graph, knowledge
representation learning, and machine learning-based prediction to implement drug repur-
posing for Parkinson’s disease. This article integrates the drug–disease, drug–gene, and
medicine-related relation information in the literature into a knowledge graph, represents
the entity information by employing knowledge graph embedding methods for the medi-
cal knowledge graph, and, finally, achieves the drug repurposing of Parkinson’s disease
through machine learning classification methods. The idea of this framework is very novel
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and valuable in studying the drug repurposing against Parkinson’s disease. However,
the paper employs a smaller data sets in the PubMed literature, which leads to a relatively
sparse knowledge graph, and the employed knowledge graph embedding methods were
classic, but not novel enough. There is room for improvement in expanding data sets by
knowledge fusion and employing more effective and novel computational methods.

Here, this paper aims to solve the problems in Zhu et al.’s paper, we construct a
relatively complete medical knowledge graph that is based on the Zhu et al.’s PubMed
literature data and integrate it with a local medical knowledge base. The knowledge fusion
not only expands the amount of information, but also builds it into a highly accurate
and novel data sets. In terms of methods, we employ relatively novel knowledge graph
completion models to predict the drug candidates for Parkinson’s disease. In addition, we
employ machine learning methods to repurpose the drug candidates against Parkinson’s
disease and confirm the effectiveness of knowledge fusion. The experimental results prove
that the framework has implemented relatively good results.

3. Materials and Methods
3.1. Data Sets

The data we use consists of two parts. The specific data description is as follows.

3.1.1. Literature Data

The knowledge that is related to Parkinson’s disease in the literature. The medical
literature contains the latest research results in this field. So, the information that is extracted
in the literature represents the latest information on medical development. These rich and
latest knowledge largely exists in unstructured data in medical literature databases such as
PubMed. PubMed is a huge corpus that contains citations to biomedical literature from
MEDLINE and life science journals and it can be used for drug discovery [16]. Currently,
it contains more than 26 million biomedical abstracts. The source of the literature-based
data that we used here were obtained in the PubMed database. The relevant literature is
retrieved through Medical Subject Heading (MeSH) and we then download the abstract of
the articles that are related to Parkinson’s disease in the PubMed. 54,100 published articles
are extracted in PubMed from 1945 to 2018.

3.1.2. The Data in the Local Medical Knowledge Base

Another source of the data we used is a local medical knowledge base, which inte-
grated several medical knowledge bases that are freely available: DrugBank [19], Phar-
mGKB [20], KEGG DRUG [21], TTD [22], DID, and SIDER [23] It is a medical knowledge
network that is composed of entity types, such as Drug, Disease, Gene, Side effect, and
Pathway with their relationships. Figure 1 shows the data schema of the local medical
knowledge base.

Figure 1. The schema of the local medical knowledge base.

3.2. Method

In this paper, our proposed DRKF aims to predict drug candidates that can treat
Parkinson’s disease. The framework includes the extraction of medical entities and rela-
tions, knowledge graph construction, knowledge fusion, knowledge graph completion
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method, and machine learning classification for drug repurposing. As shown in Figure 2,
the specific process is as follows.

• extracting and prerocessing medical data in the literature;
• constructing medical entities and their relationships into a literature-based knowledge

graph and integrating it with local medical base;
• employing the knowledge graph completion methods to predict the drug candidates

for Parkinson’s disease; and,
• using the machine learning methods to repurpose the drug candidates against Parkin-

son’s disease.

Figure 2. The framework of our drug repurposing method.

3.2.1. Preprocessing and Extraction of Medical Entities and Their Relationships

We preprocess the abstracts of the literature downloaded from the PubMed database
by SemRep [24], which is a UMLS-based program that extracts information from the lit-
erature. We employ SemRep to extract entities and their relationships from the abstract
to construct triples. A triple contains a subject, a predicate, and an object, which corre-
sponds to a medical entity and their relation. In addition, there are types and unique
concept identifiers information of these biomedical entities in the UMLS vocabulary.
For example, in the extracting result, “00000000.tx.2|relation|C0178601|Dopamine Ago-
nists|phsu|phsu|||TREATS|C0030567|Parkinson Disease|dsyn|dsyn|”, “Dopamine
Agonists” and “Parkinson Disease” represents the head entity and tail entity, respectively,
and “TREATS” is the relation between them. It means that dopamine agonists have the
relation of treatment to Parkinson’s disease. “C0178601” and "C0030567" corresponds to
the concept identifiers of “Dopamine Agonists” and “Parkinson Disease” in the UMLS
vocabulary, respectively. In addition, “|phsu|” and “|dsyn|” is the abbreviation of “phar-
macologic substance” and “disease or syndrome”, respectively. In order to construct a
more standardized and professional knowledge graph, we use the UMLS concept identifier,
rather than biomedical entity to construct a knowledge graph, like the form of “C0178601
TREATS C0030567”. Subsequently, we create the “IS_TYPE” relationship between the
entity, like “C0178601 IS_TYPE phsu|phsu” in our knowledge graph and the reason is that
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the types of entities in UMLS, like “phsu|phsu” contain hierarchical information that could
more accurately describe entity information. For example, the type of sildenafil and aspirin
are both drugs, while the type of cancer is disease. It is easy to obtain the information
that sildenafil is more closely related to aspirin, rather than cancer. Subsequently, we
construct inverse relationships, like “C0030567 TREAT_INVERSE C0178601” based on
main relationships that exist multiple times in literature-based knowledge graph. Those
inverse relationships can not only expand the knowledge graph, but also provide more
semantic information to it. In addition, the number of some triples is very small, and these
triples are made due to the errors or noises in the extraction process; therefore, we deleted
these triples.

3.2.2. Construction and Fusion of the Medical Knowledge Graph

After the above processing of the medical literature data, we construct a literature-
based knowledge graph that is centered on Parkinson’s disease. The knowledge graph
contains 115,300 triples, which is composed of 12,497 medical entities and 43 relations. It
includes many types of entities, such as diseases, drugs, genes, and relevant entity types.
This is the information in our literature-based knowledge graph.

The literature-based knowledge graph and a local medical base that contains accurate,
but relatively old, information are integrated to construct a fused medical knowledge
graph. The detailed steps are as follows:

Firstly, the data in local knowledge base are all represented in the form of “head_entity
relation tail_entity”. The form of triples can intuitively represent the relational network
in the knowledge graph. Additionally, it is very helpful for the detailed operation pro-
cess of knowledge fusion. Subsequently, the main problem of knowledge fusion is the
medical entity name in local knowledge base cannot correspond to the entity name in the
literature-based knowledge graph. The same entity has different form of expression, such
as “Parkinson Disease” and “Parkinson’s disease”. That would construct a inconsistent
knowledge graph if they are directly integrated into the literature-based knowledge graph.
In order to address the inconsistency problem of the data. In the local medical knowledge
base, we found that every entity has corresponding UMLS concept identifier. We utilize the
UMLS identifier instead of the specific entity in local medical knowledge base. For example,
the UMLS identifier corresponding to “Parkinson’s Disease” and “Parkinson’s disease”
are both “C0030567”, which can solve the problem and fuse them together. Finally, the
literature-based knowledge graph includes a large number of medical entities and the target
of drug repurposing is Parkinson’s disease. Therefore, in the process of knowledge fusion,
we employ the information that is related to Parkinson’s disease in the local knowledge
base. This information is extracted from the local knowledge base in the form of triples
and integrated into the literature-based knowledge graph to construct a fused knowledge
graph. The fused knowledge graph is a medical knowledge network that is composed of
nodes and edges, where nodes represent medical entities and edges represent relationships
between those medical entities. The fused knowledge graph contained 165,901 triples,
which is composed of 12,497 medical entities and 43 relations. Table 1 shows the data sets
of medical literature and knowledge fusion data. We assumed that there are undeveloped
drugs used to treat Parkinson’s disease in the knowledge graph. These medical entities
have direct or indirect relations with Parkinson’s disease. Therefore, knowledge graph
completion models and machine learning methods can be employed in order to repurpose
the drug candidates for Parkinson’s disease by using the fused medical knowledge graph.
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Table 1. Comparison of medical data sets before and after fusion.

Data Sets Medical Literature Data Knowledge Fusion Data

Entities 12,497 12,497
Relations 43 43

triples 115,300 165,901

3.2.3. The Prediction of the Drug Candidate for Parkinson’s Disease by Knowledge Graph
Completion Methods

When considering a knowledge graph G = (E ,R, E), where E represents the set of
medical entities,R stands for the set of relations among entities, a triple can be represented
as (h, r, t). By employing these triples to knowledge graph completion methods, it could
infer new triples (h′, r′, t′), where the entities of h′, t′ are both in set E and the relations of
r′ are in setR. The knowledge graph completion task could be represented as a ranking
task, in which we learn a prediction function ψ(h, r, t) : E ×R× E 7→ R that could judge
the true or false of triples. We employed five knowledge graph completion methods:
DistMult and ComplEx for semantic matching models, ConvE [25] and ConvTransE [26] for
neural network models, and TransE for translational distance models. The ways that these
methods encode entities and relations into a low dimensional vector space are different.
However, those methods can also be used for knowledge reasoning.

Translational distance models (TransE). TransE model defines a triple (h, r, t) as a
translation between head entity h and tail entity t through relation r in a continuous vector
space. It is like the form of h + r ≈ t, in which h, r, t is the embedding of h, r, and t,
respectively. The score function of TransE is s(h, r, t) = ‖h + r− t‖L1/L2 . Either L1 or L2
norm can be employed.

Semantic matching models (DistMult and ComplEx). DistMult is a relatively sim-
ple semantic matching models. The score function of the DistMult model is defined as
s(h, r, t) = 〈h, r, t〉. DistMult is limited to symmetric relations, which make it unable to
distinguish head and tail entities. ComplEx extends DistMult to the complex domain
in order to improve this problem. The embeddings of Head and tail for the same entity are
complex conjugates that enable the ComplEx model could capture asymmetric relations
information. Its score function is defined as s(h, r, t) = Re(〈h, r, t〉), where Re() is a real
part of a complex vector and k is a dimension of an embedding.

Neural network models (ConvE and ConvTransE). ConvE is a relatively simple
method among neural network models. The Score function of ConvE is defined as
ψr(es, eo) = f (vec( f ([es; rr] ∗ω))W)eo, where f () is the nonlinear activation function
vec means to flatten the tensor into a vector and the [] operator is to deform and splice
the embedding e and r. It projects embedding vectors to another spaces for characteriza-
tion and, due to the powerful feature extraction capability of the convolution structure,
it can obtain good link prediction results and obtain less parameter utilization. The Con-
vTransE model maintains the characteristics of translation, like TransE between entities
and relationships on the basis of ConvE. The score function of ConvTransE is defined
as f (vec(M(es, er))W)eo. f denotes a non-linear function. The feature map matrix is re-
shaped into a vector vec that is projected into a FL dimensional space while using W for
linear transformation.

We employed these knowledge graph completion models to predict drug candidates
that can potentially treat Parkinson’s disease with the medical knowledge graph. The
knowledge graph completion model can project the entities and relationships in the medical
knowledge graph to the low-dimensional continuous vector space, and then predict the new
treatment relations in medical entities from the medical knowledge graph. The processes
and results of the experiment can be seen in the next section.
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3.2.4. The Prediction of the Drug Candidate for Parkinson’s Disease by Machine
Learning Methods

In machine learning tasks, we regard drug repurposing as a binary classification
problem. It divides the relation between a drug and a disease into two categories: treatment
and no treatment. The classifier is trained by the treatment mechanism of drugs that are
used to treat non-Parkinson’s disease, and then the learned model is employed in order to
predict potential drug candidates for Parkinson’s disease. Support vector machine (SVM)
[27], random forest [28], logistic regression, and decision tree are classic machine learning
models. Here, we use those machine learning models to repurpose the potential drug
candidates for Parkinson’s disease.

4. Experiment
4.1. Experimental Setup

In the knowledge graph completion method task, the number of training sets, vali-
dation sets, and test sets from the literature-based knowledge graph is 108,348, 5703, and
1249, respectively.

In the same model, for the data sets that fused knowledge graph, the number of
training sets, valid sets, and test sets is 149,567, 15,027, and 1307, respectively.

We employ different hyperparameters on the training set. We manually set the hyper-
parameter ranges: learning rate in {0.01, 0.03, 0.05}, embedding size in {50, 100}, number
of kernels in {50, 100}, dropout rate in {0.2, 0.3, 0.4, 0.5}, and kernel size in {2× 1, 2× 4}
for those knowledge graph completion methods.

In the task of machine learning classification, we regard drug repurposing as a binary
classification problem. It divides the relation between a drug and disease into two cate-
gories: treatment and no treatment. Classifier model is trained by the treatment mechanism
of drugs that are used to treat non-Parkinson’s disease, and then the learned model is used
to predict drugs candidates for Parkinson’s disease. The specific operation is as follows.
Firstly, we obtain the vector representations of entities and their relations using the classic
model TransE [15]. Subsequently, we extract the triples with TREATS relationships (like
the form of (head entity, TREATS, tail entity)) in the knowledge graph. Afterwards, the
triples are divided into two types: Parkinson’s disease and other disease. For the triples
of tail entity is other disease; we extract and randomly change the tail entity in order to
construct a negative sample with a ratio of 1:3, and replace the entities and relationships in
the triples with corresponding vector representations and the use of these triples as the
training set. The triples in which the tail entity is Parkinson’s disease are extracted and they
perform same operations with the training set and employed it as the test set. According to
statistics, the number of training sets is 76,607 and the number of test sets is 5228.

4.2. Evaluation Metrics

We employ two kinds of evaluation metrics. The experiments use the proportion
of correct entities ranked in the top one, three, and ten (Hits@1, Hits@3, Hits@10)for
knowledge graph completion task. hit@n represents the proportion of the results in the test
set among the top-k prediction results. In addition, Precision (P), Recall (R), and F-1 scores
are employed in the machine learning classification task.

4.3. Experimental Results and Analysis

In the task of knowledge graph completion methods, drug repurposing is considered
to be a task of predicting missing medical entities for given triples like the form of (?,
TREAT, Parkinson’s disease). It predicts drug candidates that are undeveloped for treating
Parkinson’s disease by those knowledge completion models trained by the data sets that
did not contain the triples, like (?, TREAT, Parkinson’s disease). In this way, we use these
trained models to repurpose the drug candidates against Parkinson’s disease.

In the task of machine learning classification, we employ four machine learning
methods in the data sets of fused knowledge graph and only in the medical literature-based
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knowledge graph to classify whether there exists the relation of treatment between drugs
and Parkinson’s disease and compare the classification results with the results obtained by
Zhu et al. [18]. The data set that was employed by Zhu et al. is the data containing 48,378
triples with 4653 medical entities in the PubMed database and it is a subset of our medical
literature-based knowledge graph.

4.3.1. Comparison of Knowledge Graph Completion Models

Firstly, we compare the prediction results of the medical candidates using and not
using knowledge graph fusion. For the ConvTransE model, the prediction results using
knowledge fusion can increase Hits@1 by 0.77%, Hits@3 by 3.59%, and Hits@10 by 0.56%
as compared with the result obtained not using knowledge graph fusion, as we can see
from Table 2. For the ConvE model, Hits@1 increased by 7.51%, Hits@3 increased by
16.84%, and Hits@10 increased by 1.48%. For the ComplEx model, Hits@1 increased by
13.68%, Hits@3 increased by 6.03%, and Hits@10 increased by 1.86%. For the DistMult
model, Hits@1 increased by 7.65%, Hits@3 increased by 5.34%, and Hits@10 increased by
2.98%. For the TransE model, Hits@1 increased by 12.83%, Hits@3 increased by 6.77%,
and Hits@10 increased by 6.57%. From the experimental results, we can see that, through
knowledge fusion, we not only expand the medical knowledge graph, but also integrate the
novel knowledge in the literature-based knowledge graph with the accuracy knowledge
in the local medical base. It significantly improves the accuracy of drug repurposing on
Parkinson’s disease.

Subsequently, we compared the prediction results of drug repurposing among dif-
ferent models. Firstly, we found that the TransE model, as a classic knowledge graph
embedding model, is simple, but still achieved high prediction. The TransE model is an
classic graph embedding model that treats the relationship as a certain translation vector
between entities and it regards the relationship vector r as the translation between the
head entity vector h and the tail entity vector t for each triple (h, r, t). However, this
model is less effective in dealing with complicated relationships, such as one-to-many
and many-to-many. Secondly, the ComplEx model has a good effect on capturing and
predicting the semantics of asymmetric relations. The reason is that the ComplEx [17]
model proposes a method that is based on the representation of complex numbers and
it can better capture the semantic information of symmetric relations and make accurate
predictions. Subsequently, we can see that the prediction results of the ComplEx model are
close to the results of the DistMult model in drug repurposing, because the two models are
analogous, and ComplEx introduced complex embedding extends DistMult. The ConvE
model has a certain performance improvement when compared with the ComplEx model
in the prediction of drug repurposing. The reason is that the ConvE model employs a
convolution method. The ConvE model has a good improvement in the prediction results,
due to the powerful feature extraction capability of the convolution structure. The Con-
vTransE model outperforms the ConvE model and it has obtained the best prediction
results. The reason is that ConvTransE model adds features of translation on the basis of
the ConvE model in order to further improve the accuracy of predictions. Throughout the
results, we found that ConvTransE has achieved relatively better results. Therefore, we
speculate that ConvTransE method may have better prospects and it is valuable in making
further improvements for employing in drug repurposing field.
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Table 2. The drug repurposing results of five knowledge graph completion models.

Models
No Knowledge Fusion Knowledge Fusion

Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10

TransE 42.11% 56.12% 69.02% 54.94% 62.89% 75.59%
DistMult 28.99% 49.74% 67.80% 36.64% 55.08% 70.78%
ComplEx 23.35% 45.92% 66.58% 37.03% 51.95% 68.44%
ConvE 28.82% 56.68% 73.52% 36.33% 73.52% 75.00%
ConvTransE 50.95% 67.97% 86.71% 51.72% 71.56% 87.27%

4.3.2. Comparison of Machine Learning Methods

We use classic knowledge graph completion method TransE to embed the medical
entities and their relations into low-dimensional continuous entity vectors. Subsequently,
we classify treatment relation by employing four machine learning methods to learn the
treatment mechanism from the existing treatment relations of drug candidates which is
undeveloped in treating Parkinson’s disease. After that, the trained classifier is used to
predict drug candidates to repurpose Parkinson’s disease. Table 3 shows that the best-
performing result has an F1 score of 98.42%, which is trained by SVM classifier in the
fused knowledge graph. Additionally, the classification results trained on literature-based
knowledge graph are better than the results presented in Zhu et al. The reason is that
we employ a more rich and complete data sets of the literature. The performance of the
machine learning methods that were trained on the fused knowledge graph has a more
obvious improvement than other medical knowledge graphs. The most important reason
is that we integrate the triples in the medical knowledge base containing a large amount
of precise medical information with the literature-based knowledge graph that contains
novel medical knowledge. Therefore, we employ machine learning methods in predicting
drug candidates against Parkinson’s disease in order to further confirm the effectiveness of
knowledge fusion.

Table 3. Experimental results of machine learning methods using different knowledge graph.

Models
Literature-Based Knowledge Graph Fused Knowledge Graph Results in Zhu et al. [18]

Recall Precision F1-Score Recall Precision F1-Score Recall Precision F1-Score

SVM 98.78% 96.42% 97.58% 100.00% 96.90% 98.42% 98.72% 94.14% 96.38%
LogisticRegression 97.55% 93.07% 95.26% 99.92% 93.48% 96.59% 93.97% 91.42% 92.68%
RandomForest 96.56% 93.48% 95.00% 97.12% 94.91% 96.00% 83.41% 93.01% 87.95%
DecisionTree 83.51% 81.55% 82.52% 89.14% 82.27% 85.57% 72.16% 76.13% 74.09%

We employ the t-SNE [29] dimensionality reduction tool to perform dimensionality
reduction and visualization processing on the training set in the fused knowledge graph
and the literature-based knowledge graph that was used in machine learning methods.
The classification effect of Figure 3b has a higher degree of aggregation than the result
of Figure 3a, as shown in the Figure 3. The information expression ability of the em-
bedding acquired by entities in fused knowledge graph is significantly better than that
of the knowledge graph without fusion. The superiority of knowledge fusion is more
intuitively demonstrated through visual display.
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(a) The representation using knowledge fusion (b) The representation not using knowledge fusion

Figure 3. Two-dimensional representation of the vectors learned by TransE.

4.4. Results and Discussion

We made some predictions based on given drugs in knowledge graph through the
trained machine learning model SVM classifier, which is a binary classifier. We analyzed
the relation between Parkinson’s disease and drug candidates in the knowledge graph to
understand why these drugs are more likely to treat Parkinson’s disease than other drugs.
The candidate drug is associated with existing drugs to treat Parkinson’s disease, as we can
see from triples (Drug_01 ASSOCIATE_WITH Drug_02) and (Drug_02 TREAT Parkinson’s
disease). Subsequently, the possibility that the drug might treat Parkinson’s disease is
higher. Therefore, we consider that these drugs are more likely to have a therapeutic
relationship with Parkinson’s disease than other drugs. Therefore, we could speculate
that Drug_01 has potential treatment to Parkinson’s disease. According to this treatment
mechanism, our classifier predicts several drug candidates for Parkinson’s disease and we
have verified our results through some literature, and we have taken several meaningful
results to present in Table 4.

Table 4. Results of drug repurposing by classifier for Parkinson’s disease.

UMLS ID Drug Name Source that Have Been Proved

C4754962 Terazosin Medical literature in the Journal of clinical investigation [30]
C1367795 Ambroxol Medical literature in JAMA neurology [31]
C1721377 Nilotinib Medical literature in JAMA neurology [32]

It can be seen from the above experimental results that our framework has achieved
relatively good results. However, there are too many medical entities in the medical
knowledge graph. The information of medical entities are not related to Parkinson’s
disease in the medical knowledge graph. Those entities perhaps interfere with drug
repurposing for Parkinson’s disease. Therefore, there is still a lot of room to explore related
research in the future.

5. Conclusions

In this paper, we proposed a drug repurposing framework by integrating literature-
based medical knowledge graph and local medical base. Through this framework, we fused
the literature-based data that contain novel knowledge and a local medical knowledge
base with high accuracy information. The results of the drug repurposing have been
improved by employing the fused knowledge graph. In addition, in the knowledge
graph completion methods, it is found that ConvTransE has achieved better results in
drug repurposing than other models, which can provide new directions for subsequent
research. After that, we use machine learning models to explore treatment mechanisms,
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and utilize this potential information to repurpose drug candidates against Parkinson’s
disease and further confirm the effectiveness of knowledge fusion. The drug repurposing
framework that was proposed in this paper uses knowledge fusion, knowledge graph
completion approaches, and machine learning methods in order to predict drug candidates
for Parkinson’s disease, and the experimental results provide researchers with valuable
research ideas to further explore the drug repurposing for Parkinson’s disease.
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