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Abstract: Creating intelligent systems capable of recognizing emotions is a difficult task, especially
when looking at emotions in animals. This paper describes the process of designing a “proof of
concept” system to recognize emotions in horses. This system is formed by two elements, a detector
and a model. The detector is a fast region-based convolutional neural network that detects horses
in an image. The model is a convolutional neural network that predicts the emotions of those
horses. These two elements were trained with multiple images of horses until they achieved high
accuracy in their tasks. In total, 400 images of horses were collected and labeled to train both the
detector and the model while 40 were used to test the system. Once the two components were
validated, they were combined into a testable system that would detect equine emotions based on
established behavioral ethograms indicating emotional affect through the head, neck, ear, muzzle,
and eye position. The system showed an accuracy of 80% on the validation set and 65% on the test
set, demonstrating that it is possible to predict emotions in animals using autonomous intelligent
systems. Such a system has multiple applications including further studies in the growing field of
animal emotions as well as in the veterinary field to determine the physical welfare of horses or
other livestock.

Keywords: convolutional neural networks; horse emotion recognition; horse emotion

1. Introduction

There is currently no scientific consensus on defining emotion since an emotion is a
subjective mental state associated with the nervous system [1], but there is growing research
in emotions in animals related to defining emotions as subjective affect that creates both
physiological and behavioral responses [2]. There is extensive research in the human world
regarding emotional affects and the effects on behavior and emotional expressions (most
of which are based on subjective interviews or standardized questionnaires). As humans,
we can gauge emotions based on facial cues, voice tone, posture, and other hints [3].
However, our prediction might be wrong, and a person who appears to be happy may in
reality be sad [4,5]. This suggests that observers can perceive emotions from the subject but
that the truth of the emotion may be lost in interpretation. Animals experience emotions
in a similar way that can be just as difficult to discern. Since Charles Darwin, who was
one of the first to write about this topic, many scientists have done research in the field of
animal emotions. Jaak Panksepp, one of the pioneers in affective neuroscience, identified
seven different emotions that animals can feel [6]. Most of the research has been done in
mammals because of their similarity to humans and because many of them produce facial
expressions that bear a clear resemblance to the expressions seen in humans [7].

There is also growing research indicating the emotional breadth of animals and the
ability to measure it through similar physiological and behavioral measures [2,8]. While the
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field of research on dog emotions has continued to flourish, research in agricultural animal
emotions is growing at a slower rate. There is, however, a large body of research supporting
the use of heart rate variability (HRV) in farm animals and the correlation with cortisol
(as an indicator of stress) and behavioral responses as a means of assessing emotional states
in domestic livestock [9,10].

Horses are still considered livestock by the United States Department of Agriculture
(USDA) and have also been studied for correlations between physiological markers (HRV
and cortisol) and behavioral patterns, suggesting that there is a possibility of assessing
equine emotional states through behavioral indicators. Studies in stress behaviors, for ex-
ample, link elevated plasma cortisol levels with increased HRV and specific behavioral
patterns, such as elevated head and neck position, widened eyes, variations in ear positions
(ranging from forward to indicate alert/attentive to pinned back against the head to indi-
cate higher levels of distress), and increased muscle tension and body movements [11–13].
Furthermore, existing ethograms in equine behaviors of feral and semi-feral horse herds
show that behavioral expression in feral herds also supports the connection between be-
havioral expression, intention, and potential emotional affect when taken in the context of
social interactions and communication [14–16].

Correlations between physiological measurements and behavioral parameters have
already been used to study the psychological and emotional welfare of horses [17–19]
and qualitative measures of behavioral indicators have also been used to assess equine
emotional state [20,21]. Furthermore, with the development of the Equine Facial Action
Coding System (EquiFACS) [22] and the Equine Pain Face coding system [23], researchers
and practitioners have become even more aware of the ability to look at muscles in both the
body and face to assess expressions of physical and psychological health, especially related
to pain and discomfort. Such facial recognition has been incorporated into machine learning
and video coding software to help researchers and practitioners develop better techniques
to decipher pain in equids [24–26]. The use of these measures and assessment tools
supports the development of standardized methods of assessing behavioral parameters and
suggesting emotional affect based on existing studies in behavior, physiological measures,
and species-specific ethograms.

Technology already exists to examine emotional expressions in humans. With the
improvements in technology during the last few decades, researchers have studied multiple
ways of how to recognize emotions in humans using different techniques, such as Markov
models, artificial neural networks, and Bayesian networks, among others.

The automation of emotion recognition employs three main approaches:
First, there are knowledge-based techniques that predict emotions based on semantic

and syntactic knowledge; statistical methods, which commonly are machine learning
algorithms that predict emotions given a big enough data set; and hybrid approaches,
which are a combination of the previous two. Many companies have been successful in
predicting emotions in humans using these approaches. A good example is the work done
by Affectiva [27], a company founded at Massachusetts Institute of Technology (MIT) that
uses facial and voice cues to predict emotions.

So, the question arises of whether we can create an intelligent system with the ability
to predict emotions of animals based on body and facial expressions. Most of the research
conducted on animal emotions has been done in mammals, mainly from a psychologi-
cal and neuroscience perspective [7,28], with growing work done in looking at equine
emotional facial expressions using the EquiFACs and Pain Face coding systems [22,23].

In addition, most of the research focuses on the ability of animals to interpret our
emotions and not on how we can interpret theirs. Within the group of those that focus
on interpreting the expressions of the animals, most of them do it without using an
intelligent or autonomous system. A good example is AnimalFacs, a tool for identifying
facial movements in non-human species. The researchers explain how we, as humans,
can analyze the facial expressions of different primates, dogs, cats, and horses [7,22,29].
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There is emerging research done on how to interpret animal emotions using an
autonomous or intelligent system. One example is the work done by Laura Niklas and Kim
Ferres in predicting dog emotions from images [30]. Another example is the work done at
the University of Augsburg on recognizing dog emotions from bark sequences using an
autonomous model [31]. Extant facial emotional recognition software in equids focuses
primarily on pain expressions [24–26], with more research needed to classify and code a
wider range of emotional expressions. Thus, the idea of predicting animal emotions this
way is something that has not yet been explored in depth.

This paper explores the possibility of creating an intelligent system capable of pre-
dicting the emotion of a horse from its face and neck traits based on existing research and
ethograms connecting specific head, neck, eye, nose, and ear positions with specific stress
levels and emotional valence [14–16,21,32–34]. In order to do this, two different elements
must be created.

First, we need to develop a detector capable of recognizing a horse in an image.
More specifically, it needs to detect a region of interest (ROI from now on), which in this
case, will be the head and neck of a horse. The task of the detector is a prerequisite for the
second part. If the detector does not recognize the appropriate ROI, the second part of
the system will not be able to predict the emotion correctly regardless of how well it can
accomplish that task.

Secondly, we need a model that, once it receives the detected ROI, is capable of
predicting the emotion of the horse. This means this model must be able to detect facial
cues and different neck positions and relate them to the appropriate emotion.

Altogether, this should be an intelligent system capable of detecting a horse, analyzing
its face and neck features, and predicting its emotion with reasonable accuracy.

2. Materials and Methods
2.1. Defining a Horse Emotion Tracking Framework

The first step consists of defining the different emotions, independent of interactions
with other horses. Physical markers, head, ear, and neck positions are based on research
linking behaviors for arousal and physiological stress with only “annoyed”, suggesting a
negative valence based on previous studies on animal interactions and agonistic behav-
iors [14–16,21,32–34]. The emotion of “alarmed” was used to indicated heighted arousal
based on eye and ear position using existing ethograms with the understanding that the
behavioral indicators of this emotion may also indicate heighted vigilance or alertness in
addition to alarm [16]. The four emotional markers of “alarmed”, “annoyed”, “curious”,
and “relaxed” were chosen due to their representative variations of arousal level and
emotional expression within the existing equid ethograms, with “relaxed” representing the
lowest level of arousal and “alarmed” representing the highest. The initial photographs
were marked and defined by the researchers according to existing ethograms. The term
“alarmed” refers to a heightened state of awareness in which the horse demonstrated
behaviors indicating higher arousal levels without significant movement of the feet. Horses
have a wide range of facial expressions used to express psychological states as well as
communicate with other conspecifics, especially with eyes, ears, and head and neck posi-
tion [15,16,35–38].

Although previous studies of horses have investigated their facial expressions in
specific contexts, e.g., pain, until now, there has been no methodology available that doc-
uments all the possible facial movements of the horse and provides a way to record all
potential facial configurations. This is essential for an objective description of horse facial
expressions across a range of contexts that reflect different emotional states. Facial action
coding systems (FACSs) provide a systematic methodology of identifying and coding facial
expressions on the basis of underlying facial musculature and muscle movement across
species [29]. FACSs are anatomically based and document all possible facial movements
rather than a configuration of movements associated with a particular situation. Conse-
quently, FACSs can be applied as a tool for a wide range of research questions. The Equine
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Facial Action Coding System (EquiFACS) provides a system to measure facial expressions
in horses based on musculature and skeletal configurations in equids [22]. On its own,
EquiFACS enables researchers to look at distinctive facial movements and changes and,
when combined with species-specific knowledge of behaviors, contexts, and behavioral
ethograms, creates opportunities to develop connections between these facial configura-
tions and emotional expressions [22]. Portions of EquiFACS focus on the appearance of
the sclera (the whites of the eyes), shape of the eye, and tension in the nose, lip, and muz-
zle, and ear position based on the tension and use of different facial muscles in the horse.
EquiFACS also looks at additional musculature and shape changes of the face, lip, nose, eye,
and ear positions, which are easily differentiated from one another and appear as markers
of behavioral patterns indicative of different levels of arousal and emotional expression in
known ethograms of equine behavior [15,16,22,36]. By combining distinctive expressions
supported by EquiFACS with known behavioral expressions of equines, we were able to
generalize basic emotional expressions of equines based on distinctive changes in nose, lip,
eye, and ear positions.

The reliability of others to be able to learn this system (EquiFACS) and consistently
code behavioral sequences was high, and this included people with no previous experience
of horses [22]. A wide range of facial movements was identified, including many that are
also seen in primates and other domestic animals (dogs and cats). EquiFACS provides
a method that can be used to document the facial movements associated with different
social contexts and thus to address questions relevant to understanding social cognition
and comparative psychology, as well as informing current veterinary and animal welfare
practices [22,38,39]. These previous results indicate that a combination of head orientation
with facial expression, specifically involving both the eyes and ears, is necessary for
communicating social attention. The earlier findings emphasize that in order to understand
how attention is communicated in non-human animals, it is essential to consider a broad
range of cues [22,38,39]. Recent developments in understanding horse facial expression
suggest that they have many detailed ways of expressing intention and communication.
The use of such detailed facial coding systems like EquiFACS and Pain Face helps develop
even better mechanisms for determining levels of stress and pain, especially in close
proximity when the nuances of emotional and physical expression need more attention. In
order to simplify the emotional coding tool for this experiment and to test a novel system
that could be both portable and useful for the layperson, we broke these up into four
emotions (Figure 1), which were defined with respect to neck and facial cues that could be
judged from a distance:

Figure 1. Horse emotions.

Alarmed

• Eyes: open eyes with little or no sclera
• Ears: stiffly forward
• Nose: open nostrils, usually slightly tense mouth or muzzle
• Neck: above parallel, head higher than back

Annoyed

• Eyes: open with perhaps some sclera
• Ears: stiffly back or pinned back, close to the horse’s head
• Nose: nostrils slightly closed, tense mouth or muzzle
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• Neck: usually parallel or above parallel
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Curious

• Eyes: open with little or no sclera
• Ears: pointing forward/sides but relaxed
• Nose: open nostrils, relaxed mouth and muzzle
• Neck: usually parallel to ground but may be slightly below or above

Relaxed

• Eyes: partially to mostly shut
• Ears: relaxed, opening pointing to the sides
• Nose: relaxed mouth and muzzle
• Neck: approximately parallel or below

Once the emotions were defined, the second step was to collect the data. In this case,
a total of 440 images of horses were collected from private sources where the horses were
familiar and the context of the photo was known to help guide the coding of expressions
where all four criteria were met. There were a total of 110 images per emotion labeled
by two of the authors based on the coding system above that was derived from the
aforementioned research on behavioral ethograms. Images were of horses at liberty in
large paddocks or pastures with no equipment or observed human presence or interactions.
These images were split in training and validation sets in order to train the detector and
the model.

2.2. Detector

To train the detector, 400 images were used as training data, while the 40 left were
used as test data. Every picture was rescaled to 200 pixels in height, keeping the original
ratio. This was done to facilitate the work of the detector since having fewer pixels requires
less computations, and there is no significant information loss when rescaling to this size.
All images were labeled. In this case, labeling the images meant to manually highlight the
ROI that the detector was supposed to find.

The architecture used for animal detection was the faster region-based convolutional
neural network (faster R-CNN) [40], a well-established architecture for object detection.
This architecture is composed of three different parts. First, the convolutional layers,
which filter the images in order to extract useful features; secondly, the RPN (region
proposal network), whose duty is to identify the possible regions where objects (in this
case horses) can be located; and finally, a dense neural network that predicts what kind of
object is in each proposed region (in our case, whether there is a horse in each proposed
region or not).

During the first epochs of training, the detector had difficulties detecting any ROIs,
but as training progressed, it began making more accurate detections. After 4000 epochs,
it was capable of finding the region of interest with high precision.

2.3. Model

Next, a model to predict the emotions was created. This model received images of
150 × 150 pixels (the rescaled ROI found by the detector) and output predictions (alarmed,
annoyed, curious, or relaxed).

The architecture of this model (Figure 2) was formed by a convolutional base, a flatten-
ing layer, two fully connected layers (256 and 128 nodes, respectively), and a softmax layer
(4 nodes, 1 for each emotion). Three different convolutional bases were tested, the base from
ResNet50v2, Xception, and VGG16, all with weights from the imagenet dataset. To train
the model, only the last convolutional block of layers and the layers on top of this one were
trained. They were trained for 25 epochs using 400 pictures (100 for each category) as the
data set and 40 pictures (10 for each category) as the test set. Training the first layers of
the base did not make sense in this case. The reason was that these layers learn common
patterns that are present in all images, such as corners or straight lines, and since this
base was trained using the 14 million images of the imagenet dataset (a popular dataset



Future Internet 2021, 13, 250 7 of 13

to train object recognition models), achieving better performance with only 400 images
was unlikely.

Figure 2. Model architecture.

2.4. Final Steps

Lastly, in order to facilitate the use of this system, a desktop graphical user interface
(GUI) was created. The GUI allows any user to upload an image, processes this image,
and displays the ROI with a rectangle (which should be the head and neck of a horse) and
the predicted emotion.

In a nutshell, the system created consists of two separate parts, a detector and a model.
The detector receives an image previously rescaled to 200 pixels in height and outputs an
ROI, a region of the image with a horse. This ROI is rescaled to 150 × 150 pixels and is
passed to the model, which predicts and outputs the final emotion. A diagram of the entire
process can be seen in Figure 3.

Figure 3. System process diagram.

3. Results

The work resulted in a detector capable of finding a horse’s face in an image, a model
capable of predicting the emotion of a horse given a picture of its head, and a user-friendly
GUI. All of these partial results are discussed in more detail below.

The detector’s precision is very high, and it labeled all 40 validation images without a
single error. Some of these detections are shown in Figure 4.
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Figure 4. Detector predictions.

In order to select the best performing convolutional base, five-fold cross-validation
was performed for each of the models. As displayed in Figure 5, the base training set was
divided into five equal chunks consisting of 80 images. Using stratified cross-validation,
an equal distribution of all four emotion labels was enforced. For each split, a different
chunk was selected as the validation set, which results in splits containing 320 training
and 80 validation images. After the datasets were formed, a model was trained for each
convolutional base and then validated. Thus, each image was tested exactly once and
used for training four times. The accuracy of all five iterations was averaged, and the
overall performance of a model was calculated. Five-fold cross-validation reduces variance
and ensures that the best convolutional base is selected for the final model. Furthermore,
there is a risk of overfitting due to the relatively small dataset, and we wanted to ensure
the generalization ability of the model by exploiting the full potential of the dataset.

Future Internet 2021, 13, x FOR PEER REVIEW 7 of 12 
 

 

3. Results 
The work resulted in a detector capable of finding a horse’s face in an image, a model 

capable of predicting the emotion of a horse given a picture of its head, and a user-friendly 
GUI. All of these partial results are discussed in more detail below. 

The detector’s precision is very high, and it labeled all 40 validation images without 
a single error. Some of these detections are shown in Figure 4. 

 
Figure 4. Detector predictions. 

In order to select the best performing convolutional base, five-fold cross-validation 
was performed for each of the models. As displayed in Figure 5, the base training set was 
divided into five equal chunks consisting of 80 images. Using stratified cross-validation, 
an equal distribution of all four emotion labels was enforced. For each split, a different 
chunk was selected as the validation set, which results in splits containing 320 training 
and 80 validation images. After the datasets were formed, a model was trained for each 
convolutional base and then validated. Thus, each image was tested exactly once and used 
for training four times. The accuracy of all five iterations was averaged, and the overall 
performance of a model was calculated. Five-fold cross-validation reduces variance and 
ensures that the best convolutional base is selected for the final model. Furthermore, there 
is a risk of overfitting due to the relatively small dataset, and we wanted to ensure the 
generalization ability of the model by exploiting the full potential of the dataset. 

 
Figure 5. Five-fold cross-validation. 

Figure 6 displays the average accuracy for each convolutional model base, with ac-
curacy defined as the number of correct predictions divided by the number of total pre-
dictions. After training for 25 epochs, the model achieved the best accuracy of 80% using 
the VGG16 convolutional model. 

 

Figure 5. Five-fold cross-validation.

Figure 6 displays the average accuracy for each convolutional model base, with accu-
racy defined as the number of correct predictions divided by the number of total predictions.
After training for 25 epochs, the model achieved the best accuracy of 80% using the VGG16
convolutional model.

Figure 6. Five-fold cross-validation average accuracy over 40 epochs.

In addition, Figures 7 and 8 show the average loss values, i.e., the number of classi-
fication errors and the average AUC of each base model. VGG16 has the lowest average
validation loss and best AUC value, confirming it as the best performing base model.
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Figure 7. Five-fold cross-validation average loss over 40 epochs.

Figure 8. Five-fold cross-validation average AUC over 40 epochs.

Based on the VGG16 convolutional base, the model was then trained with the entire
training set consisting of 400 images. Testing the model with the remaining 40 images
resulted in a validation accuracy of 65%. Figure 9 shows the confusion matrix of this
final evaluation.

Figure 9. Confusion matrix of the final model.

Figure 10 shows some selected test images with a GradCAM overlay, which visualizes
activations of the last convolution layer in a heatmap.
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Figure 10. GradCAM overlays of the chosen test images.

Finally, the entire system is brought together by the desktop GUI, which includes the
two parts and makes them straightforward for anyone to use. This makes it easy for a user
to upload an image and see the ROI and the emotion detected. The graphical user interface
is shown in Figure 11.

Figure 11. Graphical user interface.

4. Discussion

This paper describes how an AI-based system capable of detecting emotions of animals
was created and able to assess behaviors indicating emotions in horses. The system does so
in an autonomous way and with good results. This proves that we are capable of creating a
system that can recognize the emotions of a non-human animal species that has the ability
to produce facial expressions and that it might be possible to detect these emotions by
other methods, such as measuring the animal’s heart rate, its temperature, or recording the
sounds that they produce and feeding all this data into a system similar to the one created
here [41]. While the system works with reasonable accuracy, it is worth pointing out that it
could be improved in many ways.

First of all, we have to keep in mind that predicting emotions is a complex task, and it
is hard for humans and it is even harder for animals.
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Secondly, there were only 440 labeled images in total, which is not a large number
for systems like this one. Obtaining the 440 horse emotion pictures was the most time-
consuming part of our research, as these pictures were not publicly available and had to be
manually taken and labeled by the authors. Future research obtaining more labeled horse
emotion pictures will be essential, and we hope to initiate a citizen science initiative towards
that goal. Having more images, thousands or millions of them split evenly between every
emotion will make future emotion prediction models more accurate and generalizable.

Thirdly, only the head and neck of the horse were used to predict its emotion, and an-
alyzing cues from the entire body would most likely yield better results; however, since
we would have more features to analyze, more data would be needed. In addition, if the
entire body is used, the emotions have to be reviewed, since they were defined only by
cues found in the head and neck of the horse.

Fourthly, ear, neck, and body positions indicative of any general emotion at a distance
may also indicate more severe problems upon closer examination. Many of the studies on
the equine pain face, for example, show ear and neck positions similar to those of relaxed
horses. In order to use such a tool to improve our understanding of equine emotions
and promote better equine welfare, this generalized emotional assessment tool could be
combined with the existing research and machine learning in equine facial expressions to
eventually create a more robust program that takes into account not only the generalized
emotional expression, but also the nuances of pain or distress that could be mistaken for
something else. This lack of differentiation between subtle emotion patterns is also evident
in the confusion matrix in Figure 9, which reveals that emotions are often confused with
the “curious” and “relaxed” states of a horse.

Finally, another way to improve the results obtained in this paper would be to use
information from other sources in combination with the images. Sensors to measure heart
rate and temperature could be put on horses, their sound could be recorded, etc.

With additional adjustments, this tool could serve as an important means of sup-
porting the need to look at animal behavior and emotions as a way to improve animal
welfare in various agricultural industries including in clinical veterinary settings [9,10,42].
There is a growing push to create better assessment tools that look at improving equine
psychological welfare in domestic states through more robust measurements of emotional
affect via behavioral observations [21,43] and an automated system that relies on research-
based behavioral assessments rather than objective interpretations could help improve the
accuracy of assessment of the psychological welfare of domestic livestock.

5. Conclusions

In conclusion, this is a first “proof of concept” system that illustrates that deep learning
through convolutional neural networks is able to identify emotions in horses. It provides
a powerful foundation on which to build new and more accurate systems to predict
animal emotions.
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