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Abstract: Collaborative filtering (CF) is a widely used method in recommendation systems. Linear
models are still the mainstream of collaborative filtering research methods, but non-linear proba-
bilistic models are beyond the limit of linear model capacity. For example, variational autoencoders
(VAEs) have been extensively used in CF, and have achieved excellent results. Aiming at the problem
of the prior distribution for the latent codes of VAEs in traditional CF is too simple, which makes
the implicit variable representations of users and items too poor. This paper proposes a variational
autoencoder that uses a Gaussian mixture model for latent factors distribution for CF, GVAE-CF.
On this basis, an optimization function suitable for GVAE-CF is proposed. In our experimental
evaluation, we show that the recommendation performance of GVAE-CF outperforms the previ-
ously proposed VAE-based models on several popular benchmark datasets in terms of recall and
normalized discounted cumulative gain (NDCG), thus proving the effectiveness of the algorithm.

Keywords: recommendation system; variational autoencoder; collaborative filtering; Gaussian
mixture model

1. Introduction

Today, recommendation systems are extensively used in business and scientific re-
search to help users mine valuable information from massive amounts of data. The data re-
quired by the recommendation systems are sourced from user clicks, comments,
purchases, searches, and other records. The behavior habits and preferences of users
are explored to analyze the items that they are most likely to consume, as well as to
ultimately help users find their needs more efficiently [1].

Currently, the mainstream recommendation algorithms are collaborative filtering
(CF) algorithms, which establish the preference prediction model by exploring the sim-
ilarity pattern of users and items. Generally speaking, there are three methods of CF:
The content-based recommendation algorithm [2,3], the CF recommendation algorithm,
and the hybrid recommendation algorithm. The Content-based recommendation algorithm
mainly uses the information of users and items to predict users’ preferences. With the
continuous development of society, people pay more and more attention to their privacy,
which makes it more difficult to collect users’ information. Therefore, the content-based
recommendation algorithm has gradually failed to meet the needs of users. Meanwhile,
the CF recommendation algorithm is divided into memory-based CF [4] and model-based
CF. Memory-based CF can be further divided into user-based [5] and item-based [6] meth-
ods. Memory-based methods use the data of the relationship between users or items to
recommend items to users that they have never seen before. While model-based methods
are principal methods of recommendation algorithms [7,8]. They learn a model through
the historical behavior data of users to predict the users preferences. These model can use
machine learning algorithms. For example, matrix factorization (MF) is one of the most
popular methods in the industry. Severinski et al. [9] add constraints of Gibbs updates
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for the side features vector of probabilistic matrix factorization (PMF), and this Bayesian
constrained PMF model is superior to simple MAP estimation.

However, MF cannot capture the non-linearity relationships between users and items.
To tackle this problem, the generative models have attracted the attention of researchers.
The first generative model that appeared in the literature of recommendation systems
was the generative adversarial network (GAN) [10,11]. Immediately afterwards, a series
of variational autoencoders (VAEs) also appeared, and they achieved better results than
using GAN for recommendation systems [12,13]. Liang et al. [14] used VAEs for the first
time to conduct CF by extending VAEs to CF recommendation algorithms for implicit
feedback, which made up for the shortcomings of less research on non-linear models in
recommendation systems. Kim et al. [15] modified the distribution of the latent factors
in the original VAE and used a flexible prior distribution, and said that this method can
better represent the user preferences. Shenbin et al. [16] introduced a recommender VAE
(RecVAE) model that uses a novel composite prior distribution for the latent representation.
The distribution of the hidden variables of the VAE model in the above CF algorithm is too
simple, and it cannot effectively learn the complex non-linear relationships between users
and items. In summary, our contributions are as follows:

• We propose a new variational autoencoder CF model (i.e., a Gaussian mixture model
for latent factor distribution for CF (GVAE-CF)). Specifically, we change the single
Gaussian posterior distribution in the standard variational autoencoder to a Gaussian
mixture model (GMM), and we propose a GMM-based variational autoencoder neural
network structure for CF. The model can effectively learn the relationships of users
and items.

• We re-derive the variational lower bound of the variational autoencoder.
• We compare the latent space representations of the standard VAE and GVAE-CF to

study the GVAE-CF internal mechanism of the GVAE-CF.

2. Background and Related Work

At present, deep learning is achieving great success in many fields, with many re-
searchers paying attention to this area. Because of the powerful ability of the neural
network to discover the non-linear relationships in a complex dataset of recommendation
systems, researchers have begun to utilize the neural network to address the problem
of CF. MF is the most successful technique among the model-based methods [12,13,17].
Billsus et al. [18] used singular value decomposition (SVD) to conduct CF, which is the
earliest CF model based on the MF algorithm. Mnih et al. [13] proposed a probabilistic
linear model with Gaussian noise, called the PMF. Alquier et al. [19] introduced a standard
way to assign an inverse gamma prior to the singular values of a certain SVD of the matrix
of interest. The experimental results showed that the performance of the PMF is better than
that of SVD. Alexandridis et al. [20] tried to combine the advantages of some previous
methods, such as soft-clustering on user’s social networks. However, the above models are
linear models, and they cannot capture the complex relationships between users and items.
Liang et al. [21] proved that adding non-linear features to the hidden linear factor model
can effectively improve the performance of the recommendation systems.

Due to the powerful ability of generative models to fit non-linear and uncertain data,
they have become a very popular choice for CF algorithms. Lee et al. [22] proposed
an enhanced VAE to improve recommendation performance through adding auxiliary
information input. Liang et al. [14] proposed a model-based CF algorithm called Mult-
VAE, which takes user-item binary score data as the input and learns a compressed latent
representations. The latent factors are then used to reconstruct the input vector and to
calculate the missing score. Different from the standard VAE, Mult-VAE adopts multino-
mial likelihood instead of Gaussian likelihood. They authors claim that the polynomial
distribution is more suitable for the recommendation systems. Shenbin et al. [16] modi-
fied the distribution of the hidden factors in the standard VAE and adopted a compound
prior method combining a standard Gaussian distribution and a potential code distribu-
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tion. Askari et al. [23] utilized two VAEs to form a compound VAE, which can learn the
relationships between users and items at the same time.

Compared to the previous methods, in this paper, we overcome the shortcoming of
VAEs using very simple posterior distribution to learn latent codes between users and
items. In the current CF, the Gaussian distribution is used, which allows our model to fit
some extremely distorted multi-peak distributions.

3. Method

In this section, we introduce a VAE for the CF algorithm that uses a GMM for the prior
distribution of latent factors, abbreviated as GVAE-CF. First, we briefly introduce VAE,
for which further details can be read in References [24,25].

3.1. Variational Autoencoder

A variational autoencoder is a generative model, whose purposed is to discover
the principle of data generation in the form of probability distribution. For each user
u, the model samples an M-dimensional latent factor z from a standard Gaussian prior
distribution. It is assumed that the input x is generated by the following process:

z ∼ N (0, IM)

x|z ∼ pθ(x|z),
(1)

where z is a latent factor that cannot be observed, and the dimension is lower than the
dimension of the input x. The goal of VAE is to maximize the log likelihood (maximum
likelihood estimation (MLE)) of the data to estimate the parameter θ. The MLE is calcu-
lated through:

pθ(x) =
∫

pθ(x|z)pθ(z)dz. (2)

Equation (2) needs to calculate all latent representations, which is a problem that
cannot be solved directly. To make this problem tractable, we usually use a posterior
distribution qφ(z|x) to approximate the true posterior p(z|x), where φ is a parameter. In tra-
ditional variational autoencoders, we usually use a standard Gaussian distribution, and the
similarity between qφ(z|x) and the posterior distribution p(x|z) is measured by minimizing
the Kullback-Liebler(KL) divergence. Since the marginal likelihood function is difficult to
obtain, it is usually obtained approximately via the evidence lower bound (ELBO):

logpθ(x) ≥ Eqφ(z|x)[logpθ(x|z)− KL(qφ(z|x)||pθ(z))]

= L(x; θ, φ),
(3)

where E[·] denotes the expectation. The first term of the reconstruction error is to reduce
the distance between the input x and the reconstruction x′, while the second term is
the KL divergence between the variational posterior qφ(z|x) and the standard Gaussian
distribution pθ(z). It should be noted that pθ(z) = N (0, IM), qφ(z|x) embeds the input x
into a low-dimensional manifold.

In fact, pθ and qφ determine the parameters through two deep neural networks,
corresponding to the encoder ( fθ) and decoder (gφ), respectively. These parameters are
optimized using stochastic gradient algorithms with the help of a reparameterization
trick [26,27]. Finally, the encoder network determines the parameters, such as mean µ and
variance σ, by defining the distribution of each data point z. Since the sampling operation
is non-differentiable, it is transformed as follows:

z = µ + σ� ε, (4)

where ε is sampled from the standard normal distribution. Since only linear transformation
is involved, the stochastic gradient algorithm can be used to update the parameters.
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3.2. Variational Autoencoder Based on the GMM for CF

In this part, we modified the prior distribution of the latent factors of the standard
VAE into a Gaussian mixture model, and we propose a GVAE-CF algorithm for the CF
problem. We show the difference between GVAE-CF and the most advanced algorithms,
and then we define the model structure and a novel loss function.

First of all, we briefly introduce the Gaussian mixture model. The mathematical form
of Gaussian mixture is as follows:

f (z) =
k

∑
i=1

wigi(z|µi, Σi), (5)

where gi(·) is the standard Gaussian model with mean µi and covariance matrix Σi, wi is
the weight coefficient of the i-th standard Gaussian model, and wi > 0, ∑k

i=1 wi = 1, k is the
number of single Gaussian models. For each user u, we need to learn approximately the
computable posterior distribution p(zu|xu). Variational inference simply uses a variational
distribution q(zu|xu) as the approximate uncalculated posterior. Here, we set q(zu|xu) to
be k completely diagonal Gaussian distributions. Therefore, the covariance matrix Σi can
be represented by the vector σi.

Similar to the standard variational autoencoder, GVAE-CF is also represented as a
latent factor model. The most critical difference lies in the structural changes brought about
by the distribution of the latent factors. As shown in Figure 1, a vector x ∈ RD is used as
the input, and it is mapped to a hidden layer z ∈ RM through the following functions:

µ = µφ(xu)
σ = σφ(xu)
w = wφ(xu).

(6)

Included are the mean vector µ = ∑K
i=1 wiµi, the variance vector σ = ∑K

i=1 wiσi,
and the coefficient vector w ∈ RK, among which σ refers to the diagonal matrices, which
can be represented by vectors. The latent variable z adopts the reparameterization trick:

zu = µ + σ
1
2 � ε. (7)

The sampling process of ε is: ε ∼ N (0, IM). Here, ε is a vector, and �means the dot
product between two vectors.

Figure 1. Variational autoencoder based on a Gaussian mixture model (GMM).

Learning the GVAE-CF latent factor algorithm is similar to the standard variational
inference [25]. The reconstruction error term in Equation (2) is not a required change. As we
needed to modify the corresponding KL divergence loss. We tried:
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KL(qφ(z|x)||pθ(z|x))) = min{p(zu|xu)||q(zu|xu)}

≤ 1
2

K

∑
i=1

wi

{
tr(Σi + µT

i µi)
}
+

K

∑
i=1

wilog(sumK
i=1zij)

≤ 1
2

K

∑
i=1

wi

{
Mlog(2πe)−Mtr(Σi + µT

i µi)
}

+
K

∑
i=1

wilog(CsumK
i=1zij)−

K

∑
i=1

wilog(C),

(8)

where M is the dimension of the latent space, e is Euler number, and C is a larger constant
set to prevent the gradient from disappearing. When calculating zij = N (µi|µj, σi + σj),
in order to simplify the model and to facilitate the calculation, we can consider the spherical
distribution we use, that is, the diagonal matrix of the covariance matrix, so zij can be
simplified as:

zij =
1

(2π)
N
2 |σi + σj|

1
2

e−
1
2 ((µi−µj)

2)T(σi−σj)
−1

. (9)

As per the standard VAE, both estimate the parameters θ and φ. We can learn the
unbiased estimation of ELBO by sampling zu ∼ qφ, and can update and optimize the
parameters through the stochastic gradient descent algorithm. However, the process of
sampling is non-differentiable. Here, we used the reparameterization trick to avoid this
problem [26,27]. Therefore, the z is sampled so that parameter φ can be back propagated.
The training process of GVAE-CF is shown in Algorithm 1.

Algorithm 1 GVAE-CF uses stochastic gradient descent algorithm to optimize the parameters

Input: Rating matrix X ∈ RU×I

1: Initialize θ and φ randomly

2: while The model did not converge do

3: sample a batch of users U

4: for all u ∈ U do

5: zu ← sample ε ∼ N (0, I), and use Equation (7) to calculate

6: g← calculate Oθ,φL
′
ELBO(θ, φ, X, ε) according to Equations (3), (8) and (9)

7: θ, φ← update parameters with gradient g (for example, SGD or Adam)

8: end for

9: end while

return θ, φ

4. Results
4.1. Datasets

This paper used three real-world datasets: MoviesLens-20M [28], Netflix [29],
and LASTFM-2k. MoviesLens-20M contains 72,000 users rating for 10,000 movies, with a
total of 10 million ratings and 100,000 tags. Netflix contains 480,189 users and 17,770 movie
ratings. LASTFM-2k contains 1892 users and 92,800 songs recorded. For each dataset,
we keep data with a score of 4 stars or more [30,31] and treated all other data as missing
data. This approach has been widely used in previous recommendation systems [32–34].
This paper randomly used 80% of each data of user as the training set and the remaining
20% as the test set.
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4.2. Metrics

In the top-R recommendation system, we recommended and predicted the R items
with the highest ranking for each user. Following the experience of our predecessors,
we employed two widely used evaluation indicators in the top-R recommendation system
to evaluate the model: Recall@R and NDCG@R [35]. For GVAE-CF, we obtained the
predicted R rankings by sorting the output of the decoder gφ(z). Recall@R believes that
ranking is just as important among R recommended items, but NDCG@R uses cumulative
gains to make the higher ranked recommended items more important.

Recall: Given a top-R recommendation list CR,rec based on the training set, TR,rec
represents the R recommendation lists selected by the user based on the test data. The recall
rate of the entire recommendation system is calculated by calculating the average of the
recall rate of each user. The recall rate is defined as:

Recall@R =
|CR,rec ∩ TR,rec|

TR,rec
(10)

Normalized discounted cumulative gain (NDCG): Among the recommended items,
we paid more attention to the most relevant items at the top of the list. Therefore, we di-
vided each term by an increasing number, also known as the loss value, to obtain the
discounted cumulative gain (DCG). However, between users, the DCG is not directly com-
parable, so we have to normalize it. The worst situation is that the DCG is 0 when using
non-negative correlation scores. To overcome this problem, we took the recommended
items in the test set as the ideal recommendation order, obtained the top R items and
calculated their DCG; this is called ideal DCG (IDCG). Finally, we divided the original
DCG by the IDCG and obtained NDCG@R, which is a number between 0 and 1. Formally,
we defined I[·] as the indicator function.

DCG@R =
R

∑
i=1

2I[CR,rec∩TR,rec ] − 1
log2(i + 1)

NDCG@R =
DCG@R
IDCG@R

.

(11)

4.3. Experimental Setup

In order to train the model better, we divided all users into training/validation/test
sets, where the number of validation set and test sets was the same. We used all of the
historical click data of the training set to train the model. For evaluation, we used the
validation set to adjust the hyperparameters of the model and to make a preliminary
evaluation of the performance of the model. Following the practice of our predecessors,
we sampled 80% of the rating data from each user in the remaining unobserved test set
as the “fold-in” set to calculate the latent factors and to predict the remaining 20% of the
rating data.

GVAE-CF uses the Adam optimizer with a learning rate of 1 · 10−3 and a batch size
of 400. The encoder network consists of a fully connected neural network with 1200 neurons
and a tanh as the activation function. Since the number of Gaussian components will affect
the performance of the algorithm, this paper selected values from 2 to 32 in order to carry
out the experiments and found that when the number of Gaussian components was 16,
the model performed best on two indicators. Therefore, the output of the encoder was a
Gaussian mixture model made up of 16 Gaussian components and then the hidden variables
of 400 neurons obtained by sampling with the reparameterization trick. The decoder
network was also composed of a fully connected neural network with 1200 neurons and a
tanh as the activation function.

4.4. Latent Space Exploration

In this part, we explored the internal performance of GVAE-CF more deeply, and we
visually learned the latent representations of GVAE-CF on the MoviesLens dataset. We ran-
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domly obtained 2000 data with user type tags of user from the MoviesLens-20M dataset
(10 types selected). We used principal component analysis (PCA) [36] to reduce the dimen-
sionality of the latent representations and only considered the first three main components.

Since the first principal component was separated from the other types, it was removed.
We only observed the differences between the second and third main components in GVAE-
CF and the standard VAE. As shown in Figures 2 and 3, GVAE-CF had a stronger ability to
capture the relationships between the categories and items, especially in the two movie
types of action and comedy. Additionally, GVAE-CF captured the emotional theme of the
types, and movies with similar emotions were closer in the feature space. For example,
action and adventure both contain emotions, such as passion and madness. However,
action and comedy do not have a lot of common emotions, so they are far apart.

Figure 2. Second and third components of the principal component analysis (PCA) on variational
autoencoder (VAE).

Figure 3. Second and third components of the PCA on Gaussian mixture model for latent factor
distribution for CF (GVAE-CF).
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4.5. Discussion

In order to verify the accuracy of the GVAE-CF algorithm, this paper compared the
existing methods using the MoviesLens and Netflix datasets. The results of the comparison
results are shown in Tables 1–3.

Table 1. Evaluation scores for GVAE-CF and the baseline models using the MovileLens-20M dataset.

Method Recall@20 Recall@50 NDCG@100

WMF [12] 0.314 0.466 0.341
SLIM [37] 0.370 0.495 0.401
CDAE [38] 0.391 0.523 0.418

Mult-DAE [14] 0.387 0.524 0.419
Mult-VAE [14] 0.395 0.537 0.426
RecVAE [16] 0.414 0.521 0.420

GVAE-CF 0.408 ± 0.002 0.520 ± 0.002 0.431 ± 0.002

Table 2. Evaluation scores for GVAE-CF and baseline models on Netflix.

Method Recall@20 Recall@50 NDCG@100

WMF 0.314 0.466 0.341
SLIM 0.370 0.495 0.401
CDAE 0.391 0.523 0.418

Mult-DAE 0.387 0.524 0.419
Mult-VAE 0.395 0.537 0.426
RecVAE 0.414 0.521 0.420

GVAE-CF 0.416 ± 0.001 0.524 ± 0.001 0.431 ± 0.001

Table 3. Evaluation scores for GVAE-CF and baseline models on LASTFM.

Method Recall@20 Recall@50 NDCG@100

WMF 0.252 0.346 0.259
SLIM 0.261 0.372 0.269
CDAE 0.264 0.396 0.275

Mult-DAE 0.277 0.401 0.351
Mult-VAE 0.279 0.427 0.362
RecVAE 0.296 0.421 0.372

GVAE-CF 0.301 ± 0.002 0.429 ± 0.002 0.381 ± 0.002

It can be seen in Table 1 that, in terms of the recommended quality, the GVAE-
CF method in this paper was significantly better than the baseline models using the
MovileLens-20M dataset, except for RecVAE [16]. Although the recall accuracy of the
RecVAE method was slightly higher than that of GVAE-CF, it used noise as input and
used noise reduction. The encoder brought more robust embedding learning to be used
in combination with the GVAE-CF algorithm. Moreover, the performance of this method
on NDCG@100 was better, which shows that our method can determine the relationships
between categories and items, because it can push products belonging to the target category
to the front of the ranking.

It can be seen in Tables 2 and 3 that the GVAE-CF method performed better than the
other baseline models. For the baseline of WMF matrix factorization recommendation
algorithm, recommendation algorithms based on generative models can effectively im-
prove its performance. Compared to previous recommendation algorithms based on the
autoencoder model, GVAE-CF was further improved.
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5. Conclusions

For the purpose of solving the problem that the distribution of latent variables of
VAEs in traditional CF is too simple, this paper presented a novel CF recommendation
algorithm that uses a Gaussian mixture model for the distribution of hidden factors for
VAE, which relies on a novel optimization function that is essential to the training of our
method. In order to verify the performance of the GVAE-CF method, we conducted corre-
sponding experiments on the public datasets of MoviesLens-20M, Netflix, and LASTFM.
The experiments proved that the GVAE-CF has high accuracy on the same dataset and
can obtain a satisfactory recommendation effect. In addition, we also explored the latent
space of GVAE-CF, and we noticed that GVAE-CF has a stronger ability to capture the
relationships between categories and items.

In future work, we plan to combine the auxiliary information of users’ behavior logs
and the items’ feature information with the network, as well as to continue to improve the
accuracy of the network through conditional VAEs. The advantage of GVAE-CF is that it
can be combined with many existing models to further improve the performance of the
existing VAE model.
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NDCG Normalized discounted cumulative gain
GMM Gaussian mixture model
GAN Generative adversarial network
KL Kullback-Liebler
ELBO Evidence lower bound
RecVAE Recommender VAE
SVD Singular value decomposition
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