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Abstract: Great achievements have been made in pedestrian detection through deep learning. For
detectors based on deep learning, making better use of features has become the key to their detection
effect. While current pedestrian detectors have made efforts in feature utilization to improve their
detection performance, the feature utilization is still inadequate. To solve the problem of inadequate
feature utilization, we proposed the Multi-Level Feature Fusion Module (MFFM) and its Multi-
Scale Feature Fusion Unit (MFFU) sub-module, which connect feature maps of the same scale and
different scales by using horizontal and vertical connections and shortcut structures. All of these
connections are accompanied by weights that can be learned; thus, they can be used as adaptive
multi-level and multi-scale feature fusion modules to fuse the best features. Then, we built a complete
pedestrian detector, the Adaptive Feature Fusion Detector (AFFDet), which is an anchor-free one-
stage pedestrian detector that can make full use of features for detection. As a result, compared with
other methods, our method has better performance on the challenging Caltech Pedestrian Detection
Benchmark (Caltech) and has quite competitive speed. It is the current state-of-the-art one-stage
pedestrian detection method.

Keywords: pedestrian detection; adaptive feature fusion; multi-scale; anchor-free; convolutional
neural network

1. Introduction

Pedestrian detection, which is a very important problem in computer vision, is very
critical in many practical fields, such as the automatic driving and security fields. Because
of its high practicality, it has higher requirements for accuracy and speed than general
object detection.

Traditionally, in the field of object detection, a method based on sliding windows
is usually used, and it is generally necessary to design and select features manually, so
the effect is usually not ideal. Then through the use of R-CNN [1], the convolutional
neural network (CNN) was introduced into object detection. This two-stage object detector
based on deep learning opened a new era in which deep learning occupies the mainstream
position in object detection. The subsequent Faster R-CNN [2] was used to propose the
region proposal network(RPN) to generate proposals, which greatly improved the speed
and effect. Because of its great success in object detection, it has become the most important
and popular framework in pedestrian detection. The subsequent one-stage methods are
faster than the two-stage methods represented by Faster R-CNN because they do not
need to generate proposals before classification and regression, but their accuracy is lower.
Among them, SSD [3] is one of the early representatives, and it directly classifies and
regresses anchors to get bounding boxes without having to generate region proposals first.

However, the detection effects of existing methods based on deep learning are directly
related to the features that can be utilized, which range from lower-level edge features and
corner features to higher-level semantic features. Feature utilization, such as through an
RPN, only predicts at the last layer of feature maps, which indicates that it only utilizes the
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feature map of higher-level semantic features with smaller size, but makes inadequate use
of the feature maps of lower levels but larger size. Therefore, it is difficult to give a good
solution to the problems of how much feature maps should be utilized and how to utilize
the feature maps adequately. The second method is used to detect objects of different
scales on feature maps of different scales, as proposed in SSD, which leads to the problem
that adjacent objects may be detected on different feature maps only due to small-scale
differences, thus splitting the semantic information of each feature map and leading to
new problems. The third method, FPN [4], performs feature fusion through the feature
pyramid, but the problem of the fragmentation of the semantic information is still exists
like in SSD, and it is increasingly difficult to achieve good results for complex tasks due to
the relatively simple feature fusion method. Therefore, making rational use of the feature
maps of various scales has become the key to all of these.

Above all, there are two main problems to be solved that exist in current detectors:
(1) the problem of inadequate multi-scale feature fusion, which makes it difficult to fuse
features of different scales in adequate proportions; (2) the problem that, when there are
many feature fusion modules like Multi-Scale Feature Fusion Units (MFFUs), it is difficult
to adequately fuse the features already fused by the MFFUs at multiple levels. It may
be because only the higher-level features are retained, or some lower-level features are
retained but the retention ratio is difficult to determine. In other words, there will be a loss
of lower-level feature information in multi-level feature fusion modules.

To solve these challenges, our idea is to adopt adaptive feature fusion as the core
method. We propose our original MFFU as an adaptive feature fusion module, which
makes it possible for the model to fuse the feature maps with different scales in adequate
proportions. In addition, we propose our original Multi-Level Feature Fusion Module
(MFFM) as an adaptive connection structure of feature fusion modules like MFFUs, which
makes it possible for the model to fuse all the feature maps, from the lower-level feature
maps to the higher-level feature maps, in adequate proportions. Finally, we propose
the Adaptive Feature Fusion Detector (AFFDet) as the original adaptive feature fusion
detector with strong multi-scale feature expression ability in which the MFFM and MFFU
are embedded.

The main contributions of this work include:

• To solve problem 1, in our original MFFU, we adopt the same-scale feature maps
connections with learnable weights horizontally, and different-scale feature maps
connections with learnable weights vertically, and shortcut structures with learnable
weights. As a result, our proposed MFFU can adaptively fuse multi-scale features;

• To solve problem 2, in our original MFFM, we adopt an innovative shortcut con-
nection structure with learnable weights to connect multiple feature fusion modules
such as MFFUs, at multiple levels, which is equivalent to adding a special attention
mechanism. In brief, it can further adaptively fuse features that have been fused in
feature fusion modules, such as MFFUs, at multiple levels;

• In order to solve the problem of inadequate utilization of features of other works, we
propose a complete pedestrian detector based on our adaptive feature fusion idea.
It can adaptively fuse multi-scale features at multiple levels, and has been proved
to be a state-of-the-art one-stage pedestrian detector with competitive speed on the
challenging Caltech benchmark.

2. Related Work
2.1. Two-Stage Detection

Two-stage object detection usually generates a region of interest (RoI), and then
classifies and regresses on the generated RoI. The most typical detectors of this type are
the R-CNN series. R-CNN, as a pioneering work, uses selective search to obtain region
proposals, converts these region proposals into fixed sizes, and inputs them into a CNN.
Then, an SVM is used to classify the regions, and linear regression loss is used to regress
the bounding boxes. Fast R-CNN [5] uses CNN to extract images to get feature maps;
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then, it generates region proposals on the feature maps instead of the original images, and
classifies and locates them through the full connection layer, thus reducing a lot of repetitive
computational complexity and significantly improving the detection speed. Faster R-CNN
uses an RPN to generate an RoI, which greatly accelerates the speed of the region proposal.
Mask R-CNN [6] adds a mask branch to detect objects or segment them. Cascade R-CNN [7]
uses an RPN for the proposal and trains multiple cascaded detectors to work with different
IoU thresholds, thus improving the performance. R-FCN [8] replaced the full connection
layer in Faster R-CNN with a convolution layer and used position-sensitive score maps to
enhance detection performance.

Since Faster R-CNN gained great success in the field of general object detection, the
same trend appeared in pedestrian detection. A series of algorithms based on two-stage
detection were proposed one after another. The Faster R-CNN framework became the
most popular framework in the field of pedestrian detection, and a lot of research was
based on it. Among them, RPN+BF [9] was the first to generate RoI by RPN proposed in
Faster R-CNN and classified by boosted forest. It also pointed out many problems existing
in Faster R-CNN. For example, the Faster R-CNN dose not perform well in pedestrian
detection, especially for small objects, due to the small size of the final feature map and poor
branching effect of classification. However, it also pointed out that RPN has a good effect
as a network of proposal. Then, in order to solve this problem, MS-CNN [10] designed
detectors with different scales for different output layers and made more use of multi-scale
feature maps.

In the field of pedestrian detection, the more advanced Reploss [11] designed a new
loss function to separate bounding boxes to deal with the dense crowd with occlusion.

2.2. Anchor-Based One-Stage Detection

In the one-stage object detection, the classifications of objects and the regressions of
their positions are directly carried out instead of generating region proposals first. SSD
independently detects on several feature maps with different scales, which improves the
detection effect of small objects. RetianNet [12] uses FPN and focal loss. The former
enhances the ability of multi-scale detection, while the latter reduces the influence of class
imbalance on detection.

In the field of pedestrian detection, the more advanced representative is ALFNet [13]
based on SSD framework, which gradually approaches the most suitable anchor boxes by
multi-step prediction.

2.3. Anchor-Free One-Stage Detection

The one-stage object detector of anchor-free, which abandoned a large number of
anchor boxes with preset sizes and aspect ratios, directly predicted the object category and
generated bounding boxes on the feature maps. DenseBox [14] uses Fully Convolutional
Network (FCN) to predict the bounding boxes and confidence scores, which belongs to
dense prediction, and uses FCN structure to realize landmark localization. YOLO [15]
divides the image into several grids and predicts on each grid. Through the full connection
layer after the last feature map, YOLO directly obtains the confidence scores of categories
and the object positions. CornerNet [16] converts object detection into keypoint detection,
which inputs heatmap into two brunches with Corner Pooling to obtain Top-Left Corners
and Bottom-Right Corners respectively. Then, the location of the object bounding box
is obtained by the embedding vectors of a pairs of corners. Grid R-CNN [17] detects
(3 × 3) 9 keypoints of the object on the feature map to get the boundary of the object.
FCOS [18] outputs the category of each point, the coordinates of (l, t, r, b) four points, and
center-ness through three branches of the network. The center-ness proposed in this paper
can effectively filter some boxes with high scores and low IoU. Centernet [19] based on
Cornernet detects the center point in addition to the two corners of the object, which further
improves the false detection rate.
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In the field of pedestrian detection, the advanced CSP [20], a full FCN structure, which
fuses features directly with concatenating feature maps for prediction, achieved excellent
results as well as state-of-the-art.

3. Proposed Method
3.1. Preliminary

Our method is an anchor-free one-stage detector based on CNN. Generally speaking,
in the one-stage detector, the image is input into the backbone network firstly, and then the
feature map is calculated. These feature maps can be defined as:

Φn = fn(Φn−1) = fn( fn−1(... f1(O))) (1)

In which O represents the original input image, fn represents one layer in a network,
and Φn represents the feature map generated through the n-th layer. Generally speaking,
with the increase of network depth, the size of the feature map will gradually decrease,
while the channels of the feature map increase step by step. For general anchor-based
detectors, the detection process can be formulated as follows:

Dets = P(Dn(Φn, Bn), Dn−1(Φn−1, Bn−1), ..., Dn−k(Φn−k, Bn−k)), 0 < k < n (2)

In which, Φn represents the n-th feature map, and Bn represents the preset anchor
boxes in the n-th feature map. Dn represents the result of converting the information in
the n-th feature map into detection results. P(.) represents the process of utilizing feature
maps and then producing prediction results. Its function is to obtain regressed boxes from
all feature maps and output the final regressed boxes after processing. Dn is obtained by
the following process:

Dn(Φn, Bn) = {clsn(Φn, Bn), regn(Φn, Bn)} (3)

In which, clsn represents the classification score in the n-th layer feature map, and
regn represents the size and offset of anchor boxes regressed in the n-th layer feature map.
Thus, it is easy to obtain the bounding boxes through these two items.

The RPN proposed in Faster R-CNN is different from the Formula (2), because RPN
does all the prediction work only in the last feature map. Thus, the process is as follows:

Dets = Dn(Φn, B), n > 0 (4)

In SSD, multi-scale feature maps are used, and their representations are the same
as those in Formula (2). However, as a model of using multi-scale feature maps, FPN
combines the information of the feature maps of different scales by combining bottom-up,
top-down and horizontal connection. The process is as follows:

Dets = P(Dn(Φ′n, Bn), Dn−1(Φ′n−1, Bn−1), ..., Dn−k(Φ
′
n−k, Bn−k)), 0 < k < n (5)

In which each Φ′n has fused the information of each Φn. However, in the anchor-free
method, because there is no need for preset anchor boxes, they can directly perform all the
detection work only by processing the feature maps, thus it has a more concise structure
as follows:

Dets = P(Dn(Φn), Dn−1(Φn−1), ..., Dn−k(Φn−k)), 0 < k < n (6)

3.2. Overall Architecture

The overall architecture of the proposed AFFDet is shown in Figure 1, which consists of
three parts: Backbone, MFFM, and Detection Head. The backbone outputs the feature maps
of R3, R4 and R5. MFFM fuse the multi-scale feature maps through these feature maps
and output a final feature map after weighted multi-level feature fusion. The detection
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head module consists of three branches, which are the branch of center point prediction,
the branch of the offset prediction, and the branch of the scale prediction on the final
feature map.
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Figure 1. Overall architecture of Adaptive Feature Fusion Detector (AFFDet). The red line represents
the route with weights Wn representing a series of weights that can be learned, and it is actually three
routes with weights (corresponding to R3, R4 and R5 respectively).

3.2.1. Backbone Module

Res2Net-DLA-60 [21] is used as the backbone network, and light-weight ShuffleNet
V2 [22] is also chosen as an extra backbone network. For convenience of description, we
define the feature map obtained by stage n as Φn. For Res2Net-DLA-60, we found that
using Φ4, Φ5, and Φ6 got the best performance through experiments, which are the feature
maps with 1/8, 1/16, and 1/32 times the size of the original image. And we use Φ2, Φ3,
and Φ4 in ShuffleNetV2, which are the feature maps with 1/8, 1/16, and 1/32 times the
size of the original image. In Φn, the larger the number, the higher the feature level, and
often the smaller the size. At the same time, because the scale reduction in feature maps is
generally a multiple of 2, and the number of stages and the processing methods in different
networks are different. In order to maintain consistency in the representations of different
networks, we define that, with the increase of the network depth, the feature map whose
size is scaled to the n-th power of 2 relative to the size of the input image is Rn, thus Φ4,
Φ5, and Φ6 in Res2Net-DLA-60 correspond to R3, R4, and R5 respectively. And Φ2, Φ3,
and Φ4 in ShuffleNetV2 correspond to R3, R4, and R5 respectively. In Rn, the smaller n,
the larger the size, and the smaller the receptive field. At the same time, the utilized feature
levels are lower, and the detection effect for small objects is better than that for large objects.
Reversely, the larger n in Rn, the smaller the size, but the larger the receptive field. At the
same time, the utilized feature levels are higher, and the detection effect on large objects
is better. However, because of its smaller size, the detection effect on small objects is not
ideal, and some certain errors are prone to occur in object location.

3.2.2. Multi-Level Feature Fusion Module (MFFM)

In order to solve the disadvantages of different feature maps mentioned above with
different sizes, and to improve the detection effect, we adopted some strategies to adap-
tively fuse multi-scale feature maps at multiple levels, that is MFFM, which is composed of
its sub-module MFFU.

MFFU

The internal structure of MFFU is shown in Figure 2. First of all, we use step-by-step
upsampling and fusion, and also step-by-step downsampling and fusion, but we only do
it in R3, R4, and R5. Specifically, firstly, R3, R4, and R5 are convoluted by 3 × 3 kernels.
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Then the convoluted R3′, R4′, and R5′ are bottom-up and top-down, respectively, and
then connected horizontally. To solve the problem of original information loss after an
MFFU, we add a shortcut structure. At the same time, for each process of feature fusion
in the MFFU and the shortcut, how they achieves the best effect of feature fusion, we add
the weight parameters that can be learned to every branch, which is denoted as wn in
Figure 2, so that we can get the best fusion weights through training. In this way, more
advantageous information can be contained in both the lower-level feature maps and the
higher-level feature maps, and the feature map of each scale has a more consistent degree
of feature fusion.

R3

R4

R5

R3'

R4'

R5'

Input way Input way with weight conv with weight

Figure 2. Internal structure of MFFU. Through horizontal connection, vertical connection, shortcut
and learnable weights, feature information is fused.

MFFM

In MFFM, if the number of MFFUs in MFFM is n, it is denoted as MFFM of level = n.
The connection form of MFFU in MFFM is shown in Figure 3.

FFU

w1

w2

w3

Figure 3. Connection form of MFFU in MFFM, wn represents a weight that can be learned. The
fusion ratio of each part depends on the shortcut and the learnable weight.

The input of the n-th MFFU is denoted as Un−1, and the processing of the n-th MFFU
is denoted V(.). At first, R3, R4, R5 feature maps generated by the backbone network are
taken as inputs, and it is specifically denoted as U0. For any n-th MFFU, its input Un−1 is
processed by the n-th MFFU, then multiplied by the learnable adaptive weights Wn, and
will be added with Un−1 multiplied by the learnable adaptive weights Wn′. The result of
that is used as the input of the (n + 1)-th MFFU. The formula is described as follows:

Un = Wn ·V(Un−1) + W ′n ·Un−1, n ≥ 1 (7)

Within each MFFU, where Un = {un_R3, un_R4, un_R5} , Wn = {wn_R3, wn_R4, wn_R5} ,
W ′n = {w′n_R3, w′n_R4, w′n_R5} .

In which un_Rk represents the weight in the weighted training branch corresponding
to Rk feature map (k = 3, 4, 5) in Un, and un_Rk is obtained by the following process:

un_Rk = wn_Rk ·V(un−1) + w′n_Rk · un−1, n ≥ 1, k = 3, 4, 5 (8)
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The advantage of such processing is that, as the number of MFFUs in MFFM increases,
the lower-level features become less and less, and many of them are advantageous for
detection. The weight of features in each stage can be adaptively determined by parameter
W, which is equivalent to adding a special attention mechanism. It can make the training
process smoother, and the effect is also better.

The feature maps with scales of R3, R4 and R5 after n MFFUs have fused features of
different scales at multiple levels. These three feature maps are all deconvolved into R2
scale, and then concatenated into one feature map. Then, the dimensions of the concate-
nated feature map will be compressed through a 3 × 3 convolution layer to further fuse
features, consequently the final feature map Φdet is generated.

3.2.3. Detection Head

The output of the MFFM is the input of the detection head, and the multi-scale features
in MFFM have been fully fused for detection. And then three prediction branches are
used to predict on the final feature map Φdet. Specifically, the first branch uses a 1 ×
1 convolution layer to process Φdet to generate the center heatmap. The second branch
performs a 1 × 1 convolution layer to obtain the offset of the center point. The location
and score of the center point of the object can be obtained through the center heatmap.
However, because the scale of Φdet is down-sampled compared with the original image
scale, the predicted location directly using the center heatmap will have deviation, which
will result in inaccurate positioning. Thus, the offset branch is just to learn this deviation to
offset it. In the third branch, a 1 × 1 convolution layer is performed to generate the scale
map, and the length and width of scale values of each object corresponding to each center
are obtained.

3.3. Loss Function

The total loss function consists of three parts, which correspond to the three prediction
branches of the network.

Center Prediction Loss

First of all, for the center prediction branch, we directly transform it into a classification
problem, and each pixel is assigned a classification score, so we use the cross-entropy loss
commonly used in classification problems. Because the center point often predicted by
this branch may not be the actual center point. For example, the predicted center point is
the adjacent point of the actual center point, and the effect is still very good. However, it
will be directly recognized as a recognition error, which is obviously inappropriate and
difficult to train. Thus, we need to use a two-dimensional Gaussian mask besides locating
the center point positive and determining other points as negative. Let the points around
the center point have a certain weight according to Gaussian distribution. The closer to
the center point, the higher the weight, which is advantageous for convergence, makes the
training process smoother and predicts the center point easier. This Gaussian mask can be
formulated as:

Gij = max
k=1,2,...,n

e
− (i−xk)

2

2σ2
wk

+
(j−yk)

2

2σ2
hk (9)

In which i and j represent the i-th row and the j-th column of the feature map respec-
tively, thus i and j represent a single pixel when combined. k represents the k-th object in
the image, and xk, yk, wk, hk respectively represent the abscissa, ordinate, width, and height
of the center point of the k-th object. σ represents the Gaussian kernel used to control the
range of Gaussian mask. If Gaussian masks overlap, the maximum value is taken as the
value of the overlapping part. Gij represents the Gaussian mask value of the (i, j) point.

Lcenter = −
1
k

Ŵ

∑
i=1

Ĥ

∑
j=1

αij
(
1− ĉij

)r log
(
ĉij
)

(10)
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The loss function of the center branch is as shown above. In which, Ŵ = W
s , Ĥ =

H
s , and s indicates the scaling factor of the original image compared with the current

feature map.
Since pedestrian detection is often extremely imbalanced in samples and many neg-

ative samples are very similar to positive samples, we refer to the focal loss and give a
smaller weight to a large number of samples that are easy to classify but give greater weight
to samples that are difficult to classify. The formulas for ĉij and αij in the above formula are
as follows:

ĉij =

{
cij if gij = 1
1− cij otherwise

(11)

αij =

{
1 if gij = 1
(1− Gij)

β otherwise
(12)

cij represents the probability that the object center point exists at the (i, j) point
predicted by the model, with the value ranging from 0 to 1. While gij represents the ground
truth of the (i, j) point, with the value being 0 or 1. When gij is 1, it means that it is the
actual object center point, while 0 means the negative point. Among them, β and γ are
two hyperparameters, and γ is used to reduce the weight of easily classified samples.
Experiments show that the best performance is got when γ is set to 2, β is used to adjust
the penalty degree of Gaussian mask, and 4 for β is the best.

Offset Prediction Loss

With the offset prediction branch, the model can learn the offset value between the
actual center point and the scaled center point. We use SmoothL1 loss to penalize for ease
of training and convergence. Its losses are as follows:

Lo f f set =
1
k

Ŵ

∑
i=1

Ĥ

∑
j=1

SmoothL1( ˆOgij, ˆOpij) (13)

Among them, ˆOgij represents the ground-truth offset value Ogij after scaling at the (i, j)
point and ˆOpij represents the predicted offset value Opij after scaling at the (i, j) point.

Therefore, ˆOgij =
Og
s , ˆOpij =

Op
s .

Scale Prediction Loss

For the scale prediction branch, similar to the center offset branch, we also used
SmoothL1 loss, except that we took the actual size logarithm, which makes the training
process easier to proceed. Its loss is as follows:

Lscale =
1
n

n

∑
k=1

SmoothL1(log ˆSgij, log ˆSpij) (14)

where, ˆSgij represents the scaled Sgij which represents ground truth of the object size at
(i, j) point, and ˆSpij represents the scaled Spij which represents the object size predicted

by the model. Thus ˆSgij =
Sgij

s and ˆSpij =
Spij

s . log ˆSgij and log ˆSpij are used because
logarithm loss makes the training process smoother and easier to train.

Final Detection Loss

The final detection loss is composed of the above three items which are center loss,
offset loss and scale loss. The total loss formula is as follows:

Ldet = λcLcenter + λoLo f f set + λsLscale (15)

In which, the hyperparameter λc is set to 0.1, λo is set to 1 and λs is set to 10.
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3.4. Inference

The process of inference is shown in Figure 4.

P=0.69 P=0.65
Cx=302
Cy=274

Cx=350
Cy=241

H=186
W=76

H=92
W=38

Ox=-0.1
Oy=-0.2

Ox=-0.2
Oy=-1.3

Center
Prediction

Scale
Prediction

Offset
Prediction

Image Detection

Figure 4. Inference Process. When inferring, the three branches of the detection head is used to infer
where there are the objects in the image, how many offsets are needed, and what are the sizes of
the objects. In the figure, p represents the probability of being an object, Cx and Cy represent the
coordinates of the center point of the object, H and W represent the height and width of the object,
Ox and Oy represent the offset of the abscissa and ordinate of the object, and the bounding box can
be obtained.

Particularly, in the center heatmap, if the confidence score is less than the threshold
value Tscore = 0.1, it will be set to 0; if it is greater than Tscore, it is reserved. Then NMS
processing with the threshold value Tnms = 0.5 is performed to remove a plurality of
predicted center points of the same object which may exist, and the remaining point is
denoted as Cp. The predicted value of the offset branch is Op; the height and width values
in the corresponding scale map of the Cp point are Hp and Wp respectively. Thus, the
coordinates (l, r, t, b) of the bounding box can be obtained by the following formulas:

l = Cx + Ox −
Wp

2
(16)

t = Cy + Oy −
Hp

2
(17)

r = l + Wp (18)

b = t + Hp (19)

4. Experiments
4.1. Datasets

We used Caltech Pedestrian Detection Benchmark [23], which is one of the most widely
recognized and challenging benchmarks for pedestrian detection. Caltech is composed of
about 10 h of videos with a resolution of 640 × 480, which contains nearly 13 K people.
These videos are recorded from the roads where vehicles are driving in the regular traffic
environment in urban areas, which are basically consistent with the real environment. The
training set enhanced by [24] is used, which takes one frame every three frames, totaling
42,782 frames, and the standard test set containing 4024 frames is used.

Because there are only about one-fifth of the images (positive samples) with pedestri-
ans in the training set, the positive and negative samples are seriously out of balance. In
order to alleviate this problem, we set the positive and negative samples of the training set
to half the size of the training set by unequal sampling, 1024 samples respectively.
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4.2. Evaluate Standard

The evaluation standard used by Caltech is log-average Miss Rate over False Positive
Per Image (FPPI) ranging in [10−2, 10−0], which is denoted as MR−2, and the lower curves
or the smaller numbers indicate the better performance. In this paper, the default MR−2

refers to the Reasonable setting which is the general setting with IoU = 0.5, and it will be
specifically indicated if it is IoU = 0.75 setting.

FPS stands for frames per second, which is a unit for measuring the speed of a model,
and the larger value indicate the faster speed. When testing, we set the mini-batch to 1.

The Params or the parameters represents the number of total parameters in the model,
which measures the size and complexity of the model. The larger the value, the larger the
model. In this paper, its unit is usually mega which is denoted as M.

4.3. Training

We implemented the proposed method on Pytorch [25], and the training and inference
process are completed on one RTX 2080Ti GPU. We use the Mixed Precision [26] strategy to
train in the whole process, aiming at accelerating the training speed by nearly 30% at the
expense of little precision and developing the algorithm quicker. The selected backbone
network are Res2Net-DLA-60 and ShuffleNetv2, which are pretrained on ImageNet [27],
and are truncated on the basis of the original networks. Adam [28] is chosen as the
optimizer. For Caltech, we used a mini-batch contains 8 images for Res2Net-DLA-60
and a mini-batch contains 32 images for ShuffleNetv2. The dynamic learning rate of
warm-up cosine is used, the initial learning rate is 10−4, and the lowest learning rate
is 9× 10−5. The total training iterations is 204.8 K. It should be noted that due to the
limitation of our conditions, we only used 2048 training samples instead of all 42,782
training samples for training. We take 0.41 as a fixed aspect ratio to strengthen training,
and if we don’t do this, we can also complete the detection with a slight decrease in
accuracy. We use the mean-teacher [29] strategy, which makes the previous training process
teach the later training process, making the training process smoother. In the first epoch
of the training process, Mteacher = Mstudent, and in the subsequent epochs, Mteacher =
∆ ·M′teacher + (1−∆) ·Mstudent . In which, Mteacher represents the final model weights of the
current epoch, and M′teacher represents the final model weights of the last epoch. Mstudent
represents model weights after the current epoch training. ∆ is a hyperparameter that
represents the ratio of M′teacher occupies Mteacher, and it is set to 0.001.

Only very simple and fundamental data augmentation techniques are adopted: ran-
dom brightness, horizontal flip, random resize, and random padding.

4.4. Backbone Networks

Res2Net-DLA-60

The innovative Res2Net Module proposed in Res2Net replaces a group of 3 × 3
convolution layers in the network with a smaller group of 3 × 3 convolution layers and
connects different filter groups in a hierarchical residual-like [30] style. With the Res2Net
Module, more levels of receptive fields and the stronger ability of multi-scale representation
are obtained.

Deep Layer Aggregation (DLA) [31] is an image classification network, which mainly
introduces two structures: Iterative Deep Aggregation (IDA) and Hierarchical Deep Aggre-
gation (HDA). IDA focuses on fusing different scales and resolutions, while HDA focuses
on fusing all modules and channels. The combination of the two is manifested in the form
that many hierarchical skip connections are used to fuse the features of different scales
and stages.

The Res2Net-DLA-60 is a network obtained by replacing the common convolution
structure in DLA with Res2Net Module. We removed the global pooling layer and full
connection layer in Res2Net-DLA-60 and frozen the stage1, stage2 and stage3 for easier
training. Then, using the outputs of stage4, stage5 and stage6, that are the scales of R3, R4
and R5 and the channels of 256, 512 and 1024, respectively.
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The number of intermediate channels processed in MFFU in Res2Net-DLA-60 is 256

ShuffleNetV2

ShuffleNetV2 is a light-weight image classification network, which presents practical
guidelines and novel architecture. It focuses on reducing computational complexity.

We removed the global pooling layer and full connection layer in ShuffleNetV2 and
frozen the first convolution layer for easier training. Then, using the outputs of stage2,
stage3, and stage4, which are the scales of R3, R4, and R5 and the channels of 116, 232, and
464, respectively.

The number of intermediate channels processed in MFFU in ShuffleNetV2 is 116.

4.5. Ablation Study

Comparisons of Different Architectures of MFFM
In order to illustrate the proposed method, we have carried out many comparative

experiments. These experiments are all done on the Caltech benchmark. These results were
obtained from an average of five runs.

Table 1 shows the comparisons of the main experimental methods. Under the condi-
tion of no shortcut structure and only adding 3 MFFUs to Res2Net-DLA-60 directly, the
performance has been obviously improved, from 4.75% to 4.31%, and the effect has also
been improved to 4.16% when 6 MFFUs are added directly. This shows that our MFFU
can directly improve the performance as a feature fusion unit when used only in series
connection. If the shortcut structure without weights is directly added, the accuracy will
be reduced whenever the levels are 3 or 6, compared with no shortcut structure. However,
when the shortcut structure with weights is added, the effect has been greatly improved,
which is far better than the no shortcut structure and the shortcut structure without weights.
The results show that after adding MFFM of weighted shortcut structure with 3 MFFUs,
compared with the case without MFFM, MR−2 has been significantly improved from 4.75%
to 3.65%, and the number of model parameters is reduced from 42 M to 40 M, although the
speed is reduced from 36.7FPS to 32.3FPS. When the number of MFFUs of MFFM is 6, the
speed is further reduced to 28.0FPS, but the MR−2 is 3.71% without further improvement,
probably because the features after 3 MFFUs are high enough for detection. The perfor-
mance of 6 MFFUs and 3 MFFUs is basically the same under the IoU = 0.5 setting, but the
accuracy of 6 MFFUs is lower under IoU = 0.75 setting.

Table 1. Comparisons of Different Architectures of Multi-Level Feature Fusion Module (MFFM). In which, R2-DLA
represents Res2Net-DLA-60 and SNv2 represents ShuffleNetV2. And shortcut/n means no shortcut structure in the
MFFM, and weights/n indicates that there are shortcut structures but without learnable weights in MFFM and weights/w
indicates that there are shortcut structures with learnable weights. The number below MFFM (level=) represents how many
Multi-Scale Feature Fusion Units (MFFUs) are added in the corresponding connection form of MFFM.

Method

MFFM (level=) MR−2(%)

FPS Params (M)
shortcut/n

shortcut IoU=

weights/n weights/w 0.50 0.75

R2-DLA

- - - 4.75 25.1 36.7 41.8

3 - - 4.31 21.3 33.2 39.7

- 3 - 4.32 24.7 32.9 40.2

- - 3 3.65 21.0 32.3 40.2

6 - - 4.16 22.9 28.9 50.4

- 6 - 4.30 22.3 28.7 50.8

- - 6 3.71 22.7 28.0 50.8

SNv2
- - - 14.35 48.4 58.7 5.2

- - 3 11.97 45.8 45.0 4.9
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After adding MFFM with level = 3, compared with the ShuffleNetV2 without MFFM,
MR−2 improved significantly from 14.35% to 11.97%, the model parameters decreased
from 5.2 M to 4.8 M, but the speed decreased from 58.7FPS to 45.0FPS.

No matter whether the backbone network is Res2Net-DLA-60 or ShuffleNetV2, its
performance has obviously improved after adding MFFM of level = 3. And both the
parameters of the two networks are reduced after adding MFFM of level = 3, but the
speeds are decreased.

Comparisons of Different External Structures of MFFUs

In terms of the connection modes of MFFUs in MFFM, we have tried many different
structures. Their structures are shown in Figure 5, and their experimental results are shown
in Table 2. For (a) structure in Figure 5, the feature maps output from the previous MFFUs
and the original feature map output from the backbone are added with weights and then
input to the current MFFU. In this way, the deep structure can retain some original and
lower-level features, but its experimental performance is not good, and its MR−2 is 4.12%
when level = 3. For (b) structure in Figure 5, the output of all MFFUs before the last MFFU
and the original feature map output by backbone are added in the form of weights and then
output to the last MFFU for processing, but it may be that the last MFFU cannot process
and fuse so much information well. This method is not effective, and its MR−2 is 4.35%
when level = 3. For (c) structure in Figure 5, starting from the original feature map output
by backbone, the weighted addition of the output of the current MFFU and the shortcut
of the input of the current MFFU has the best effect, and its MR is 3.65% at level = 3, far
better than that of (a) and (b). Among the three structures, (a) is the fastest and (c) is the
slowest, but there is just slight difference in the overall speed. (a), (b) and (c) are 35.9FPS,
35.1FPS and 32.3FPS respectively when level = 3. Experiments show that (c) structure of
our MFFM has the best comprehensive performance and speed, and has great advantages.

input FFU conv with weights conv without weights

(a)

(b)

(c)

Figure 5. Different external structures of MFFUs in MFFM. (a–c) are three different structures.
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Table 2. Comparisons of different external structures of MFFUs on Caltech. In which, The number
under level= represents the number of MFFUs in MFFM.

Architecture level=
MR−2(%)

FPS Params (M)
IoU = 0.5 IoU = 0.75

(a)

3

4.12 21.67 35.9 36.6

(b) 4.35 22.56 35.1 36.6

(c) 3.65 21.01 32.3 40.2

(a)

6

4.07 22.46 30.2 43.7

(b) 4.34 23.20 28.6 50.8

(c) 3.71 22.70 28.0 50.8

4.6. Comparisons with Other Methods

We use Caltech as a benchmark. Figure 6 shows the comparisons with other methods
under the IoU = 0.5 setting, Figure 7 shows the comparisons with other methods under
IoU = 0.75 setting, and more methods are compared in Table 3. AFFDet, our proposed
method, achieves 3.7% MR−2 under the IoU = 0.5 setting, which is 0.8% better than
the closest CSP’s 4.5%. Compared with the stricter IoU = 0.75 setting, we are even
more ahead, and have achieved 21.0% MR−2, which is 4.8% better than the closest CSP’s
25.8%. And in terms of speed, our AFFDet achieved 32.3FPS, which is faster than the
officially implemented CSP’s 23.6FPS. For the case of heavy occlusion, we also achieved
43.2%, which has a better effect of more than 4% MR−2 compared with 47.9% of RepLoss
detector specially designed for occlusion problem. This shows that our adaptive multi-level
and multi-scale feature fusion method is very effective in pedestrian detection, and our
performance is ahead of other methods.

Table 3. Comparisons with other methods on Caltech.

Method IoU = 0.5 (MR−2(%)) IoU = 0.75 (MR−2(%))

Faster R-CNN 8.7 -
FR-CNN+ATT [32] 8.1 64.1

RPN+BF 7.3 57.8
ALFNet 6.1 -

HyperLearner [33] 5.5 -
AR-Ped [34] 5.1 58.9

RepLoss 5.0 -
CSP 4.5 25.8

AFFDet(Ours) 3.7 21.0
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Figure 6. Comparisons with other methods under IoU = 0.5 setting on Caltech.
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59.8% F-DNN
59.0% AR-Ped
57.8% RPN+BF
55.5% MS-CNN
44.0% GDFL
25.8% CSP
21.0% AFFDet(Ours)

Figure 7. Comparisons with other methods under IoU = 0.75 setting on Caltech.

5. Discussion and Conclusions

In order to solve the problems of inadequate feature utilization and inadequate feature
fusion in previous pedestrian detectors, we propose AFFDet. As its name suggests, the orig-
inal adaptive feature fusion methods are the main contributions of this work. Specifically,
AFFDet is a detector that uses our original adaptive multi-level and multi-scale feature
fusion methods to get the best features for detection, and our innovative MFFU and MFFM
play a vital role in it. Among them, MFFU reflects adaptive multi-scale feature fusions, and
MFFM reflects adaptive multi-level feature fusions. In the field of pedestrian detection, the
proposed AFFDet has achieved leading detection results in the Caltech benchmark. It is
the state-of-the-art one-stage pedestrian detector at present with competitive speed as an
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anchor-free one-stage approach. According to our experiments, MFFU can be used indepen-
dently as a feature fusion module, which can improve the model performance. Compared
with many feature fusion modules like MFFU which are simply connected together, MFFM
structure can further improve the performance. Great performance has been achieved by
our proposed detector when only very simple data augmentation techniques are adopted
and a small part of samples are used for training due to the limitation of our conditions.
Theoretically, training with some powerful data augmentation techniques used in many
detection methods and more training samples can further improve the performance. When
the number of MFFU in MFFM is 3, it already achieved excellent results, and it does not
increase the parameters of the model but only slightly reduces the speed.

Since Caltech is a dataset recorded by car cameras in the regular traffic scenes in differ-
ent cities, which is basically consistent with the scenes in real life, the excellent performance
of the proposed method on Caltech can basically continue to real life. However, in the real
scene, especially in some scenes that need high-resolution detection, the computation of
this method is too large, and it is difficult to achieve the speed of real-time detection. The
follow-up work will mainly focus on reducing the amount of computation and improving
the speed of the model while keeping the current performance basically unchanged or
slightly reduced. It will be divided into a high-performance network and a high-efficiency
network for high-precision detection scenarios and high-speed detection scenarios to fur-
ther improve the practicality. We will also verify our method in more fields such as vehicle
detection and more datasets.
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