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Abstract: Engineering education pushes the creation of new technology to solve community problems.
The process of technology transfer promotes educational innovation in universities, a vital process
that can improve citizens’ quality of life in cities and rural communities. As a result, university
technology transfer offices (TTOs) have to create strategies that motivate students and researchers
to generate technology. Thus, a primary challenge that TTOs face is to know and communicate the
income potential compared to their much more predictable and limited expense budgets. Institutional
budgeting for a TTO’s growth would be simplified if the office were on a solid financial footing, i.e.,
breaking even or making a financial return. Many offices assume that income is unpredictable, that it
is a lottery, luck, and more stakes in the fire improve the odds of hitting a winner, etc. These common
assumptions or beliefs provide only a vague insight into how to move an intellectual property (IP)
portfolio strategy forward. How can a TTO be assessed for quantitative value and not just be a cost
center adding qualitative value? This paper illustrates the first steps to understanding how to project
potential income versus a much more predictable expense budget, which would allow universities
to improve their technology transfer strategy and results. As a result, TTOs would operate under a
more sustainable IP portfolio strategy, promote educational innovation in universities, and generate
a more significant community impact.

Keywords: TTO income modeling; TTO economics; TTO IP portfolio strategy; IP portfolio quality;
educational innovation; higher education

1. Introduction

Moving from research projects to technological development is not always easy since
some university–industry relationships are not sufficiently communicative about the re-
search areas that the industries are investigating. Additionally, some universities are not
inclined to deal with real problems. Only theoretical aspects are covered in engineering
courses, so the students do not know the market needs and are not prepared to propose
and implement a startup. Moreover, some universities’ research centers do not seek indus-
trial partners because their primary funding is governmental. New educational models,
especially in engineering departments, include IP courses to promote technology transfer.
Higher education requires TTOs that fund research projects that create new products.
Ideally, TTOs should be involved in research projects from the beginning because they
can strategize to bring attractive new products to the marketplace. Therefore, students
and researchers must know the primary capabilities of their TTO and integrate them into
the strategic plan of their research. This means that TTOs must have sustainable financial
systems in the universities. It is impossible to develop and promote technology in the
universities if the TTOs do not play a fundamental role in the organization. Besides, the
TTO can provide students and researchers with intellectual property information when
planning a funding strategy.
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On the other hand, universities receive significant public resources to fuel innovation
via research, and they are under increasing pressure to measure and improve their impact
on society. When federally sponsored research mechanisms support the capabilities of
TTOs in universities, there are three main options [1]:

• Universities could market new inventions using internal funds.
• Universities could hire private companies that market the inventions.
• Universities could prepare students and researchers to improve the new technology

and consider developing a startup business plan.

The TTOs in universities have a low commercialization rate; sometimes, this condition
is attributed to the lack of adequate training staff and invention processing capacity [1].
Besides, the high-tech technology that could be created in universities does not have a
particular market segment and, therefore, the commercialization process can be compli-
cated. Since TTOs contribute to the universities’ societal impact, TTOs have to improve
their commercialization rates.

A TTO can encourage and facilitate the transfer of innovations primarily through
patents, copyrights, licenses, and other agreements. The impact of these reverberates
throughout the value chain for existing companies and startups. For example, every dollar
invested in a new company or startup generates an additional 1.8 dollars of indirect and
induced value [2].

From a university’s internal perspective, most institutions would welcome a TTO that
breaks even and is self-sustaining over the long haul. However, many typical TTO metrics,
such as the number of invention disclosures and patents, have little impact or correlation
with income. In general, the standards for invention disclosures are low, and the historical
number of patents does not represent a measure of financial value. Many universities have
rallied around their TTOs, much like one of their sports teams. Even if the office’s budget
has to be heavily supplemented year after year, there is public relations value, school spirit,
and rankings that underlie the continuation of financial support.

As mentioned in [3], the technology portfolio is the core of all the business in a
firm. One of the main goals is to decrement risk and increment business opportunities by
managing a set of technologies, resources, and markets. It is also important to mention
that there are other factors that OTTs in universities can follow. For instance, a university
technology transfer office’s goal could be to increment the social impact of technology and
not focus only on licensing revenue. Nevertheless, the social and financial interests could
not be aligned [3]. The technology transfer professionals in universities mentioned that
the commercialization pressure linked with licensing revenue has been augmented in the
last 15 years [4]. Additionally, it was presented in [5] that technology transfer offices that
adjust the portfolio over their aspirations performance archive better results regarding the
productivity of the technology transfer office.

The question of “value” generated for some TTOs tends to focus more on public
perception regarding the volume of patents or various national and peer rankings. These
conditions do not promote the transfer of innovation. The question of financial return
seems to be a lower level “value” generator. Thus, little quantitative effort has been made
to understand and improve the odds that a TTO will be self-sufficient. Technology transfer
activities can also generate income called technical income, and this income is a valuable
reference for assessing a TTO. The activities can be classified as technology trade, testing,
consulting, etc. [6]. However, very little work has been performed to produce TTO income
models, and long-term tracking of TTO income has yielded minimal insights. One of the
first papers to explore financial returns identified artificial intelligence as a sweet spot
in terms of income and patent volume [7]. Except for Professor Ponce’s paper [7], little
effort has been made to understand the underpinnings of income generated by TTOs.
Understanding the financial performance of TTOs has been hampered by a lack of basic
income generation models, leaving open the questions:

• Is it luck?
• Is it random?
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• Is it a lottery?
• Do more “irons in the fire” increase the chances of greater financial returns?
• Is there a characteristic statistical distribution?

If one could tease out an underlying probability distribution from historical income
data, one could explore modeling income and strategies to improve a TTO’s financial
performance. Reviewing selected historical TTO income data yields statistical distributions
similar to those underlying historical venture capital return, which can be used to model
TTO income.

To gain insight into TTO IP portfolios’ potential, we developed a model based on
historical income, power-law distributions [8], and Monte Carlo techniques [9]. This model,
primarily based on historical data, is the first step to understanding the income potential
of TTOs and can help define and evaluate a portfolio’s investment strategy. This model
does not forecast future income but the statistical probability of income generation based
on a TTO’s historical results. This kind of modeling/simulation enables probabilistic
assessment but not point predictions. Roughly speaking, the model does not predict next
year’s income or shorter time horizons; without a detailed cash flow history, estimating
next year’s income is highly unlikely to be an accurate or reliable prediction. However,
this model can illustrate the portfolio’s probability of returning future positive cash flows
(or not).

2. High-Risk and High-Reward Return Distributions

Venture capital (VC) seed investing is similar to university technology commercial-
ization: they are both early-stage and high-risk. A VC’s portfolio valuation or return-on-
investment curve is exceptionally skewed, as illustrated in Figure 1 [10]. Most startups
make zero return, some make a small return, and a few deliver very high or “home run”
returns. As Peter Thiel stated, “actual [10] returns are incredibly skewed. The more a VC
understands this skewed pattern, the better the VC.” [11].
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Figure 1. Typical distribution of venture capital returns.

The Association of University Technology Managers (AUTM) is an organization that
collects and reports technology transfer data from universities and other institutions. An
AUTM royalty income graph illustrates a similarly skewed distribution of venture capital
returns (see Figure 2). A few institutions receive a significant income from their IP portfolio,
but the vast majority do not break even. If one plots the AUTM income data on a log–
log scale, the data approximate a straight line, suggesting a power-law distribution (see
Figure 3).
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Figure 2. The fiscal year 2016 Association of University Technology Managers (AUTM) data.
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Figure 3. AUTM binned data plotted on a log–log scale.

Narrowing the data analyses from a collection of universities to individual universities,
one finds similarly skewed income distributions. Figure 4 compares the income histories of
two different universities, one with a medical school and the other without one. One set
of data is from 1984–1998, and the other is from 2000–2017. The two schools’ curves are
similar, ignoring inflation. They resemble AUTM income and venture capital return curves:
a few licenses generate a significant fraction of the total income, and most licenses generate
minimal income. Like the AUTM data, if one plots the income data on a log–log scale, the
data approximate a straight line, indicating a power-law distribution. The two universities’
income data largely overlap; however, one school generated significant income, and the
other lost money in most years.
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Figure 4. Two very different US research universities, yet, the two schools’ royalty incomes are similar and can be modeled
as power-law distributions. (a) Event number vs. royalty income; (b) income vs. frequency.

3. Power-Law Distributions

A power-law probability distribution function (PDF) is a very well-known tech-
nique [12] which can be defined as follows:

PDF(×) = CX−α

where C is a normalizing constant.
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• When α > 3, the distribution has a finite mean and finite variance, similar to working
with Gaussian-like distributions.

• When 2 < α ≤ 3, the distribution has a finite mean but undefined variance.
• When α ≤ 2, both the mean and variance are undefined. The implications in this

region are unique.

In [8,13,14], the information regarding the theory regarding power-law distribution
is presented. Several computational programs contain specific functions that can be used
for calculating the power-law distribution when a large amount of data is studied, such
as [15].

Interestingly, most VC return-on-investment [16], AUTM income, and the two univer-
sities’ income data presented above follow a power-law curve with an α range of 0.5 to 2.0.
The lower the α, the higher the chances of an extreme or “Black Swan” event [17].

Understanding the implications of power-law statistics requires a different thought
process than more common Gaussian statistics [18]. The primary difference between a
Gaussian and power-law driven statistic is the tail. So-called tail events are much more
likely in a power-law versus a Gaussian-driven process. A Gaussian-driven process is
much more familiar and widely analyzed via averages and standard deviations. A power-
law-driven process is much less familiar to most, not as intuitive, and, in some cases, cannot
even be characterized via averages and standard deviations. However, power-laws are
common in business, nature, and economics [8]. For example, earthquakes can be modeled
with power-law distributions. Many little earthquakes have minimal impact, while a few
big ones have a significant impact—just as with TTO deals, where there are many small
ones and a few big shakers/Black Swan events/unicorns.

From a financial modeling perspective, one important point is that this is only con-
cerned with high-income events. Events that generate a minimal income are of little value
since they contribute a small fraction of the overall return. A non-power-law distribution
might better model them.

4. Portfolio Modeling

The makeup of a TTO’s IP portfolio can be defined similarly to a VC’s startup portfolio:
The majority of startups realize zero return (0×, 50–60%), some break even or generate

a minimal return (1–10×, 30–40%), and a small number achieve a significant/power-law
return on investment (>10×, 5–10%).

To model a venture capital portfolio, the payoff structure from pooled data for
509 startups from 1995–2009 was used [19]. The makeup of a TTO’s IP portfolio can
be defined similarly to a VC’s startup portfolio:

• Many startups “strike out” and return less than one times the investment (<1× return,
63.1%),

• “Singles” break even or generate a minimal return (1–3× return, 19.6%),
• “Doubles” generate a good return (3–6× return, 9.2%),
• “Triples” generate a very good return (6–10×, 4.3%), and
• “Home runs” generate a large/power-law return on investment (>10× return, 3.7%).

The academic portfolios in this study do not include patented technologies that gener-
ated zero income. This is an essential point since unlicensed technologies can comprise a
high percentage of the patent portfolio. This will be discussed later in regard to how this
might impact a TTO’s ability to break even. It is essential to mention that the academic and
venture portfolio returns are so similar in Figure 5. If the academic data set had included
patented and unlicensed cases, the percentage distribution in the < = 1 category would
have been much more significant. To calculate the academic return, an estimate of the
fully loaded cost of filing a patent was used. For example, if patent prosecution costs are
USD 20,000 and approximately half of the TTO’s budget is prosecution costs, then the fully
loaded cost of filing is estimated to be USD 40,000.
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Figure 5. Make up different return categories for venture and two universities.

Once the return make-up of a portfolio was defined (e.g., 63.1%, 19.6%, 9.2%, 4.3%,
and 3.7%) and the “tail” or high-income part of the distribution (>10×) was matched to a
power-law distribution (e.g., α = 2.0 typical for a VC fund), then a Monte Carlo simulation
of individual event returns [20,21] was generated, see Figure 6. For practical purposes, it
was assumed that the power-law return distribution is limited to 10× through 150×. The
summation of 10,000 individual Monte Carlo simulation return events will make up the
portfolio’s total return.
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Figure 6. Monte Carlo simulation of 400 portfolio-driven events.

Figure 7 illustrates the impact that portfolio size has on the probability of achieving
breakeven or a 2×, 3×, and 5× return. In general, a more extensive portfolio is advanta-
geous. A larger portfolio increases the likelihood of a power-law return or Black Swan
event. For clarity, a more extensive portfolio means a more significant, fully vetted port-
folio, not just a quantitative larger portfolio. All portfolio additions have met the same
hurdle rates in terms of quality to be added to the portfolio. Adding low quality to a
portfolio will, in general, be harmful to a portfolio’s return. The reported return generated
by this collection of 509 early-stage portfolio companies is reported to be 2.0×, which is in
agreement with the simulation trend out to a portfolio of 400.
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Figure 7. Portfolio return probability after 10,000 Monte Carlo simulations.

Figure 8 illustrates the impact that portfolio quality has on a portfolio’s probability
of making a 2× or higher return. Reducing the number of power-law events will have
a significant impact on the portfolio’s potential total return. However, going to a lower-
quality portfolio (power-law events occur at a 1% frequency), the portfolio breaks even,
except for very small portfolio sizes. If all power-law events were eliminated, the average
return is slightly over 1×. This is why the portfolio breakeven is achieved even if there
were no power-law returns. For this particular portfolio, there are enough singles, doubles,
and triples to break even. Suppose it is estimated that 20% of a TTO’s patented portfolio is
licensed and the other 80% is not licensed; the model financials change radically. Assume
that the licensed portfolio generates a return of 1×, 2×, 3×, and 5×, and the fully loaded
cost of a patent investment is USD 40,000—even with a high probability of a power-law or
Black Swan event, it is difficult to reach breakeven due to the high cost of patenting a large
percentage of nonperforming technologies.
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Figure 8. Impact of a lower quality portfolio: fewer power-law returns: 3.7 > 1.0%.

This would be similar to a VC fund putting 80% of its fund into startups after having
just reviewed the pitch deck and not fully vetted the opportunity. There is a common saying
that one cannot pick winners (power-law or Black Swan innovations); however, it could be
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a significant number of patent filings that have a low probability of ever reaching just a
breakeven point, let alone a Black Swan-like return. These are innovations that might be
filed for political reasons, increasing university rankings, or just assuming that innovations
are lottery tickets. The more you have, the higher your chances of finding a diamond in the
rough. VCs’ extensive efforts in vetting their investments would argue that the probability
of these innovations making a significant return is more complex than just thinking of them
as lottery tickets. Generating significant returns is not a lottery. All lottery tickets are the
same, with the same odds of producing a winner—not so with IP assets. If a TTO invests
in a large number of low-potential patent opportunities, then their costs may overshadow
the relatively rare Black Swan event/s. A large multi-state Powerball Lottery can produce
a return of several million times the cost of the winning ticket, but there is zero total return
due to the much larger pool of losing tickets—especially if your lottery ticket costs USD
10,000 s each. The same goes for TTO portfolios; investing in potential high-return assets
increases the quality of the portfolio and the chances of making a positive financial return.

There is a significant trade-off between resources spent on generating quantity metrics
(invention disclosures, issued patents and patent rankings, etc.) versus resources spent on
vetting high-quality IP portfolios that have the potential to realize a return on investment.
This is why VC investors do such extensive filtering to find the companies that can become
unicorns/Black Swans.

Figure 9 illustrates the challenges for generating returns greater than breakeven if
the cost of the unlicensed portfolio and its impact on total return are considered. The
challenges for universities are different than VCs that typically target a 3× fund return. For
example, VC funds have the ability and resources to invest in future rounds to keep their
equity position from being significantly diluted, and VCs assist with moving the company
forward as active partners. Once a university license is completed, the TTO is more of a
passive investor. It is clear that even with reasonable returns (2× and 3× total portfolio
returns), the cost for the unlicensed patent portfolio limits the total portfolio return.
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Figure 9. The challenge of breaking even when 20% of the patented portfolio is licensed, and the cost burden of the 80%
unlicensed portfolio is included.

5. Conclusions

This paper shows how the historical data of technology transfer offices can be used for
modeling the technology transfer office’s portfolio income using the power-law probability
distributions and Monte Carlo methods. Since financial conditions in technology transfer
offices are a significant factor for assessing their financial performance, creating a model
regarding the technology transfer office’s portfolio becomes mandatory in most universities.
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Understanding the implications of power-law distributions can help TTOs estimate
the likelihood of financial returns. This modeling approach reinforces the notion that
it is tough to pick winners. If the IP selection process does not set a high enough bar,
low-potential investments can outweigh the relatively rare winners.

However, there are not enough academic references to model this portfolio, and there
is a lack of information about how to model it. This paper also presents how these two
well-known methodologies, power law distribution and Monte Carlo, can be used to reach
a portfolio income model. On the other hand, there are other factors that some universities
include for evaluating their performance, such as impact in the community when technol-
ogy transfer is done. Thus, this paper does not evaluate the complete performance of the
technology transfer that can integrate several factors.
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