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Abstract: Cloud-Radio Access Network (RAN) is one of the architectural solutions for those mobile
networks that aim to provide an infrastructure that satisfies the communication needs of a wide
range of services and deployments. In Cloud-RAN, functions can be flexibly split between central
and distributed units, which enables the use of different types of transport network. Ethernet-based
fronthaul can be an attractive solution for Cloud-RAN. On the one hand, the deployment of Ethernet-
based fronthaul enables Cloud-RAN to provide more diverse, flexible and cost-efficient solutions.
On the other hand, Ethernet-based fronthaul requires packetized communication, which imposes
challenges to delivering stringent latency requirements between RAN functionalities. In this paper,
we set up a hardware experiment based on Cloud-RAN with a low layer split, particularly between
medium access control and the physical layer. The aim is to demonstrate how multi-path and channel
coding over the fronthaul can improve fronthaul reliability while ensuring that: (i) latency results
meet the standard requirements; and (ii) the overall system operates properly. Our results show that
the proposed solution can improve fronthaul reliability while latency remains below a strict latency
bound required by the 3rd Generation Partnership Project for this functional split.

Keywords: Cloud-RAN; ethernet-based fronthaul; functional split; multi-path; latency; reliability

1. Introduction

Cloud-radio access network (RAN) is one of the architecture enablers of the fifth
generation of mobile communication networks (5G) paradigm, providing an innovative
platform that can enhance flexibility and adaptability to mobile communication networks.
5G Cloud-RAN consists of three component elements, namely: a Central Unit (CU), a Dis-
tributed Unit (DU) and a Radio Unit (RU). The two components, CU and DU, are connected
through a transport interface called midhaul, while the interface connecting DU and RU is
called fronthaul [1]. 5G Cloud-RAN offers different radio network deployment scenarios
each with different requirements.

Recent developments in the softwarization and virtualization of mobile networks [2]
provide the platform for the deployment of Cloud-RAN solutions through a flexible
functional split. A flexible functional split is a promising approach that aims to provide
greater flexibility to sufficiently fulfill the diversified service requirements of 5G. Different
functional splits impose different requirements on fronthaul, which have created new
challenges in terms of optimizing the allocation of radio processing and transmission
resources [3]. Consequently, the optimal split choice depends on a variety of factors, such as
deployment scenario, availability of RAN resources and user traffic. For example, the work
in [4] demonstrated how different use cases can impact the selection of RAN functional
split. In our previous work, we also demonstrated the impact of user traffic, in particular 5G
classes of traffic, on the choice of RAN functional split through an experimental evaluation
of three different functional splits [5].

Different solutions exist for fronthaul in 5G new radio. While the fiber has clear
benefits compared to other wired solutions in terms of bandwidth and speed [6], the
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potential for Ethernet has also been explored [7]. Ethernet is a promising solution for the
transport network, given its wide availability and low cost. Therefore, several standard-
ization bodies defined Ethernet fronthaul as a possible solution. In particular, Open RAN,
which is an evolution of the Next Generation RAN architecture, considered Ethernet as
a selected transport [8]. The Enhanced Common Public Radio Interface also defined a
packetized interface employing an Ethernet or Internet Protocol, as a possible interface for
the fronthaul [9]. Nevertheless, any fronthaul solution adopted needs to support diverse
Cloud-RAN deployment scenarios and efficiently meet the key performance indicators
of 5G.

Within the context of 5G, there is a growing interest in the need to provide high
reliability while maintaining low latency to support the delivery of Ultra-Reliable Low
Latency Communications (URLLC). One approach considered in the research on sup-
porting URLLC is diversity, in which the same data are transmitted independently over
multiple links. The authors of [10] show that, with multi-user diversity, an improvement
in reliability and spectral efficiency can be achieved. Another approach considered to
achieve the stringent latency–reliability requirement of URLLC is to use a combination
of channel coding techniques and diversity. In this context, the authors of [11] showed,
through simulation, the effectiveness of combining data duplication and network coding
approaches. The combined approach achieved the highest reliability compared to network
coding. While high reliability is foreseen for users’ data, in Cloud-RAN architecture such
reliability should also be considered for the fronthaul link.

To this end, and focusing on Cloud-RAN, there is a need for the fronthaul to maintain
stringent key performance indicators of URLLC. The work in [12] proposed a multiple
description coding approach to improve the quality of the signal received at the cloud in the
uplink, assuming a multiple paths packet-based fronthaul. They validated the effectiveness
of the approach through numerical results. In our previous work [13], we developed
a Cloud-RAN model with medium access control (MAC) and a physical layer (PHY)
split (split option 6 [14]) over Ethernet-based fronthaul for exploiting multi-path diversity
using a fountain code. The aim was to investigate the reliability–latency trade-off on the
fronthaul. We showed, analytically and through simulation, that the solution promises
reliability enhancement. Following up on [13], in this paper, our main contribution concerns
providing an experimental upgrade of the analytical simulation proposed and evaluating
the performance of the solution. The experimentation will allow us to understand the best
practices of providing fronthaul reliability while latency is compliant with the requirements
of the 3rd Generation Partnership Project (3GPP). To the best of our knowledge, this paper
provides the first evaluation of multi-path, Ethernet-based fronthaul using fountain code
in a hardware testbed. Our particular contributions are as follows:

• Proof of concept of the proposed solution in an industry-grade hardware testbed;
• Consideration of a realistic scenario by taking into account varied packet sizes

(32–1500 bytes) and background traffic in the fronthaul network;
• Reporting and discussing the results of hardware experiments in order to evaluate the

solution’s performance.

The remainder of this paper is organized as follows: Section 2 provides a summary of
the proposed reliable and low latency Cloud-RAN model with Ethernet-based fronthaul.
In Section 3, a detailed setup of the hardware experimental testbed is provided and the
evaluation methodology is described for examining the performance of the proposed
system. Section 4 analyses the experimental results. Finally, the conclusion is in Section 5.

2. Reliable, Low-Latency Fronthaul Model

In 5G, it is recommended to avoid having a single point of failure that could affect
a high number of radio sites. Where appropriate, it is important to enforce redundancy
schemes. This is because, in a macro site where a single transport facility may aggregate
multiple radios, the failure or repair of such transport equipment may have an impact
on a large operator serving area. The key requirement of the 5G RAN transport network
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is to allow meshed connectivity to enable reliability and resilience [15]. In this context, a
scenario in which the 5G transport network offers multiple connectivity is considered in
this paper.

In [13], we presented a solution based on multi-path transmission with erasure coding
(MPC) on the Ethernet-based fronthaul network with an MAC-PHY split. The aim is to
achieve higher reliability without a significant impact on latency in a Cloud-RAN system.

Erasure codes, specifically fountain codes, are rateless in the sense that they do not
exhibit a fixed code rate but are adapted to the channel conditions. The original data are
split into k equal blocks, and then encoded independently and randomly, according to a
degree distribution which determines the number of blocks to be exclusive-or-ed into n
encoded blocks using an (n, k) maximum distance separable code [16]; this is referred to as
the (n, k) fountain code (see Figure 1). One of the properties of fountain coding is that the
receiver can retrieve the original transport block (TB) from any subset (k + ε) of encoded
blocks; where 0 ≤ ε ≤ n− k. Thus, the decoder starts decoding the message once the first
k encoded blocks are received using the sum–product algorithm [16]. If these blocks do not
have enough information to retrieve the original message then the encoder has to wait for
more encoded blocks.

data

block 1 block 2 block 3 block k

split data into k equal blocks

encoded 1 encoded 3 encoded n

blocks are exclusive-or-ed
according to a “degree

distribution” to generate  n
encoded blocks

encoded 2

Figure 1. Schematic diagram of an (n, k) fountain code. The blocks are encoded into n encoded
blocks using a given degree distribution.

In [13], we analytically derived the average latency using queuing theory by making
the following assumptions:

• Purging scenario, that is, after k out of n encoded blocks are received, the other n− k
remaining encoded blocks are removed from the queues;

• The switch on the fronthaul has a negligible delay and hence the switch delay is not
included in the fronthul latency budget.

In this paper, however, we implement the same model in a software defined radio-
based testbed, while fixing the value of n to 4, given the hardware limitations, to ex-
perimentally evaluate the framework and provide numerical proof on its performance.
Furthermore, in this paper, we attempt to overcome the constraints raised by assumptions
taken in [13] as follows:

• Assess the impact of the proposed solution on end-to-end system performance: by
executing the solution on a hardware testbed, we can ensure that the system is
functioning properly by ensuring that user equipment remains synchronized with the
network and maintains network connection, as well as that network resources, such
as memory, storage space and queue buffers, are sufficiently available for executing
the proposed solution;

• Packets are not removed from the fronthaul network; that is, after receiving k out of n
encoded blocks, the remaining n-k encoded blocks are not removed from the fronthaul
network and they will continue to be processed, which is more realistic;

• Consider internal process delay in the (CU + DU) entity: processing time including
scheduling, queueing, encoding and packetizing data which might affect the per-
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formance of the system. The time taken depends, essentially, on capabilities of the
hardware used and how functions are processed. In this experimental, function blocks
are sequentially processed on a general purpose processor;

• Include switch queueing delay: the amount of time spent queuing at the switch ag-
gregator to demonstrate the feasibility of aggregating traffic in the fronthaul network,
resulting in more realistic latency measurements. The worst case scenario happens
when all the n encoded blocks arrive at the switch aggregator at the same time. Such
a scenario is very likely to occur when the n encoded blocks are serialised at the same
time on n separate fronthaul paths with the same capacity;

• Include network driver delay: the amount of time it takes to send a packet onto a
fronthaul network, which is subject to a queueing delay;

• Emulate traffic congestion on the fronthaul to account for scenarios with background traffic.

For the analysis, we continuously generate data in the (CU + DU) entity to be trans-
mitted to the user equipment via the fronthaul. The experiment is repeated several times,
then the average latency and the probability of being able to transmit a packet over the
fronthaul within a latency deadline are measured.

3. Experimental Testbed & Evaluation Methodology

In this section we detail our experimental testbed and describe our evaluation methodology.

3.1. Implementation of Experimental Testbed

For our experimentation, we consider a long-term evolution system based on the Open
Air Interface [17]. Our choice of the long-term evolution module is based on the availability
of a reliable open source platform. Hence, user equipment, CU, DU, and RU are based on
Open Air Interface implementation comprising full long-term evolution functionalities
whereby the CU is collocated with the DU.

To exploit the concept of multi-path diversity with channel coding in the Cloud-RAN
platform, we implemented further amendments in the Open Air Interface to:

• Decouple RAN functions between (CU + DU) entity and RU entity;
• Support channel coding in order to encode/decode data streams;
• Packetize/depacketize packets to transmit/receive them over the Ethernet-based

fronthaul interface;
• Support the multiple Ethernet-based fronthaul by transmitting over multiple Ethernet

ports, each connected to a separate Ethernet link.

The experimental setup and data flow are shown in Figure 2. The (CU + DU) and the
RU run on two separate servers each with 8 gigabytes of random access memory (RAM)
with a Xeon 1220, and 4 cores. While the user equipment runs on a personal computer
with 4 gigabytes of RAM with an Intel core i5. All hosts have a network interface card
with a speed of 1 Gigabit and operate on Ubuntu 14 with a low latency kernel. The system
operates on frequency division duplex on band 7 with 5 MHz bandwidth. The main
configuration parameters are listed in Table 1; other Open Air Interface parameters are set
to their default values.

The (CU + DU) entity accommodates MAC, Radio Link Control (RLC), Packet Data
Convergence Protocol (PDCP) and Radio Resource Control functionalities, while PHY and
Radio Frequency functionalities are located in the RU. The (CU + DU) entity is connected
to 4 Ethernet fronthaul links each 3 meters long and with a capacity of 1 Gigabit. The four
links are connected to a 1 Gigabit layer 3 switch that switches packets to the right port based
on internet protocol addresses. The output port of the switch is connected via a 3 meter
long Ethernet fronthaul, with a capacity of 1 Gigabit, to the RU. This latter is connected to
the user equipment via Universal Serial Bus 3 cables and two Universal Software Radio
Peripherals, which are responsible for transmitting and receiving radio frequency signals.
The Universal Software Radio Peripherals are connected through SubMiniature version
A cables of a 1 meter long. In this experimentation, the analysis is applied only to the
downlink communication.
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(CU+DU)

Ethernet SMA

cables

RU User Equipment

Switch USRP B210

USB3

cable
USB3
cable

USRP B210

Figure 2. End-to-end system experimental setup for multi-path fronthaul with erasure coding (MPC)
for downlink communication with medium access control (MAC) and physical (PHY) layer split,
with an illustration of data encoding in the (CU + DU) entity and decoding in the RU entity.

Table 1. Open Air Interface parameters.

Parameters Values

Carrier Frequency 2.68 GHz

System Bandwidth 5 MHz

Frame Type Frequency Division Duplex

Radio Frequency frontend 1 transmit antenna/1 receive radio frequency

Modulation Adaptive Quadrature Amplitude Modulation (QAM):
QAM, 16 QAM and 64 QAM)

Packet Size 32–1500 bytes

Fronthaul Capacity 1 Gigabit per second

3.2. Evaluation Methodology

To evaluate the performance of the system, once the radio access bearers for the data
flow are established, User Datagram Protocol (UDP) packets are injected as user data at
every frame into PDCP at the (CU + DU) entity. PDCP, then, adds a PDCP header to the
UDP packet then delivers it to RLC. RLC informs its buffer occupancy to MAC to determine
the TB size. MAC then requests data from RLC and composes the TB. Thereafter, the TB is
processed by the coding block. The coding block has two main blocks (Figure 2):

• Splitter which splits each TB into k = 2 equal blocks;
• Encoder that encodes the k blocks into n = 4 encoded blocks of the same size using

fountain code and sends each encoded block into one of the n fronthaul paths.

The encoded blocks are then packetized to Ethernet packets and are transmitted to
RU via a raw Ethernet socket over the fronthaul. The receiver can retrieve the original TB
from any subset ≥k of encoded blocks.
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In this experiment, latency is measured as the round trip time (RTT) of one packet
from the MAC to the PHY layer. Procedures involved in the measurement of RTT are
summarized in Algorithm 1.

Algorithm 1 Round trip time (RTT) measurement

1: Initialize: i = 0
2: while User is in connected_mode do
3: procedure REQUEST DATA
4: transmitted_timestamp[i]← Get time stamp
5: transmitted_sequenceNumber[i]← Get sequence number
6: Compose message get_data_req and append sequence number
7: i++
8: end procedure
9: procedure SEND PACKET THROUGH FRONTHAUL NETWORK

10: Packetize data by adding Ethernet header
11: Write packet to raw socket
12: end procedure
13: procedure RECEIVE PACKET FROM FRONTHAUL NETWORK
14: Read packet from raw socket
15: Depacketize data by removing Ethernet header
16: end procedure
17: procedure PREPARE DATA
18: Get data to be transmitted from scheduler
19: Append received sequence number to the data
20: end procedure
21: procedure CALCULATE RTT
22: received_sequenceNumber←Read received sequence number from data
23: for j = 1 to i do
24: if received_sequenceNumber == transmitted_sequenceNumber[j] then
25: received_timestamp← Get time stamp
26: RTT(j) = received_timestamp - transmitted_timestamp[j]
27: end if
28: end for
29: end procedure
30: end while

Figure 3 shows a simplified representation of events and entities included in the
measurement of RTT. Mathematically, the RTT of one sample can be expressed as:

latency(RTT)sample =
11

∑
i=1

latency(i); (1)

latency(1), latency(7) is the time that the fronthaul interface takes to packetize data
and write the packet descriptor onto the network driver transmit queue.

latency(2), latency(8) is the time taken for the network driver to fetch the packet
and launch it onto the fronthaul network. Since packets are fetched one by one from the
transmit queue, this latency is subject to a queueing delay.

latency(3), latency(9) is the time to transport data on the fronthaul network and is
given by:

latency(3,9) =
Nlink

∑
i=1

(ttran(i) + tprop(i)) +
Nswitch

∑
i=1

(tproc(i) + tque(i)), (2)

where ttran is the transmission time, that is, the time taken to transmit a packet over a
fronthaul link and is defined as the packet size over the bit rate of the fronthaul link, tprop
is the propagation time, that is, the time taken for a packet to propagate between two
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nodes. The propagation time is calculated by the distance over propagation speed in the
fronthaul. Nlink is the number of fronthaul segments between the (CU + DU) entity and
the RU entity, tproc is the amount of time the switch requires to process a packet for routing
(encapsulation/decapsulation and table lookup) and tque is the queueing delay in a switch
when there is a contention at its ports. Figure 4 shows that 4 fronthaul paths are input to
the switch, all of which must be directed to the same destination, that is, RU. Therefore,
packets may encounter queueing delay at the switch. Therefore, tque ≥ 0 and there is one
switch in the experimental setup, hence Nswitch = 1 in Equation (2).

1

3

Radio Unit Central Unit _ Distributed Unit

Fronthaul Network

4

6

7

9

11

Fronthaul
Interface

Protocol
Stack Layer

time

Interface
Layer

Protocol
Stack Layer

get_data_req

Network
Driver

Network
Driver

2

5

8

10

data

prepare
data

Figure 3. Representation of the round trip time measurement.

receiving buffers

Packet
Handling

Ethernet Switch

output buffers

RU

CU+DU

RU

Figure 4. Switch internal architecture.

latency(4), latency(10) time taken for network driver to write packet descriptor in the
queue. This latency is subject to a queueing delay when multiple data are sent over the
Ethernet sockets.
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latency(5), latency(11) is the time that the fronthaul interface takes to read data from
the network driver queue and depacketize data by removing the Ethernet header from
the packet.

latency(6) is the protocol stack processing time of the request at the (CU + DU)
entity to prepare data. This latency depends on the processing capability of the central
processing unit.

The average latency of RTT is computed as:

RTTaver =
∑N

i=1 latency(RTT)i

N
, (3)

where N is the number of RTT samples collected during the execution of the experimental test.

4. Analysis of the Experimental Results

In this section, the performance of the system is evaluated by evaluating the results
of the fronthaul latency, jitter, and probability of error. How these quality metrics meet
the requirements of the 3GPP are also evaluated. The 3GPP specifies that the maximum
allowed one-way latency for the MAC–PHY split (Option 6 according to 3GPP terminology)
should be 250 µs (Table A-1 in [14]). The maximum allowed average RTT latency, therefore,
is 500 µs (250× 2). Since RTT in this experiment is measured as stated in Section 3.2, the
analysis considers 500 µs as the maximum acceptable latency on the fronthaul.

4.1. Analysis of Latency and Jitter for MPC

In the first experiment, the performance of MPC is evaluated in terms of latency
and jitter. The performance is evaluated for scenarios with packet sizes of 32 bytes up
to 1500 bytes to cover both URLLC and enhanced mobile broadband 5G classes to un-
derstand how the packet size impacts the fronthaul latency. UDP packets, thus, with
different sizes, are injected into the PDCP layer in the (CU + DU) entity in every frame.
The protocol stack processes the packet then the MAC encodes it to n = 4 encoded blocks
and transmits them on the fronthaul. The latency is measured as the RTT as explained in
Section 3.2. The percentiles and probability density function results of the RTT are shown
in Figures 5 and 6, respectively.

32 50 100 150 200 250 500 900 1000 1500

Packet Size (Bytes)
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c
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s
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Figure 5. Percentile of latency on the Ethernet-based multi path fronthaul as a function of different
packet sizes.

Figure 5 shows the results for different percentile values of the latency as a function
of UDP packet size. In general, as the UDP packet size increases, the percentile values of
latency increase too; this is because larger packets take longer to be processed. The RTT for
a packet size of 100 bytes is, however, less than that for the 32 bytes and 50 bytes packet
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sizes. The reasoning behind this behaviour is that the packets of 32 bytes and 50 bytes are
split by the coding block in the (CU + DU) entity to 16 bytes and 25 bytes, respectively. Even
when the overhead header is added, the two packet sizes are still less than the minimum
64 bytes of the Ethernet frames. Therefore, prior to transmitting these packets, padding is
added by the Ethernet network card, which adds an extra delay to their RTT.
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Figure 6. Distribution of latency on the Ethernet-based multi path fronthaul as a function of different
packet sizes.

Figure 5 shows that MPC provides promising results, as 95th percentile values remain
below the maximum acceptable fronthaul latency for the MAC–PHY split. Figure 5 also
shows that the 25th, 50th and 95th percentile values are of low variability as they are close
to each other. The difference between the 95th and 25th values is 8 µs.

Focusing on the 50th percentile result, if the packet size is less than 500 bytes, the
increase in latency is low and is around 4.43% from the packet size of 32 bytes to the packet
size of 250 bytes. On the contrary, with packet sizes larger than 500 bytes, the increase in
latency is 26% for a packet 3 times larger than 500 bytes. Ssuch behaviour can be observed
in Figure 6, whereby the probability density distributions of packet sizes from 32 bytes to
250 bytes are very close to each other. However, for packet sizes ranging from 500 bytes
to 1500 bytes, the probability density distributions are further apart. Another observation
from Figure 6 is that the standard deviation increases with the size of the packet. For
example, for packets of size 1500 bytes, the deviation is 10 µs, which is approximately two
times as large as for packets of size 32 bytes. This indicates that the larger the packet size,
the higher the variations in the processing time of the protocol stack, encoder/decoder
and transport network. This plot provides insight into how to choose the packet size to
be transmitted on the fronthaul. For example, if the probability density distribution of the
latency for a service should have a deviation of less than 8 µs, then the choice of packet size
≤ 250 would satisfy the requirement. It can be concluded from Figures 5 and 6 that the
average latency complies with the requirements of 3GPP, that is, staying below 250 µs [14].

Further analysis of jitter can be found in Figure 7. Two factors primarily introduce jitter:
(i) the packet switch network, which can introduce variation into the packet delay when
processing packets; (ii) the operating system, whereby the variation of system daemons and
interrupts results in jitter. From Figure 7, it can be seen that the distribution of jitter remains
the same for different packet sizes and is just below 2 µs. The tail latency of Figure 7 shows
that latency values greater than 10 µs have a very low probability that is close to zero.
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Figure 7. Distribution of jitter on the fronthaul for different packet sizes.

4.2. Comparison of MPC and Multi-Path Fronthaul with Duplication (MPD)

The second experiment compares the performance of MPC to that of the baseline
MPD, which replicates the same data stream across multiple fronthaul paths. In particular,
the analysis evaluates how the probability of error is improved by either of these two
schemes and what the impact on the latency is. In this experiment, the focus is on the
URLLC service, particularly on the tactile interaction in which reliability with low latency
are key aspects. The payload sizes of the tactile interaction are typically ≤256 bytes and
the error probability requirement is 10−5 [18].

Fixed UDP packets of a size of 120 bytes are injected in PDCP in every frame. The
probability of error vs latency function is presented in Figure 8, where the probability of
error is defined as the probability that the measured RTT latency exceeds a predefined
latency deadline t, mathematically expressed as: P(X > t). This probability of error
represents the packet error rate due to the fact that some packets arrive late or never arrive
due to factors such as buffer overflows, queueing, and so on.
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o
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MPC, k = 2
MPD

maximum allowed

one-way latency
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rount trip latency

Figure 8. Probability of error vs latency function for multi-path fronthaul with erasure coding (MPC)
with k = 2 and multi-path fronthaul with duplication (MPD). The dashed line represents the maximum
latency to be supported by the MAC–PHY split.

It can be seen that, for latency values less than 250 µs, the performance of MPC and
MPD is generally the same. However, as latency increases to higher than 250 µs, MPC
delivers a lower error probability. MPC can achieve a latency reduction of 73 µs, with
respect to MPD at the error probability of 10−5. It is interesting to look specifically at the
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performance at the latency of 500 µs, which is the maximum acceptable RTT latency on the
fronthaul for the MAC–PHY split [14]. At this point, shown by the vertical black line in
Figure 8, MPC clearly outperforms MPD and can achieve an error probability of 10−5 at
288 µs latency, leaving a margin of 212 µs to the maximum allowed RTT. Therefore, MPC is
set to benefit from both diversity and the splitting of packets into smaller blocks.

With MPC reaching an error probability of 10−5 at a lower latency than MPD, a larger
gap to the maximum allowed RTT can be gained. This gain can be beneficial for fronthaul
dimensioning by allowing the distance between the (CU + DU) and the RU entities to
be increased. The fronthaul distance can be extended by tgap/(propdelay × 2), where tgap
is the time gap to the maximum allowed RTT, propdelay is the propagation delay in the
Ethernet, which is 5 µs per km [19] and 2 accounts for the round trip. In our setup, for
example, given that tgap = 212 µs at an error probability of 10−5 for MPC (see Figure 8), the
fronthaul can be extended by 42.4 km.

Now, the performance of multi-path fronthaul is evaluated by emulating the delay in
the fronthaul transport. In our next experiment, a delay is added to the fronthaul path 2 to
emulate traffic congestion. An additional delay on path 2 will clearly affect the delivery of
important information since link 2 carries the information required for decoding data. To
investigate whether the delay would affect the performance of MPC due to the waiting
effect described in Section 2, the network delay is emulated by using NetEM to add a
normal distribution delay of 100 µs ± 10 µs. Figure 9 shows the probability of error as a
function of the latency. It can be seen that MPD and MPC start with the same probability
of error, but after latency exceeds 100 µs, the performance of the two schemes alternates.
However, MPD outperforms MPC at an error probability of 10−5. Thus, in this case, where
the extra delay is simulated in path 2, MPC is more affected than MPD because MPC
needs to wait for more encoded blocks to be received to successfully decode the blocks.
Here again, taking the maximum acceptable RTT latency of 500 µs on the fronthaul for the
MAC–PHY split [14], which is shown by the vertical black line in Figure 9, MPC can achieve
an error probability of 10−5 at latency 158 µs earlier than the maximum allowed RTT.
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Figure 9. UDP latency functions for MPC with k = 2 and MPD when adding a delay to fronthaul
path 2. The dashed line represents the maximum latency to be supported by the MAC–PHY split.

Aside from the benefit of MPC in enhancing reliability while the latency remains below
a strict latency bound, another aspect to consider is the load on the fronthaul network
introduced by MPC and MPD. For each data point of size S bits, MPD duplicates a full
copy of the data into n blocks of size S bits. On the other hand, an (n, k) MPC encodes the
data into n blocks of size S/k bits. For example, if 1 packet of size S bits is to be transmitted
every t milliseconds on average, the load on the fronthaul generated by MPC and MPD,
denoted as MPCload and MPDload respectively, can be calculated as:
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MPCload = (S× 1000/t)× n/k (bits per second)

MPDload = (S× 1000/t)× n (bits per second).
(4)

Equation (4) demonstrates the potential benefits of MPC over MPD in reducing
the load on the fronthaul network, allowing for a significant reduction in the required
bandwidth by a factor of k (1 < k < n), resulting in a reduction in fronthaul cost.

The results obtained under the particular system parameters set out in this paper show
that MPC performs well despite the delay that is introduced into the fronthaul network.
The budget latency, however, can be lowered by considering some aspects of the experiment
deployed in Section 3, such as the deployment of specific devices such as accelerators for
the encoder/decoder and RAN functions that are computationally intensive, and the use
of the Data Plane Development Kit for fast packet processing.

5. Conclusions

This paper validates the Cloud-RAN model with the split between MAC and PHY
over Ethernet with additional reliability using MPC. As proof-of-concept for the proposed
solution, we present an end-to-end Cloud-RAN testbed that integrates user equipment,
RU, DU, CU, and a fronthaul network. We first analyse the performance of MPC in terms
of latency and jitter using different packet sizes. The results were satisfying in terms of
average RTT latency being compliant with the requirements of 3GPP, that is, staying below
500 µs. From the latency constraint perspective, the findings in this chapter demonstrate
how the size of the packet has a significant effect on RTT. To lower the RTT, it is very
important to choose the right size of the packet.

Then, we compared the performance of MPC with MPD from a probability of error
perspective. The experimental results show that MPC achieved an error probability of
10−5 at a latency lower than MPD, that is, a latency reduction of 73 µs. However, when
one of the paths is simulated with an extra delay, MPC achieved an error probability of
10−5 at a latency 20 µs later than MPD. Nevertheless, MPC can deliver an error probability
of 10−5 while staying below the acceptable latency on the fronthaul for the MAC–PHY
split, in addition to the advantage of MPC over MPD in terms of reducing fronthaul load.
The results obtained in this paper are consistent with the results reported in [12,13] in
validating the effectiveness of MPC, opening the possibility to implement MPC as a means
of improving reliability in a Cloud-RAN system.

The deployment described in this paper is an experimental facility that may easily
be expanded to a larger scale testbed in terms of network architecture, fronthaul network
topology, and system traffic load.
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