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Abstract: Conveyors are used commonly in industrial production lines and automated sorting sys-
tems. Many applications require fast, reliable, and dynamic detection and recognition for the objects
on conveyors. Aiming at this goal, we design a framework that involves three subtasks: one-class
instance segmentation (OCIS), multiobject tracking (MOT), and zero-shot fine-grained recognition of
3D objects (ZSFGR3D). A new level set map network (LSMNet) and a multiview redundancy-free
feature network (MVRFFNet) are proposed for the first and third subtasks, respectively. The level
set map (LSM) is used to annotate instances instead of the traditional multichannel binary mask,
and each peak of the LSM represents one instance. Based on the LSM, LSMNet can adopt a pix2pix
architecture to segment instances. MVRFFNet is a generalized zero-shot learning (GZSL) framework
based on the Wasserstein generative adversarial network for 3D object recognition. Multi-view fea-
tures of an object are combined into a compact registered feature. By treating the registered features
as the category attribution in the GZSL setting, MVRFFNet learns a mapping function that maps
original retrieve features into a new redundancy-free feature space. To validate the performance
of the proposed methods, a segmentation dataset and a fine-grained classification dataset about
objects on a conveyor are established. Experimental results on these datasets show that LSMNet can
achieve a recalling accuracy close to the light instance segmentation framework You Only Look At
CoefficienTs (YOLACT), while its computing speed on an NVIDIA GTX1660TI GPU is 80 fps, which
is much faster than YOLACT’s 25 fps. Redundancy-free features generated by MVRFFNet perform
much better than original features in the retrieval task.

Keywords: one-class instance segmentation; level set map; multiview feature; fine-grained recogni-
tion; generalized zero-shot learning

1. Introduction

Vision-based localization and recognition of objects on a conveyor (LROC) is an
important type of application in the industry. In a typical scenario, such as vision-based
automatic check-out in unmanned supermarkets or automatic sorting in factories, all
categories are first registered in a database (saving features). Then, the features of objects
on the conveyor are extracted and used to retrieve the categories from the database. It is a
fine-grained recognition task in which we have to distinguish not only whether the object
is Coca-Cola or milk, but also its flavor, volume, and packaging. The challenge of LROC
consists of two large gaps between the registered images and the on-conveyor images. First,
different views of a 3D object should be registered together, as they would be different;
furthermore, only a group of close views of the object on a conveyor can be captured for
prediction. Second, the registered images can be captured in an environment with stable
illumination and background (source domain), whereas the on-conveyor images are often
captured in open environments (target domain). Multi-view methods [1,2] can bridge the
first gap, and domain-aligning methods can deal with the second gap. However, when
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objects of new (unseen) categories occur and we cannot obtain their on-conveyor images
for training, we need to train the network by learning a map from the source to target the
domain that has heterogeneous views different from the seen categories. It is a generalized
zero-shot learning (GZSL) problem [3,4].

In a usual detection-based multiobject tracking (MOT) [5,6] task, which mainly focuses
on the final tracking performance of a few categories of objects (human, car, or some
special categories), the detection module [7–10] is treated as an object detection task with
coarse classification branches, and the reidentification module is treated as a fine-grained
classification task for apparent features. The latter is an additional matching constraint
to relieve ID switching, which is caused by the detection difference between frames. As
object detection of unseen objects is one of the most challenging visual tasks and has not
been exploited comprehensively, decomposition of localization and recognition would be a
better choice. One advantage of decomposition is that some detection-free methods can be
used to improve the computing speed of the localization subtask. Another advantage is
that zero-shot classification architectures can be used to deal with new unseen categories.
Considering the simple texture and the fixed motion direction of conveyors, LROC is
a special MOT task with an easier localization subtask but a harder zero-shot learning
fine-grained recognition subtask.

In this study, a framework of LROC involving three subtasks (one-class instance
segmentation (OCIS), multiobject tracking (MOT), and zero-shot fine-grained recognition
of 3D objects (ZSFGR3D)) is developed. First, the OCIS module segments all objects on the
conveyor. Then, the MOT module tracks the motion trajectory of all objects with the masks
obtained by the OCIS module. Finally, the ZSFGR3D module retrieves the segmented
objects from the gallery of registered features. Because there are many effective methods
for MOT subtasks, we mainly focus on the first and third subtasks in this study.

In the OCIS subtask, the conveyor is the background, and objects on it all belong to
one same category named “Goods”. OCIS is a special task different from semantic segmen-
tation in which segmentation of instances is unnecessary. Because instance segmentation
frameworks are designed for multiple categories and are extended from object detection
frameworks with a lot of anchors, they often have a deep architecture and suffer from low
speed. It hinders them from running on some high cost-effective devices [11]. In this study,
a level set map neural network (LSMNet) is proposed for the OCIS subtask. LSMNet is
inspired by the level set algorithm, which is a traditional active contour method. In the
past three years, two other deep-learning-based active contour methods, level set loss [11]
and deep snake [12], have been developed and applied in segmentation tasks. Unlike
these methods, which comprise additional active contour constraints on the segmentation
losses to improve the quality of masks indirectly, LSMNet utilizes the level set map (LSM)
directly. The annotation of instance segmentation is often in the form of a multichannel
binary image, in which each channel is the mask of one object. In the proposed method, we
use a single level set map (LSM) to annotate the image instead of the multichannel binary
image, where each peak of the LSM represents one object. LSMNet adopts a semantic
segmentation architecture, for instance, a UNet or a pix2pix GAN, to predict LSMs. Once
the LSM of an image is accurately predicted, the objects can be localized according to
the peaks and their areas. An OCIS dataset about on-conveyor objects is established to
validate the performance of LSMNet. An experiment on a subset of COCO2017 [13] is also
conducted. The results show that LSMNet can achieve an accuracy close to You Only Look
At CoefficienTs (YOLACT) [14], which is one of the fastest instance segmentation methods,
on big and medium objects with a much higher speed. On the NVIDIA GTX1660TI GPU,
the speed of LSMNet is 80 fps, and that of YOLACT is 25 fps.

For the FGR3D subtask, the registered multiview features are treated as the semantic at-
tributes of every category, the features of old on-conveyor objects as the seen categories, and
the features of new on-conveyor objects as the unseen categories. A multiview redundancy-
free feature network (MVRFFNet) is proposed to learn the map from multiview features to
single view on-conveyor features based on the GZSL framework proposed by Han et al. [3].
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Multi-view features of an object are extracted with a pretrained network and combined
into a compact registered feature. The registered features are the attributes for training. A
Wasserstein generative adversarial network (WGAN) [15] is trained to learn a map function
that maps the original retrieve features to a new redundancy-free feature space [1].

The proposed method has two advantages. First, LSMNet realizes instance segmenta-
tion with a semantic segmentation network by introducing the innovative LSM annotation.
It has a much higher speed than YOLACT and a close performance on objects of big and
medium size. Second, the redundancy-free feature is introduced into the multiview frame-
work for fine-grained 3D object recognition. The redundancy-free features generated by
MVRFFNet perform much better than the original features in the matching task.

This paper is organized as follows. Section 2 reviews the related work. Section 3
proposes the main algorithms. Experiments are presented in Section 4. At last, some
conductions are drawn in Section 5.

2. Related Works

Instance segmentation is the most difficult task among the four classic visual tasks [16],
which include classification, localization, detection, and segmentation. Its target is to obtain
the pixel-level segmentation of individual objects, which combines the requirements of
semantic segmentation and object detection. Over the past few years, deep learning has
yielded a new generation of instance segmentation models with remarkable performance
improvements and results in a paradigm shift in the field. There are two types of deep
learning models for instance segmentation: two-stage models and one-stage models.

The most important two-stage method is Mask-RNN [17] proposed by He et al.,
which is extended from their earlier important work Faster RCNN [18]. Although two-
stage methods have better performance, their computing burden is too heavy to run on
some embedded devices. Thus, some researchers have proposed several excellent one-
stage methods to reduce the computing burdens under the inspiration of the one-stage
object detection frameworks [7–10]. Dai et al. [19] and Li et al. [20] designed special fully
convolutional networks, together with positive-sensitive score maps, to segment instances.
Daniel et al. proposed YOLACT [14] and improved it to YOLACT++ [21], which achieved
the best balance between speed and accuracy. Xie et al. [22] used a polar mask to annotate
the segmentation of an instance, which is a more precise bounding box. CenterMask [23,24]
was developed from CenterNet [10] by inheriting the anchor-free ideas. Zhang et al. [25]
represented the mask into a two-dimensional vector, which can be combined with the box
detection branch. BlenderMask [26] combines the top-down and bottom-up methods based
on an anchor-free framework.

Zero-shot learning (ZSL), which is one of the typical transfer learning methods, is
perhaps the supreme goal of machine learning. For example, if machines could classify
new classes accurately [27,28], we could collect labeled data as much as possible for free; if
machines could reject samples of unknown classes [29,30], any recognition system would be
shielded against outliers. Specifically, the goal of ZSL is to recognize objects of unseen classes,
whose labels are not available, by learning high-level semantic information [26,27,30].

In the pre-deep-learning era, researchers focused on the conventional or standard ZSL,
in which all test images come from the unseen classes only. Various semantic embedding
methods have been developed based on traditional machine learning technologies [27,31,32].
A semantic embedding method learns to embed the original features into a new semantic
descriptor space and then predict the classification of features via matching the most similar
semantic descriptor.

In the past five years, the more challenging generalized zero-shot learning [3] (GZSL),
in which the test set consists of data from both the seen and unseen classes and semantic
embedding performs poorly, has attracted increasing attention. In a GZSL task, the training
set only contains annotated objects of seen classes, but the test set contains objects from both
seen and unseen classes. The extreme data imbalance of GZSL makes semantic embedding
methods apt to be highly overfitted to seen classes and fail to classify the unseen classes [27].
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Recently, some feature generation methods have been proposed to compensate for the lack
of training images of unseen classes in GZSL. Bucher et al. [33] generated features of unseen
classes with four different generative models, including generative moment matching
network, auxiliary classifier GANs, denoising autoencoder, and adversarial autoencoder.
The f-CLSWGAN has also been utilized to generate the unseen features conditioned
on the class-level semantic descriptors [34]. Some methods [35,36] introduced reverse
regressor networks into the generator network in the form of a cycle-consistent loss or to
constrain the feature [37]. Verma et al. [38] designed a variational autoencoder to achieve
the same function as f-CLSWGAN. Han et al. [3] proposed a redundancy-free feature
generation framework that “limits the information dependence between the mapped
features and the original features of the images to an upper bound”. In the redundancy-free
space, the overfitting problem can be restrained. Besides the generative models, some
other innovative methods have also been proposed. Chen et al. [39] designed a semantic-
preserving adversarial embedding network to avoid the loss of semantic information.
Liu et al. [40] simultaneously calibrated the model confidence of seen classes and the
model uncertainty of unseen classes with a special calibration network. Inspired by the
information bottleneck method [40], an innovative counterfactual framework to balance
seen and unseen classifications was proposed by Yue et al. [41].

3. Framework of the System

The LROC task consists of three subtasks: OSIC, MOT, and ZSFGR3D. As several
mature methods can be used to accomplish the MOT subtask, we focused on the first and
the third subtasks in this work. The hardware system and the overall architecture of the
proposed method are introduced first in this section. Then, LSMNet and MVRFFNet are
proposed to finish the first and third subtasks.

A simple visual recognition system for on-conveyor objects is illustrated in Figure 1.
Serial images are captured by an RGB industrial camera mounted above the conveyor. The
frame rate is about 30 fps, and the speed of the conveyor is about 10 cm/s.
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Figure 1. Conveyor system.

The overall architecture of the proposed method is depicted in Figure 2. It consists of
three main modules: LSMNet, MOT tracker, and MVRFFNet. LSMNet generates instance
segmentation results for the MOT tracker, and the tracker provides segmented retrieval
images for the MVRFFNet. We can choose several frames for an object to improve its
retrieval accuracy. In the inferring process, a matching network is used to retrieve the
redundancy-free features of the on-conveyor objects from the gallery of registered multi-
view features. Other metric learning methods, for instance, the cosine or Euclid distance,
can be used to replace the matching network. When some new objects occur, we only need
to register their multiview features without any additional work.
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3.1. LSMNet

For an image X and its annotation setM =
{

M0
1, M0

2, · · ·
}

, in which M0
k is the binary

mask for the k− th instance. The elements of Mk in the segmentation region are 1, and the
remaining elements are 0. Let

Mn+1
k = erode(Mn

k , Λ) (1)

where erode(·, Λ) is the eroding operation in morphology with the kernel Λ. The region of
Mn+1

k lies in the contour of Mn
k . Then, the LSM of instance k can be obtained according to

MLSM
k = 127 ·M0

k + h ·
K

∑
k=1

Mn
i (2)

where K is the max step of eroding operation, and h is the biggest interval of contour lines.
We can normalize MLSM

k to [0, 255] in the following manner

MLSM
k =

(
127 +

128 ·
(

MLSM
k − 127

)
max

{
MLSM

k
}
− 127

)
/255 (3)

where max{·} returns the maximum element of a 2D matrix.
Denote the final LSM of X asMLSM, then its element at (i, j) is calculated as below

MLSM
i,j = max

k

{
(MLSM

k )i,j

}
(4)

A group of samples is depicted in Figure 3. InMLSM, the elements out of contours are
0, and elements on the contours are equal to 127. We can set K = 1000, and stop Iteration (2)
when Mn+1

k has been eroded totally; that is sum(Mn+1
k ) = 0. In an LSM, peaks represent

objects and valleys represent the background. Once the LSM is predicted accurately, an
appropriate threshold can be used to segment the peaks conveniently.
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It is a typical pixel-level image translation task to predict MLSM with X, and any
pix2pix architecture can be adopted. In this study, we chose an UNet as the basic archi-
tecture. The UNet contains 16 convolutional layers, where the number of convolutional
kernels increases from 16 to 512 in the first 8 layers and decreases to 1 in the last 8 layers.
The scale of downsampling and upsampling is 2, the input size is 256 × 256 × 3, and the
output size of each branch is 256 × 256 × 1. To improve the quality of the LSM, we trained
an LSM branch and a semantic segmentation branch simultaneously. Those two decoders
have the same architecture.

The framework of LSMNet is depicted in Figure 4. In the training process, the LSM
loss and mask loss, together with a consistent constraint loss, were calculated and used to
update the backbone. In the inferring process, small noisy regions ofMLSM were filtered
first, and the foreground regions were segmented with a threshold > 0.5. Each region
corresponds to an instance, and the instance regions are dilated in a ratio proportional to
its area.
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Denote the ground truth of the semantic segmentation mask asMmask. Its elements
are calculated according to

Mmask
i,j = max

k

{
(M0

k)i,j

}
(5)
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The output LSM and mask of LSMNet are written as M̃LSM and M̃mask. Then, the
final lost function consists of three sublosses as below

lsum = lLSM + lmask + lc
lLSM = ω1 ·

∣∣∣MLSM − M̃LSM
∣∣∣

lmask = ω2 ·
∣∣∣Mmask − M̃mask

∣∣∣
lc = ω3 ·

∣∣∣(2M̃mask − 1
)
⊗
(
M̃mask − 0.5

)
−
(
Mmask − 0.5

)∣∣∣
(6)

in which | · | is the L1 norm, ⊗ is the element-wise multiplying operation, and ω1, ω2,
and ω3 are the weights for sublosses. lLSM and lmask are the L1-loss about LSM and mask,
respectively, and lc is an additional constraint to make M̃LSM and M̃mask consistent.

3.2. MVRFFNet

MVRFFNet consists of two modules: the registering module and the feature mapping
module. The former extracts multiview features of an object and combines them into a
compact registered feature. The latter uses a WGAN-based framework [3] to bridge the
gap between registered features and on-conveyor features.

Denote the registering view set of N objects as V =
{

vi,j, i = 1, · · · , N, j = 1, · · · , M
}

,
the seen conveyor view set as U =

{
ui,k, i = 1, 2, · · · , N1, j = 1, 2, · · · , ∞

}
, and the unseen

conveyor view set as S =
{

si,k, i = 1, 2, · · · , N2, j = 1, 2, · · · , ∞
}

, where M is the number of
views, and N satisfies N = N1 + N2. In the registering module, features of different views
are extracted separately with a feature extractor R first; that is si,j = R(vi,j). si,j are fused to
a registered feature ri with a fusing network F; that is ri = F(si,1, si,2, · · · , si,M). F could be
a simple max-pooling layer [2] or a recurrent neural network (RNN) [1] that evolves along
with the variation of view. A graphic neural network (GNN) is also a qualified candidate
fuser. E1 is trained separately, and F is trained together with the mapping module. The
architecture is depicted in Figure 5.
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In the mapping module, the redundancy-free feature mapping framework [3] is
adopted. The structure is depicted in Figure 6. The generator G, with the concatenation of a
registered feature and a noise vector as its input, generates a synthetic or fake on-conveyor
feature. The noise represents the properties of difference between the registered and on-
conveyor features, which includes environment light, background noise, the motion of the
camera, and multiview modal to single-view modal. The mapping function M maps the
on-conveyor features into a latent space, which is the redundancy-free feature space. D is
the discriminator that is realized in the form of Wasserstein distance. Wasserstein distance
is a symmetrical measurement for the difference between two random distributions. E2 is
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a feature extractor to obtain features from on-conveyor images, and C is a final classifier to
predict the categories of latent features.

Besides the usual fake loss and Wasserstein distance in WGAN, the mutual information
(MI) loss based on Kullback–Leibler divergence and the center loss [3] are also considered
when training G and M.
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The training configuration of MVRFFNet is similar to that of [3], except that the
attribute vector is replaced with a registering module and F is updated together with G. E2
is trained separately, and it is frozen when training other parts. In each training batch, F, G,
and M are updated once or several times simultaneously first; and then, M is frozen while
F and G are updated at the same time. At the last step of a training epoch, F, G, and M are
frozen, and C is trained separately. The details about loss functions and training strategies
can be referred to in [3].

4. Experiments and Analysis

In this section, we established an OCIS dataset and a fine-grained recognition dataset
first, and experiments were conducted on them to validate the performance of LSMNet
and MVRFFNet. LSMNet was also tested on the COCO-car dataset, which is a subset of
the open dataset COCO2017 [13].

4.1. Datasets
4.1.1. OCIS Dataset and Fine-Grained Recognition Dataset

The distribution of the OCIS dataset is listed in Table 1. The objects in the test set
are different from those in the training set. Some groups of samples are depicted in
Figures 7 and 8. In addition, we collected 15 video clips of different levels of difficulty.
Level 1 means that there is a distance between any two objects, Level 2 means that ob-
jects flock without any occlusion, and Level 3 means that there exist overlaps among
objects. Due to the smooth surface of the conveyor, the reflection of illumination causes
conspicuous noise.

Table 1. Distribution of the OCIS dataset.

No. of Images/Videos No. of Instances

Training Set 98 503
Test Set 18 105

Level 1: 5 clip 105
Validation Set Level 2: 5 clip 105

Level 3: 5 clip 105



Future Internet 2021, 13, 176 9 of 16

Future Internet 2021, 13, x FOR PEER REVIEW 8 of 16 
 

 

Wasserstein distance is a symmetrical measurement for the difference between two ran-
dom distributions. 2E  is a feature extractor to obtain features from on-conveyor images, 
and C  is a final classifier to predict the categories of latent features. 

Besides the usual fake loss and Wasserstein distance in WGAN, the mutual infor-
mation (MI) loss based on Kullback–Leibler divergence and the center loss [3] are also 
considered when training G  and M . 

registered 
feature

Noise
~

N(0,1)

G
x

x’

M

z

z’

Discriminator
Mapping
Functioin

D

on-conveyor 
features

latent features

True 
or

False

Feature 
Extractor2

conveyor view

Final
Classifier

C
E2

 
Figure 6. Structure of the feature mapping module. 

The training configuration of MVRFFNet is similar to that of [3], except that the at-
tribute vector is replaced with a registering module and F  is updated together with G . 

2E  is trained separately, and it is frozen when training other parts. In each training batch, 
F , G , and M  are updated once or several times simultaneously first; and then, M  is 
frozen while F  and G  are updated at the same time. At the last step of a training epoch, 
F , G , and M  are frozen, and C  is trained separately. The details about loss func-
tions and training strategies can be referred to in [3]. 

4. Experiments and Analysis 
In this section, we established an OCIS dataset and a fine-grained recognition dataset 

first, and experiments were conducted on them to validate the performance of LSMNet 
and MVRFFNet. LSMNet was also tested on the COCO-car dataset, which is a subset of 
the open dataset COCO2017 [13]. 

4.1. Datasets 
4.1.1. OCIS Dataset and Fine-Grained Recognition Dataset 

The distribution of the OCIS dataset is listed in Table 1. The objects in the test set are 
different from those in the training set. Some groups of samples are depicted in Figures 7 
and 8. In addition, we collected 15 video clips of different levels of difficulty. Level 1 means 
that there is a distance between any two objects, Level 2 means that objects flock without 
any occlusion, and Level 3 means that there exist overlaps among objects. Due to the smooth 
surface of the conveyor, the reflection of illumination causes conspicuous noise. 

 
(a) Group 1 (b) Group 2 (c) Group 3 (d) Group 4 

 

Future Internet 2021, 13, x FOR PEER REVIEW 9 of 16 
 

 

 
(e) Group 5 (f) Group 6 (g) Group 7 

Figure 7. Objects in the training set of the OCIS dataset. 

 
(a) Group 1 (b) Group 2 (c) Group 3 (d) Group 4 

Figure 8. Objects in the test set of the OCIS dataset. 

Table 1. Distribution of the OCIS dataset. 

 No. of Images/Videos No. of Instances 
Training Set 98 503 

Test Set 18 105 
 Level 1: 5 clip 105 

Validation Set Level 2: 5 clip 105 
 Level 3: 5 clip 105 

Table 2 presents the distribution of the fine-grained recognition dataset. The objects 
are the same as those in the training set of the OCIS dataset, as shown in Figure 5. Regis-
tered images were captured in a simpler environment, as shown in Figure 3. Each image 
only contains one object. 

Table 2. Distribution of the fine-grained recognition dataset. 

 No. of 
Categories 

No. of  
On-Conveyor Images 

No. of  
Registered Views 

Training Set 34 2380 510 
Seen Test Set  34 1020 - 

Unseen Test Set  18 1800 70 

4.1.2. COCO-Car Dataset 
COCO dataset is a large-scale open dataset for object detection and instance segmen-

tation tasks. It contains 80 classes in total. We collected all samples that contain car in-
stances to establish the COCO-car dataset. The distribution of COCO-car is presented in 
Table 3. The average value of the number of instances in each image was 3.6. 

Table 3. Distribution of the COCO-car dataset. 

 No. of Images of  
COCO-Car (COCO2017) 

No. of Instances of  
COCO-Car (COCO2017) 

Training Set 12,251 (117,266) 43,867 (860,001) 
Validation Set 535 (4952) 1932 (36,781) 

4.2. Results of LSMNet 
In this experiment, we used a fully convolutional UNet with skipping connection as 

the basic architecture of LSMNet. The learning rate was set as 0.0002, the batch size was 6, 

Figure 7. Objects in the training set of the OCIS dataset.

Future Internet 2021, 13, x FOR PEER REVIEW 11 of 20 
 

 

 

 
(a) Group 1 (b) Group 2 (c) Group 3 (d) Group 4 

Figure 8. Objects in the test set of the OCIS dataset. 

Table 1. Distribution of the OCIS dataset. 

 No. of Images/Videos No. of Instances 
Training Set 98 503 

Test Set 18 105 
 Level 1: 5 clip 105 

Validation Set Level 2: 5 clip 105 
 Level 3: 5 clip 105 

Table 2 presents the distribution of the fine-grained recognition dataset. The objects 
are the same as those in the training set of the OCIS dataset, as shown in Figure 5. Regis-
tered images were captured in a simpler environment, as shown in Figure 3. Each image 
only contains one object. 

Table 2. Distribution of the fine-grained recognition dataset. 

 No. of 
Categories 

No. of  
On-Conveyor Images 

No. of  
Registered Views 

Training Set 34 2380 510 
Seen Test Set  34 1020 - 

Unseen Test Set  18 1800 70 

4.1.2. COCO-Car Dataset 
COCO dataset is a large-scale open dataset for object detection and instance segmen-

tation tasks. It contains 80 classes in total. We collected all samples that contain car in-
stances to establish the COCO-car dataset. The distribution of COCO-car is presented in 
Table 3. The average value of the number of instances in each image was 3.6. 

Table 3. Distribution of the COCO-car dataset. 

 
No. of Images of  

COCO-Car (COCO2017) 
No. of Instances of  

COCO-Car (COCO2017) 
Training Set 12,251 (117,266) 43,867 (860,001) 

Validation Set 535 (4952) 1932 (36,781) 

4.2. Results of LSMNet 
In this experiment, we used a fully convolutional UNet with skipping connection as 

the basic architecture of LSMNet. The learning rate was set as 0.0002, the batch size was 6, 
and the weights were 1 2 3 100ω ω ω= = = . Cropping, rotation, channel fusion, and color 
jitter were used to augment the dataset. The curves of the training loss are illustrated in 
Figure 9. The LSMl  curves are above that of maskl , as LSMs are more difficult for the 
pix2pix network to learn than binary masks. The fluctuations of LSMl , maskl , and cl  are 
almost synchronous, and it means that the consistent constraint is violated more seriously 
when the predicted LSM and mask are poor. The fluctuations would be eliminated if a 
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Table 2 presents the distribution of the fine-grained recognition dataset. The objects are
the same as those in the training set of the OCIS dataset, as shown in Figure 5. Registered
images were captured in a simpler environment, as shown in Figure 3. Each image only
contains one object.

Table 2. Distribution of the fine-grained recognition dataset.

No. of
Categories

No. of
On-Conveyor Images

No. of
Registered Views

Training Set 34 2380 510
Seen Test Set 34 1020 -

Unseen Test Set 18 1800 70

4.1.2. COCO-Car Dataset

COCO dataset is a large-scale open dataset for object detection and instance segmenta-
tion tasks. It contains 80 classes in total. We collected all samples that contain car instances
to establish the COCO-car dataset. The distribution of COCO-car is presented in Table 3.
The average value of the number of instances in each image was 3.6.

Table 3. Distribution of the COCO-car dataset.

No. of Images of
COCO-Car (COCO2017)

No. of Instances of
COCO-Car (COCO2017)

Training Set 12,251 (117,266) 43,867 (860,001)
Validation Set 535 (4952) 1932 (36,781)
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4.2. Results of LSMNet

In this experiment, we used a fully convolutional UNet with skipping connection as
the basic architecture of LSMNet. The learning rate was set as 0.0002, the batch size was
6, and the weights were ω1 = ω2 = ω3 = 100. Cropping, rotation, channel fusion, and
color jitter were used to augment the dataset. The curves of the training loss are illustrated
in Figure 9. The lLSM curves are above that of lmask, as LSMs are more difficult for the
pix2pix network to learn than binary masks. The fluctuations of lLSM, lmask, and lc are
almost synchronous, and it means that the consistent constraint is violated more seriously
when the predicted LSM and mask are poor. The fluctuations would be eliminated if a
bigger training set is accessible. Because the objects in the test set were new for the model,
the loss of the test set was unsurprisingly much larger than that of the training set. In
Figure 10, a few samples of the predicted LSMs on the training set are shown. LSM output
suffers from small noisy regions (Samples 1, 3, and 5), which are filtered in the consistency
outputs. However, some tiny objects are missed. The performance of LSMNet on small
objects would be discussed further in the experiment on the COCO-car dataset.
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We compared LSMNet with YOLACT [14] to illustrate its performance. It should be
noted that we fine-tuned the model of YOLACT, which is pretrained on COCO2017 [18].
The results of the videos are listed in Table 4. Because YOLACT is developed based on a
one-stage object detection framework, the segmentation results are affected by the detection
task. Moreover, YOLACT is apt to recall those objects ever seen in COCO2017 due to that
the OCIS dataset is much smaller than COCO2017. As shown in Figure 11, some objects
with large volumes are missed by YOLACT. LSMNet performs very well if there is no
crowding. However, when there exists adjoin or occlusion among objects, it is hard to
determine the threshold for extracting the peaks of LSM. Some poor results of LSMNet are
presented in Figures 12 and 13.

Table 4. OCIS results on videos.

Level 1 Level 2 Level 3

TPR FPR TPR FPR TPR FPR

YOLACT 0.7532 0.0987 0.7398 0.1035 0.7794 0.2335
LSMNet 0.9437 0.0224 0.7098 0.1362 0.6277 0.3361
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To analyze the performance of LSMNet, we compared it with SCNet [41] and YOLACT
on the COCO-car dataset. They are trained with two NVIDIA RTX2080TI GPUs based on
the open framework mmdetection [42], which is developed by SenseTime. The results on
COCO-car are listed in Table 5. AP is the mean AP@IoU = 0.50:0.95, APL, APM, and APS
are the mean AP@IoU on cars of the large, medium, and small size, respectively, and fps is
observed on an NVIDIA GTX1660TI CPU. SCNet performed much better than the other
two methods due to its introduction of the pregenerated stuffthingmaps. However, its
cascade architecture made it much slower than the other two methods. LSMNet performed
close to YOLACT on large and medium cars, but much poorer on small objects. The reason
is that LSMNet extracts pixel-level information first and aggregates it to global semantic
information. Noisy regions in the predicted LSM disturbed the segmentation of small
objects. As the process of finding contours cannot be realized in the form of a differentiable
module, the label information of the bounding boxes cannot be backpropagated to the
pix2pix architecture. The performance of LSMNet would be improved if we can find a
method to utilize the box information in the training process.

Table 5. OCIS results (AP@IoU = 0.50:0.95) on the COCO-car (COCO) dataset.

AP APL APM APS fps

SCNet (R-50-FPN) 0.4060
(0.4020)

0.4640
(0.5340)

0.4830
(0.4280)

0.2500
(0.224) 5

Yolact (R-50-FPN) 0.2160
(0.2060)

0.4180
(0.3420)

0.3830
(0.2160)

0.1170
(0.0530) 25

LSMNet 0.1530
(-)

0.4150
(-)

0.3620
(-)

0.0450
(-) 80

4.3. Results of MVRFFNet

With the same setting as [3], we trained MVRFFNet with four different fusing models.
The results are listed in Table 6. The performance of RNN was close to GNN and better
than a simple max-pooling or average-pooling layer. The training process is depicted in
Figures 14 and 15. As seen classes can provide direct information for classification, the
accuracy of seen classes achieves 0.3 in the first 10 epochs. The seen and unseen classes
achieve a balance after 60 epochs and keep stable after 200 epochs. MI loss descends rapidly
in the first several epochs and then smoothly till the end of the training process, while center
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loss descends rapidly in the first several epochs and keeps stable in the following epochs.
This is because center loss constrains the inner-class distance of redundancy-free features
on themselves, while MI loss composes an upper bound on the conveyed information
between the original and redundancy-free features.

Table 6. Classification accuracy of the MVRFFNet on the fine-grained recognition dataset.

Accuracy

Seen Categories Unseen Categories H

Max Pooling 0.6329 0.3974 0.4883
Average Pooling 0.6405 0.3962 0.4895

RNN 0.6217 0.4348 0.5168
GNN 0.6203 0.4328 0.5099
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Figure 15. Accuracy of MVRFFNet on the fine-grained recognition dataset.

We also trained a binary matching network to predict whether a registered feature
and an on-conveyor feature belong to the same object. The results are listed in Table 7. It
can be found that mapping the feature into the redundancy-free space can improve the
matching accuracy significantly.

Table 7. Matching accuracy on the test set of the fine-grained recognition dataset.

Accuracy

Seen Categories Unseen Categories H

Original feature 0.5902 0.5781 0.5841
MVRFFNet feature 0.6870 0.6183 0.6508
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5. Conclusions

LSMNet and MVRFFNet were proposed in this study for the OCIS and ZSFGR3D
subtasks that are involved in the complex LROC task. Experiments were conducted
on an OCIS dataset and a fine-grained recognition dataset about objects on a conveyor,
respectively. LSMNet could achieve a recalling accuracy close to YOLACT on large and
middle objects, while its computing speed on an NVIDIA GTX1660TI GPU was 25 fps,
which is much faster than YOLACT‘s 80 fps. MVRFFNet performed much better than
traditional metric learning methods in the retrieval task by mapping the features into a
redundancy-free feature space.

Future works will concern three aspects. First, we are going to collect more samples
that match the actual situation in Figures 9–11, each sample of which only contains one
object that does not cover the case of crowdedness and occlusion. A more comprehensive
analysis of the performance of MVRFFNet will be carried out. Second, we will extend the
pix2pix architecture to multiple output branches and establish an LSM for each category,
LSMNet would be suitable for multiple class instance segmentation tasks. The third is to
find contours in a new manner that can transmit the supervised information of detection
to improve the performance of LSMNet on small objects. The last task is to combine
multiview features and semantic attribution together to improve the performance further.
The motivation is that the multiview registered features serve as the attribution of GZSL
setting in MVRFFNet, and high-level semantic attribution has not been utilized yet.
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