
future internet

Article

Two-Layer Reversible Data Hiding for VQ-Compressed
Images Based on De-Clustering and Indicator-Free
Search-Order Coding

Chin-Chen Chang 1 , Jui-Feng Chang 1, Wei-Jiun Kao 1 and Ji-Hwei Horng 2,*

����������
�������

Citation: Chang, C.-C.; Chang, J.-F.;

Kao, W.-J.; Horng, J.-H. Two-Layer

Reversible Data Hiding for

VQ-Compressed Images Based on

De-Clustering and Indicator-Free

Search-Order Coding. Future Internet

2021, 13, 215. https://doi.org/

10.3390/fi13080215

Academic Editor: Carlo Blundo

Received: 2 August 2021

Accepted: 18 August 2021

Published: 20 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information Engineering and Computer Science, Feng Chia University,
Taichung 40724, Taiwan; ccc@o365.fcu.edu.tw (C.-C.C.); rfchang1996@gmail.com (J.-F.C.);
wjk19960913@gmail.com (W.-J.K.)

2 Department of Electronic Engineering, National Quemoy University, Kinmen 89250, Taiwan
* Correspondence: horng@email.nqu.edu.tw

Abstract: During transmission of digital images, secret messages can be embedded using data
hiding techniques. Such techniques can transfer private secrets without drawing the attention of
eavesdroppers. To reduce the amount of transmitted data, image compression methods are widely
applied. Hiding secret data in compressed images is a hot issue recently. In this paper, we apply
the de-clustering concept and the indicator-free search-order coding (IFSOC) technique to hide
information into vector quantization (VQ) compressed images. Experimental results show that the
proposed two-layer reversible data hiding scheme for IFSOC-encoded VQ index table can hide a
large amount of secret data among state-of-the-art methods with a relatively lower bit rate and
high security.

Keywords: data hiding; VQ compression; de-clustering; indicator-free search-order coding (IFSOC)

1. Introduction

In the era of fifth generation (5G) mobile networks, information security draws much
more attention than ever and various data hiding schemes and secure communication
techniques have been proposed [1–4]. The data hiding technique embeds secret messages
into a carrier, such as an audio, a video, or a digital image. Upon receiving the marked
carrier, the receiver extracts the secret data and recovers the carrier. Among the existing
data hiding methods, not all of them can losslessly recover the carrier. A method that can
perfectly recover a carrier is classified as a reversible data hiding (RDH) method [5–8];
otherwise, it is irreversible [9–12].

The most popular carrier is digital images. Since there are various compression formats
for digital images, including lossy compression [13–15] and lossless compression [16,17],
an efficient data hiding techniques should be designed according to the features of the
target format. In this research, we focus on the data embedding of VQ compressed images.

Before VQ compression, a codebook should be established first. The LBG (Lindo-
Buzo-Gray) algorithm [18] is a commonly applied technique to train a codebook. The
compression process starts with partitioning the given image into disjoint blocks. Then,
each block is encoded by finding its best fitting codeword in the codebook and represent
the block with the index of the found codeword. As a result, the given image is encoded
into an index table, which is also called the VQ compressed code.

Some methods have been proposed to further compress the VQ code [16,19]. In 1992,
Kim proposed side-match vector quantization (SMVQ) [19]. Only the first row and the first
column of the index table are recorded. In the decompression phase, blocks of the first
row and the first column are decompressed first. Then, the remaining image blocks are
predicted by side-matching with the codewords in the codebook. The compress ratio is
very high. However, the quality of the decompressed image is poor.

Future Internet 2021, 13, 215. https://doi.org/10.3390/fi13080215 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-7319-5780
https://orcid.org/0000-0002-2134-5257
https://doi.org/10.3390/fi13080215
https://doi.org/10.3390/fi13080215
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi13080215
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi13080215?type=check_update&version=1

Future Internet 2021, 13, 215 2 of 19

In 2004, Chang et al. proposed a reversible scheme [20] to embed secret data in SOC-
encoded VQ indices. The indicator bit of each SOC-encoded index is directly replaced
by a secret bit. When a flip of indicator bit is encountered, its following format of index
code should be exchanged correspondingly. The embedding rate is satisfactory; however,
exchange of index format severely expands the code length.

After that, improved versions [21–23] were proposed. In the original version of SOC
data hiding, to switch an uncompressible code into a camouflaged compressed code, a
reserved code is applied followed by the original index. Which makes a great expansion
of file size and reduces the ability of SOC compression. In 2011, Rahmani et al. proposed
an improved version [21], which leaves the uncompressible index unembedded and thus
releases the reserved code. In 2016, Qin and Hu proposed a data hiding scheme [23] based
on the improved search-order coded (ISOC) VQ indices. The compression ability and
the embedding capacity can be further improved. These studies make different trade-
offs between embedding rate and file expansion based on the same scheme of indicator
bit replacement. In recent years, RDH for VQ index table based on different kinds of
compression methods for VQ have been proposed [24–27].

Another series of RDH for VQ index table is to apply the de-clustering concept, which
is proposed by Chang et al. at 2006 [28]. With the help of SMVQ, indices of VQ can switch
between a dissimilar pair to embed a secret bit without expanding the code length. Later,
different kinds of clustering techniques [29,30] have been proposed to improve the hiding
capacity of the de-clustering approach.

In this paper, we incorporate the de-clustering technique with an SOC-based method
to improve data hiding capacity and information security. A two-layer RDH scheme for
VQ index table is proposed. The de-clustering concept is applied to embed the first layer
of secret data. Then, an indicator-free SOC is applied to compress the de-clustered index
table. During compression, the second layer of secret data is embedded to camouflage a
regular VQ index table. Experimental results demonstrate that the proposed scheme can
hide a satisfactory amount of secret data with high security as expected.

The rest of this paper is organized as follows. VQ compression and SOC encoding
techniques are introduced in Section 2. The proposed two-layer RDH scheme is presented
in Section 3. Experimental results and comparisons with related works are provided in
Section 4. Finally, conclusions are made in Section 5.

2. Related Work

The subject of our embedding scheme is SOC-encoded VQ index table. To know its
features, we first introduce the VQ image compression and its corresponding SOC method.

2.1. VQ Image Compression

Vector quantization (VQ) is a simple and efficient image compression technique. It
has a high compression ratio with an adjustable bit rate and fidelity. Therefore, it is very
commonly applied in real applications.

Before compression, a codebook should be established. Firstly, three to five typical
images are selected. Ideally, both smooth and complex images are included. Then, each
image is divided into mutually exclusive blocks of size w× h. Each of the blocks is treated
as a one-dimensional vector with K = w× h tuples. According to the desired codebook
size n, 256 for example, the overall blocks are clustered into n groups. Finally, the mean
vector of each vector group is recorded as a codeword. The collection of n codewords forms
a codebook.

The compression process is illustrated in Figure 1. The image to be compressed is
divided into blocks of size w× h in the same way as the codebook training process. Then,
each block is rearranged into a vector and compared with the codewords in the codebook.
The serial number of the closest codeword is recorded into the index table. As a result, the
given image is compressed into an index table.

Future Internet 2021, 13, 215 3 of 19

Future Internet 2021, 13, x FOR PEER REVIEW 3 of 19

The compression process is illustrated in Figure 1. The image to be compressed is
divided into blocks of size ݓ × ℎ in the same way as the codebook training process. Then,
each block is rearranged into a vector and compared with the codewords in the codebook.
The serial number of the closest codeword is recorded into the index table. As a result, the
given image is compressed into an index table.

A typical setting of parameters is to compress image blocks sized 4 × 4 with a code-
book of length 256. Under such circumstance, the compression ratio is 16:1. To get a better
fidelity of approximation, codebooks with length 512 or 1024 are also applicable. Of
course, the compression ratio is reduced at the same time.

Figure 1. An illustration of VQ image compression, where ݓ × ℎ is the block size; ܭ = ݓ × ℎ is the codeword length of
the codebook; ݅, ݆, and ݇ are the indices of the leading blocks.

2.2. Search-Order Coding (SOC)
In 1996, [17] utilized the high similarity between index values within a local region

to further compress the VQ index table. The process is illustrated in Figure 2. Assuming
that the black-dotted element is the current pixel under processing. Since the indices are
recorded in the raster scan order, the indices in the gray area are available to be referred.
The order of searching is as labeled in Figure 3. When a matched index is found within a
predefined search range, the current index is encoded with the serial number of the
matched index. The serial number of indices is assigned along the searching path with
repeated index values skipped to improve the coding capacity.

To distinguish between SOC representable and non-representable indices, an addi-
tional indicator bit is prefixed to an SOC serial number or an original index. The existing
RDH schemes for SOC-encoded VQ indices focus on replacing the indicator bit with a
secret bit and modifying its following code to fit the data type indicated. In cases where
the indicator bit mismatches with the secret bit, the succeeding code may be significantly
lengthened.

Figure 2. Illustration of the search order.

An example of SOC is illustrated in Figure 3, where the index 36 at the center is under
processing and the gray portion is the referable indices that have been compressed earlier.
Suppose we apply four bits to represent the serial number of indices along the search path

Figure 1. An illustration of VQ image compression, where w× h is the block size; K = w× h is the codeword length of the
codebook; i, j, and k are the indices of the leading blocks.

A typical setting of parameters is to compress image blocks sized 4× 4 with a codebook
of length 256. Under such circumstance, the compression ratio is 16:1. To get a better fidelity
of approximation, codebooks with length 512 or 1024 are also applicable. Of course, the
compression ratio is reduced at the same time.

2.2. Search-Order Coding (SOC)

In 1996, [17] utilized the high similarity between index values within a local region
to further compress the VQ index table. The process is illustrated in Figure 2. Assuming
that the black-dotted element is the current pixel under processing. Since the indices are
recorded in the raster scan order, the indices in the gray area are available to be referred.
The order of searching is as labeled in Figure 3. When a matched index is found within
a predefined search range, the current index is encoded with the serial number of the
matched index. The serial number of indices is assigned along the searching path with
repeated index values skipped to improve the coding capacity.

To distinguish between SOC representable and non-representable indices, an addi-
tional indicator bit is prefixed to an SOC serial number or an original index. The existing
RDH schemes for SOC-encoded VQ indices focus on replacing the indicator bit with a secret
bit and modifying its following code to fit the data type indicated. In cases where the indica-
tor bit mismatches with the secret bit, the succeeding code may be significantly lengthened.

An example of SOC is illustrated in Figure 3, where the index 36 at the center is under
processing and the gray portion is the referable indices that have been compressed earlier.
Suppose we apply four bits to represent the serial number of indices along the search path
and an indicator bit valued 1 to indicate a compressible index. The first encountered index
30 is labeled as 0000. The next index is also 30. According to the rule of labeling, repeated
indices are left unlabeled. Then, the process is proceeded step by step and labels the indices
31, 32, 33, 34, 35, (31), 37, 38, 40, 41, 39, 42, 43, 44, and 36 as 0001 to 1110. The parenthesized
31 is also a repetition index and therefore skipped. As a result, the current index 36 is
compressed into five bits 11,110, where the first bit 1 is the indicator bit.

Future Internet 2021, 13, 215 4 of 19

Future Internet 2021, 13, x FOR PEER REVIEW 3 of 19

The compression process is illustrated in Figure 1. The image to be compressed is
divided into blocks of size ݓ × ℎ in the same way as the codebook training process. Then,
each block is rearranged into a vector and compared with the codewords in the codebook.
The serial number of the closest codeword is recorded into the index table. As a result, the
given image is compressed into an index table.

A typical setting of parameters is to compress image blocks sized 4 × 4 with a code-
book of length 256. Under such circumstance, the compression ratio is 16:1. To get a better
fidelity of approximation, codebooks with length 512 or 1024 are also applicable. Of
course, the compression ratio is reduced at the same time.

Figure 1. An illustration of VQ image compression, where ݓ × ℎ is the block size; ܭ = ݓ × ℎ is the codeword length of
the codebook; ݅, ݆, and ݇ are the indices of the leading blocks.

2.2. Search-Order Coding (SOC)
In 1996, [17] utilized the high similarity between index values within a local region

to further compress the VQ index table. The process is illustrated in Figure 2. Assuming
that the black-dotted element is the current pixel under processing. Since the indices are
recorded in the raster scan order, the indices in the gray area are available to be referred.
The order of searching is as labeled in Figure 3. When a matched index is found within a
predefined search range, the current index is encoded with the serial number of the
matched index. The serial number of indices is assigned along the searching path with
repeated index values skipped to improve the coding capacity.

To distinguish between SOC representable and non-representable indices, an addi-
tional indicator bit is prefixed to an SOC serial number or an original index. The existing
RDH schemes for SOC-encoded VQ indices focus on replacing the indicator bit with a
secret bit and modifying its following code to fit the data type indicated. In cases where
the indicator bit mismatches with the secret bit, the succeeding code may be significantly
lengthened.

Figure 2. Illustration of the search order.

An example of SOC is illustrated in Figure 3, where the index 36 at the center is under
processing and the gray portion is the referable indices that have been compressed earlier.
Suppose we apply four bits to represent the serial number of indices along the search path

Figure 2. Illustration of the search order.

Future Internet 2021, 13, x FOR PEER REVIEW 4 of 19

and an indicator bit valued 1 to indicate a compressible index. The first encountered index
30 is labeled as 0000. The next index is also 30. According to the rule of labeling, repeated
indices are left unlabeled. Then, the process is proceeded step by step and labels the indi-
ces 31, 32, 33, 34, 35, (31), 37, 38, 40, 41, 39, 42, 43, 44, and 36 as 0001 to 1110. The parenthe-
sized 31 is also a repetition index and therefore skipped. As a result, the current index 36
is compressed into five bits 11,110, where the first bit 1 is the indicator bit.

Figure 3. An example of SOC.

3. Proposed Scheme
The proposed data hiding scheme for VQ index table is based on the concept of de-

clustering and the indicator-free SOC. The proposed RDH scheme includes two layers. In
the first layer of data embedding, the de-clustering concept is leveraged with the help of
side-match evaluation. The second layer of data embedding is executed during an indica-
tor-free SOC compression of the VQ indices. By appending secret bits to a SOC com-
pressed VQ index to camouflage a regular VQ index. The complete flowchart is shown in
Figure 4, where the processing procedures for data hider and receiver are both illustrated.
In the following subsections, the side-match evaluation, the first layer of data embedding,
the indicator-free SOC compression with the second layer of data embedding, the data
extraction, and the index table recovery are described in detail.

Figure 4. The flowchart of the proposed scheme.

Figure 3. An example of SOC.

3. Proposed Scheme

The proposed data hiding scheme for VQ index table is based on the concept of
de-clustering and the indicator-free SOC. The proposed RDH scheme includes two layers.
In the first layer of data embedding, the de-clustering concept is leveraged with the help
of side-match evaluation. The second layer of data embedding is executed during an
indicator-free SOC compression of the VQ indices. By appending secret bits to a SOC
compressed VQ index to camouflage a regular VQ index. The complete flowchart is shown
in Figure 4, where the processing procedures for data hider and receiver are both illustrated.
In the following subsections, the side-match evaluation, the first layer of data embedding,
the indicator-free SOC compression with the second layer of data embedding, the data
extraction, and the index table recovery are described in detail.

Future Internet 2021, 13, x FOR PEER REVIEW 4 of 19

and an indicator bit valued 1 to indicate a compressible index. The first encountered index
30 is labeled as 0000. The next index is also 30. According to the rule of labeling, repeated
indices are left unlabeled. Then, the process is proceeded step by step and labels the indi-
ces 31, 32, 33, 34, 35, (31), 37, 38, 40, 41, 39, 42, 43, 44, and 36 as 0001 to 1110. The parenthe-
sized 31 is also a repetition index and therefore skipped. As a result, the current index 36
is compressed into five bits 11,110, where the first bit 1 is the indicator bit.

Figure 3. An example of SOC.

3. Proposed Scheme
The proposed data hiding scheme for VQ index table is based on the concept of de-

clustering and the indicator-free SOC. The proposed RDH scheme includes two layers. In
the first layer of data embedding, the de-clustering concept is leveraged with the help of
side-match evaluation. The second layer of data embedding is executed during an indica-
tor-free SOC compression of the VQ indices. By appending secret bits to a SOC com-
pressed VQ index to camouflage a regular VQ index. The complete flowchart is shown in
Figure 4, where the processing procedures for data hider and receiver are both illustrated.
In the following subsections, the side-match evaluation, the first layer of data embedding,
the indicator-free SOC compression with the second layer of data embedding, the data
extraction, and the index table recovery are described in detail.

Figure 4. The flowchart of the proposed scheme.

Figure 4. The flowchart of the proposed scheme.

Future Internet 2021, 13, 215 5 of 19

3.1. The Side-Match Evaluation

For convenience, we apply a small codebook of length 16 in all illustrative examples,
although typical lengths are 256, 512, or 1024 in most real applications. In addition, the
head and rear codewords, i.e., CW0 and CW15, are reserved as explained. The reserved
codewords are determined after codebook training. After obtaining the codebook, the
principal component analysis (PCA) is used to determine the projection values of the
fourteen codewords along the first component as shown in Figure 5. The codebook is
denoted by CV =

{
V1, V2, . . . , V14}, where V j represents a codeword of 16 pixel-values in

the codebook of size 14. The first principal component W of the codewords in the codebook
is defined by

W = arg max
||W||=1

∑
j
(W·V j)

2
(1)

Future Internet 2021, 13, x FOR PEER REVIEW 5 of 19

3.1. The Side-Match Evaluation
For convenience, we apply a small codebook of length 16 in all illustrative examples,

although typical lengths are 256, 512, or 1024 in most real applications. In addition, the
head and rear codewords, i.e., CW0 and CW15, are reserved as explained. The reserved
codewords are determined after codebook training. After obtaining the codebook, the
principal component analysis (PCA) is used to determine the projection values of the four-
teen codewords along the first component as shown in Figure 5. The codebook is denoted
by ܥ௏ = ሼܸଵ, ܸଶ, … , ܸଵସሽ, where ܸ௝ represents a codeword of 16 pixel-values in the code-
book of size 14. The first principal component W of the codewords in the codebook is
defined by ܹ = arg max‖ௐ‖ୀଵ ෍ (ܹ ∙௝ ܸ௝)ଶ (1)

The projections of codewords to this component constitute a data set with maximum
variance. Then, the codewords are sorted according to the ascending order of projection
value. If the codebook shown in Figure 6 is a PCA-sorted one, we further divide the code-
words into two clusters. The upper half is cluster 1, while the lower half is cluster 0. Be-
sides, a one-to-one mapping in their corresponding order within the clusters is defined as
illustrated in the figure.

Figure 5. Illustration of the codebook sorting.

Figure 6. An illustration of codewords clustering.

Figure 5. Illustration of the codebook sorting.

The projections of codewords to this component constitute a data set with maximum
variance. Then, the codewords are sorted according to the ascending order of projection
value. If the codebook shown in Figure 6 is a PCA-sorted one, we further divide the
codewords into two clusters. The upper half is cluster 1, while the lower half is cluster 0.
Besides, a one-to-one mapping in their corresponding order within the clusters is defined
as illustrated in the figure.

Future Internet 2021, 13, x FOR PEER REVIEW 5 of 19

3.1. The Side-Match Evaluation
For convenience, we apply a small codebook of length 16 in all illustrative examples,

although typical lengths are 256, 512, or 1024 in most real applications. In addition, the
head and rear codewords, i.e., CW0 and CW15, are reserved as explained. The reserved
codewords are determined after codebook training. After obtaining the codebook, the
principal component analysis (PCA) is used to determine the projection values of the four-
teen codewords along the first component as shown in Figure 5. The codebook is denoted
by ܥ௏ = ሼܸଵ, ܸଶ, … , ܸଵସሽ, where ܸ௝ represents a codeword of 16 pixel-values in the code-
book of size 14. The first principal component W of the codewords in the codebook is
defined by ܹ = arg max‖ௐ‖ୀଵ ෍ (ܹ ∙௝ ܸ௝)ଶ (1)

The projections of codewords to this component constitute a data set with maximum
variance. Then, the codewords are sorted according to the ascending order of projection
value. If the codebook shown in Figure 6 is a PCA-sorted one, we further divide the code-
words into two clusters. The upper half is cluster 1, while the lower half is cluster 0. Be-
sides, a one-to-one mapping in their corresponding order within the clusters is defined as
illustrated in the figure.

Figure 5. Illustration of the codebook sorting.

Figure 6. An illustration of codewords clustering.

Figure 6. An illustration of codewords clustering.

Future Internet 2021, 13, 215 6 of 19

Next, the side-match evaluation is defined as illustrated in Figure 7. For a block in the
VQ image, for example ‘CW1’, the pixel values along the border with upper and left blocks
are collected to form two vectors, one is constituted by inside pixels and the other is consti-
tuted by the outside pixels. For the illustrated case, vin = [125, 130, 133, 130, 129, 126, 140]
and vout = [(132 + 128)/2, 135, 133, 133, 132, 133, 138]. Compute the distance between
the two vectors by dt = [(130− 125)2 + (135− 130)2 + (133− 133)2 + (133− 130)2+

(132− 129)2 + (133− 126)2 + (138− 140)2]1/2 = 11. The corner pixel is compared with
the average value of its top and left neighbors. By replacing the codeword with its coun-
terpart ‘CW8’ according to the one-to-one mapping, another distance d f can be obtained.
Normally, dt is much smaller than d f , since the neighboring image blocks are usually like
each other. Based on this property, a switching between counterparts can be easily detected
and therefore can be exploited to embed secret data.

Future Internet 2021, 13, x FOR PEER REVIEW 6 of 19

Next, the side-match evaluation is defined as illustrated in Figure 7. For a block in
the VQ image, for example ‘CW1’, the pixel values along the border with upper and left
blocks are collected to form two vectors, one is constituted by inside pixels and the other
is constituted by the outside pixels. For the illustrated case, ݒ௜௡ =[125,130,133,130,129,126,140] and ݒ௢௨௧ = [(132 + 128)/2, 135, 133, 133, 132, 133, 138] .
Compute the distance between the two vectors by ݀௧ = [(130 − 125)ଶ + (135 − 130)ଶ +(133 − 133)ଶ + (133 − 130)ଶ + (132 − 129)ଶ + (133 − 126)ଶ + (138 − 140)ଶ]ଵ/ଶ = 11 .
The corner pixel is compared with the average value of its top and left neighbors. By re-
placing the codeword with its counterpart ‘CW8’ according to the one-to-one mapping,
another distance ݀௙ can be obtained. Normally, ݀௧ is much smaller than ݀௙, since the
neighboring image blocks are usually like each other. Based on this property, a switching
between counterparts can be easily detected and therefore can be exploited to embed se-
cret data.

Figure 7. Illustration of the side-match evaluation.

3.2. The First Layer of Data Embedding Process
The first layer of data embedding in the proposed scheme is based on the side-match

evaluation. Since the mapping codeword pair defined between two clusters are dissimilar
enough, de-clustering by switching between a mapping codeword pair leads to an abnor-
mal side-match value. The embedding rules are quite simple. The cluster labels ‘1’ and ‘0’
are exploited to indicate the embedded binary bit. When the label of current processing
index is matched with the binary bit to be embedded, it is kept unchanged; when they are
not matched, the index is switched to its counter codeword according to the predefined
mapping. In this way, the secret data can be embedded without lengthening the index
code. To execute the side-match evaluation, the indices in the first row and the first col-
umn of the index table are treated as the seed indices and kept unchanged. The first layer
of data embedding is applied to the residual indices.

Note that the formal (real) VQ image blocks are not always ‘normal’ under side-
match evaluation. In such abnormal circumstance, the reserved codewords, i.e., the head
and rear codewords, take over. When ‘0’ is to be embedded, the head codeword is in-
serted; when ‘1’ is to be embedded, the rear codeword is inserted. The insertion of a re-
served codeword indicates two things: (1) the secret bit is as it represents for, and (2) the
current image block is abnormal, and its index is pushed behind. Knowing the infor-
mation of an abnormal situation, the actual index of the current image block still can be
embedded with a secret bit according to the same rule. Thus, an abnormal image block
leads to a double code length; however the embedded data is also doubled. In addition,
the binary secret data is stream encrypted before embedding. The algorithm for the pro-
posed secret data embedding scheme is summarized as Algorithm 1.

132 135 133 133 132 135 133 133

128 125 130 133 130 128 7 4 14 54

132 129 132 9

133 126 133 33

138 140 138 14
CW1L

U U

L CW8

݀1 = [(130 − 125 ଶ + 135 − 130 ଶ +133 − 133 ଶ + 133 − 130 ଶ + 132 − 129 ଶ+(133 − 126)ଶ+(138 − 140)ଶ)]ଵ/ଶ = 11 ݀14 = [(130 − 7 ଶ + 135 − 4 ଶ +133 − 14 ଶ + 133 − 54 ଶ + 132 − 9 ଶ+ 133 − 33 ଶ + (138 − 14)ଶ)]ଵ/ଶ = 305.28
Figure 7. Illustration of the side-match evaluation.

3.2. The First Layer of Data Embedding Process

The first layer of data embedding in the proposed scheme is based on the side-
match evaluation. Since the mapping codeword pair defined between two clusters are
dissimilar enough, de-clustering by switching between a mapping codeword pair leads to
an abnormal side-match value. The embedding rules are quite simple. The cluster labels
‘1’ and ‘0’ are exploited to indicate the embedded binary bit. When the label of current
processing index is matched with the binary bit to be embedded, it is kept unchanged;
when they are not matched, the index is switched to its counter codeword according to the
predefined mapping. In this way, the secret data can be embedded without lengthening
the index code. To execute the side-match evaluation, the indices in the first row and the
first column of the index table are treated as the seed indices and kept unchanged. The first
layer of data embedding is applied to the residual indices.

Note that the formal (real) VQ image blocks are not always ‘normal’ under side-match
evaluation. In such abnormal circumstance, the reserved codewords, i.e., the head and
rear codewords, take over. When ‘0’ is to be embedded, the head codeword is inserted;
when ‘1’ is to be embedded, the rear codeword is inserted. The insertion of a reserved
codeword indicates two things: (1) the secret bit is as it represents for, and (2) the current
image block is abnormal, and its index is pushed behind. Knowing the information of an
abnormal situation, the actual index of the current image block still can be embedded with
a secret bit according to the same rule. Thus, an abnormal image block leads to a double
code length; however the embedded data is also doubled. In addition, the binary secret
data is stream encrypted before embedding. The algorithm for the proposed secret data
embedding scheme is summarized as Algorithm 1.

Future Internet 2021, 13, 215 7 of 19

Algorithm 1. The first-layer of data embedding for VQ index table.

Input: cover image I, specialized codebook B = {CWi|i = 1, 2, . . . , n− 2}, codeword mapping
function M, secret data S.
Output: 1-st stego index table T̂.
1: Divide the cover image into mutually exclusive blocks sized w× h.
2: Compress the cover image I into index table T according to codebook B.
3: Encrypt the secret data S by a stream cipher.
4: For each residual index vj ∈ T,
5: Find the cluster label L(vj).
6: If dt < d f ,
7: Retrieve a secret bit b from S.
8: If L(vj) = b, record vj to T̂; else, record v′j = M

(
vj

)
to T̂. End

9: Else
10: Retrieve a secret bit b1 from S.
11: If b1 = 0, record CW0 to T̂; else record CWn−1 to T̂. End
12: Retrieve a secret bit b2 from S.
13: If L(vj) = b2, record vj to T̂; else, record v′j = M

(
vj

)
to T̂. End

14: End
15: End

We use three typical examples to demonstrate the embedding process of the proposed
data hiding scheme. The first example is shown in Figure 8. The index value is ‘CW5’
and the secret bit to be embedded is ‘1’. Since dt = d(cw5) < d(cw12) = d f and the
cluster label matches with the secret bit, i.e., L(cw5) = 1 = b, the secret bit is embedded
without any modification. The second example is shown in Figure 9. The index value
is ‘CW7’ and the secret bit to be embedded is ‘0’. Again, this is a normal image block
according to the side-match evaluation. Since the cluster label mismatches the secret bit,
i.e., L(cw7) = 1 6= 0 = b, the secret bit is embedded by recording its counterpart ‘CW14’
obtained through the pre-defined mapping between clusters. The third example is shown
in Figure 10. In this case, the side-match evaluation, dt = d(cw11) > d(cw4) = d f , indicates
the occurrence of an abnormal block. Since the secret bit to be embedded is ‘1’, the rear
codeword ‘CW15’ is recorded. In addition, the next secret bit ‘0’ is embedded by recording
the matched current index ‘CW11’.

Future Internet 2021, 13, x FOR PEER REVIEW 7 of 19

Algorithm 1 The first-layer of data embedding for VQ index table.
Input: cover image ܫ, specialized codebook ܤ = ሼܥ ௜ܹ|݅ = 1,2, … , ݊ − 2ሽ, codeword mapping function ܯ, secret data ܵ.
Output: 1-st stego index table ෠ܶ .
1: Divide the cover image into mutually exclusive blocks sized ݓ × ℎ.
2: Compress the cover image ܫ into index table ܶ according to codebook ܤ.
3: Encrypt the secret data ܵ by a stream cipher.
4: For each residual index ݒ௝ ∈ ܶ,
5: Find the cluster label ܮ(ݒ௝).
6: If ݀௧ < ݀௙,

7: Retrieve a secret bit ܾ from ܵ.
8: If ܮ(ݒ௝) = ܾ, record ݒ௝ to ෠ܶ ; else, record ݒ௝ᇱ = to ෠ܶ (௝ݒ)ܯ . End
9: Else
10: Retrieve a secret bit ܾଵ from ܵ.
11: If ܾଵ = 0, record ܥ ଴ܹ to ෠ܶ ; else record ܥ ௡ܹିଵ to ෠ܶ . End
12: Retrieve a secret bit ܾଶ from ܵ.
13: If ܮ(ݒ௝) = ܾଶ, record ݒ௝ to ෠ܶ ; else, record ݒ௝ᇱ = to ෠ܶ (௝ݒ)ܯ . End
14: End
15: End

We use three typical examples to demonstrate the embedding process of the pro-
posed data hiding scheme. The first example is shown in Figure 8. The index value is
‘CW5’ and the secret bit to be embedded is ‘1’. Since ݀௧ = (5ݓܿ)݀ < (12ݓܿ)݀ = ݀௙ and
the cluster label matches with the secret bit, i.e., (5ݓܿ)ܮ = 1 = ܾ, the secret bit is embed-
ded without any modification. The second example is shown in Figure 9. The index value
is ‘CW7’ and the secret bit to be embedded is ‘0’. Again, this is a normal image block
according to the side-match evaluation. Since the cluster label mismatches the secret bit,
i.e., (7ݓܿ)ܮ = 1 ≠ 0 = ܾ, the secret bit is embedded by recording its counterpart ‘CW14’
obtained through the pre-defined mapping between clusters. The third example is shown
in Figure 10. In this case, the side-match evaluation, ݀௧ = (11ݓܿ)݀ > (4ݓܿ)݀ = ݀௙, indi-
cates the occurrence of an abnormal block. Since the secret bit to be embedded is ‘1’, the
rear codeword ‘CW15’ is recorded. In addition, the next secret bit ‘0’ is embedded by re-
cording the matched current index ‘CW11’.

Figure 8. Embedding example 1: matched case.

3 4 7 10 7
12 5 7 11 7 1
4 6 4 7 13
11 7 4 14 5
9 9 8 10 6

3 4 7 10 7
12 5
4
11
9

Cluster 0

Index Table Secret bits

CW7 CW15

CW8 CW9
CW10 CW11
CW12 CW13
CW14 CW0

CW1 CW2
CW3 CW4
CW5

d(CW5)<d(CW12)

Secret message: 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 1

CW6

Embedding ResultCluster 1

Figure 8. Embedding example 1: matched case.

Future Internet 2021, 13, 215 8 of 19Future Internet 2021, 13, x FOR PEER REVIEW 8 of 19

Figure 9. Embedding example 2: mismatched case.

Figure 10. Embedding example 3: abnormal block.

3.3. The SOC Compression and the Second Layer of Data Embedding Processes
After the first layer embedding of secret data, the stego index table is sent to the in-

dicator-free SOC compression process. To improve the efficiency of SOC, the indicator-
elimination technique proposed by Chang et al. [31] is adopted. Two examples are applied
to illustrate the SOC with an indicator-free method. The code length is set to four bits.
However, the head and rear codes ‘0000’ and ‘1111’ are reserved for special usage. For a
compressible index as shown in Figure 11, the coding is the same as the method intro-
duced in Section 2.2, except that the label is started with ‘0001’ instead of ‘0000’. Besides,
four secret bits are appended to camouflage a regular VQ index. For an incompressible
index as shown in Figure 12, no matched index can be found in the predefined range of
‘0001’ to ‘1110’. One secret bit is embedded by putting a reserved code, ‘0000’ for ‘0’ and
‘1111’ for ‘1’. Then, the actual index is appended behind. To avoid confusing in the decod-
ing process, the head and the rear indices in the first layer of embedding are treated as
incompressible indices. The overall scheme of the proposed SOC and second layer of data
embedding is illustrated in Figure 13, where the code length of VQ compression is as-
sumed to be eight bits. The algorithm for SOC compression and the second layer of data
embedding is given as Algorithm 2. Note that the tracing path of the indices near bound-
ary of the index table may encounter the out-of-boundary problem. For such a case, the
tracing is stopped and it treats the index under processing as incompressible. For instance,
the indices in the first column are always incompressible according to this rule, since the
first index to be checked is missing.

3 4 7 10 7
12 5 7 11 7 1 0
4 6 4 7 13

11 7 4 14 5
9 9 8 10 6

3 4 7 10 7
12 5 14
4
11
9

Secret message: 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 1

CW3 CW4
CW5 CW6
CW7 CW15

CW1 CW2 CW8

Index Table Secret bits

Embedding Result

CW10 CW11
CW12 CW13
CW14 CW0

CW9

Cluster 1 Cluster 0

d(CW7)<d(CW14)

3 4 7 10 7
12 5 7 11 7 1 0 1||0
4 6 4 7 13

11 7 4 14 5
9 9 8 10 6

3 4 7 10 7
12 5 14 15||11

4
11
9

d(CW11)>d(CW4)

CW0

Cluster 1 Cluster 0 Embedding Result

CW9
CW10 CW11
CW12 CW13
CW14

Index Table Secret bits

CW1 CW2
CW3 CW4
CW5 CW6
CW7 CW15

CW8

Secret message: 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 1

Figure 9. Embedding example 2: mismatched case.

Future Internet 2021, 13, x FOR PEER REVIEW 8 of 19

Figure 9. Embedding example 2: mismatched case.

Figure 10. Embedding example 3: abnormal block.

3.3. The SOC Compression and the Second Layer of Data Embedding Processes
After the first layer embedding of secret data, the stego index table is sent to the in-

dicator-free SOC compression process. To improve the efficiency of SOC, the indicator-
elimination technique proposed by Chang et al. [31] is adopted. Two examples are applied
to illustrate the SOC with an indicator-free method. The code length is set to four bits.
However, the head and rear codes ‘0000’ and ‘1111’ are reserved for special usage. For a
compressible index as shown in Figure 11, the coding is the same as the method intro-
duced in Section 2.2, except that the label is started with ‘0001’ instead of ‘0000’. Besides,
four secret bits are appended to camouflage a regular VQ index. For an incompressible
index as shown in Figure 12, no matched index can be found in the predefined range of
‘0001’ to ‘1110’. One secret bit is embedded by putting a reserved code, ‘0000’ for ‘0’ and
‘1111’ for ‘1’. Then, the actual index is appended behind. To avoid confusing in the decod-
ing process, the head and the rear indices in the first layer of embedding are treated as
incompressible indices. The overall scheme of the proposed SOC and second layer of data
embedding is illustrated in Figure 13, where the code length of VQ compression is as-
sumed to be eight bits. The algorithm for SOC compression and the second layer of data
embedding is given as Algorithm 2. Note that the tracing path of the indices near bound-
ary of the index table may encounter the out-of-boundary problem. For such a case, the
tracing is stopped and it treats the index under processing as incompressible. For instance,
the indices in the first column are always incompressible according to this rule, since the
first index to be checked is missing.

3 4 7 10 7
12 5 7 11 7 1 0
4 6 4 7 13

11 7 4 14 5
9 9 8 10 6

3 4 7 10 7
12 5 14
4
11
9

Secret message: 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 1

CW3 CW4
CW5 CW6
CW7 CW15

CW1 CW2 CW8

Index Table Secret bits

Embedding Result

CW10 CW11
CW12 CW13
CW14 CW0

CW9

Cluster 1 Cluster 0

d(CW7)<d(CW14)

3 4 7 10 7
12 5 7 11 7 1 0 1||0
4 6 4 7 13

11 7 4 14 5
9 9 8 10 6

3 4 7 10 7
12 5 14 15||11

4
11
9

d(CW11)>d(CW4)

CW0

Cluster 1 Cluster 0 Embedding Result

CW9
CW10 CW11
CW12 CW13
CW14

Index Table Secret bits

CW1 CW2
CW3 CW4
CW5 CW6
CW7 CW15

CW8

Secret message: 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 1

Figure 10. Embedding example 3: abnormal block.

3.3. The SOC Compression and the Second Layer of Data Embedding Processes

After the first layer embedding of secret data, the stego index table is sent to the
indicator-free SOC compression process. To improve the efficiency of SOC, the indicator-
elimination technique proposed by Chang et al. [31] is adopted. Two examples are applied
to illustrate the SOC with an indicator-free method. The code length is set to four bits.
However, the head and rear codes ‘0000’ and ‘1111’ are reserved for special usage. For a
compressible index as shown in Figure 11, the coding is the same as the method introduced
in Section 2.2, except that the label is started with ‘0001’ instead of ‘0000’. Besides, four
secret bits are appended to camouflage a regular VQ index. For an incompressible index as
shown in Figure 12, no matched index can be found in the predefined range of ‘0001’ to
‘1110’. One secret bit is embedded by putting a reserved code, ‘0000’ for ‘0’ and ‘1111’ for
‘1’. Then, the actual index is appended behind. To avoid confusing in the decoding process,
the head and the rear indices in the first layer of embedding are treated as incompressible
indices. The overall scheme of the proposed SOC and second layer of data embedding is
illustrated in Figure 13, where the code length of VQ compression is assumed to be eight
bits. The algorithm for SOC compression and the second layer of data embedding is given
as Algorithm 2. Note that the tracing path of the indices near boundary of the index table
may encounter the out-of-boundary problem. For such a case, the tracing is stopped and it

Future Internet 2021, 13, 215 9 of 19

treats the index under processing as incompressible. For instance, the indices in the first
column are always incompressible according to this rule, since the first index to be checked
is missing.

Future Internet 2021, 13, x FOR PEER REVIEW 9 of 19

Figure 11. Embedding example 1: compressible index.

Figure 12. Embedding example 2: incompressible index.

Figure 13. The second layer of data embedding.

Figure 11. Embedding example 1: compressible index.

Future Internet 2021, 13, x FOR PEER REVIEW 9 of 19

Figure 11. Embedding example 1: compressible index.

Figure 12. Embedding example 2: incompressible index.

Figure 13. The second layer of data embedding.

Figure 12. Embedding example 2: incompressible index.

Future Internet 2021, 13, 215 10 of 19

Future Internet 2021, 13, x FOR PEER REVIEW 9 of 19

Figure 11. Embedding example 1: compressible index.

Figure 12. Embedding example 2: incompressible index.

Figure 13. The second layer of data embedding.

Figure 13. The second layer of data embedding.

Algorithm 2. SOC and the second-layer of data embedding for stego VQ index table.

Input: 1-st stego index table T̂, secret data S.
Output: 2-nd (final) stego index table

..
T.

1: Stream cypher the secret data S.
2: For each index v̂j ∈ T̂,
3: If v̂j is SOC compressible,
4: Record v̂j by a label lj of 4 bits.
5: Retrieve 4 bits from S and append to the label.
6: Record the 8 bits to

..
T.

7: Else (v̂j is SOC incompressible or head or rear index of VQ)
8: Retrieve a secret bit b from S.
9: If b = 0, lj =

′ 0000′ and record lj + v̂j to
..
T;

10: Else (b = 1), lj =
′ 1111′ and record lj + v̂j to

..
T. End

11: End
12: End

3.4. Secret Data Extraction and Index Table Recovery Processes

The secret data extraction rules can be designed based on the embedding rules. At
the receiver end, the extraction of the second layer secret data and the SOC decoding is
executed first. Then, the indices are processed sequentially to determine the embedded
second layer data and the original index value. The cluster label of the marked index is
retrieved as the secret bit. The side-match values of the marked index and its counterpart
are evaluated and compared to determine the original index value. When a reserved index
is encountered, the head index represents ‘0’, while the rear index represents ‘1’. In addition,
its succeeding index should be recovered with abnormal solution after extracting the secret
bit. The algorithm for secret data extraction and index table recovery is summarized as
Algorithm 3.

The overall scheme of phase 1 process is illustrated in Figure 14. The three examples
presented in the embedding process of the first layer are applied to demonstrate the secret
data extraction and index table recovery in the second phase. The first example is shown
in Figure 15. We get the marked index ‘CW5’. The embedded secret bit is determined by
b = L(cw5) = 1. Then, its counterpart ‘CW12’ is retrieved, and their side-match values
are compared. Since d(cw5) < d(cw12), ‘CW5’ is recorded to the recovered index table.
The second example is shown in Figure 16. The marked index is ‘CW14’, whose cluster
label 0 is retrieved as the secret bit. The side-match values of ‘CW14’ and its counterpart
‘CW7’ are calculated and compared. Since ‘CW7’ best matches the current environment, it

Future Internet 2021, 13, 215 11 of 19

is recorded to the recovered index table. The final example is shown in Figure 17. A rear
index ‘CW15’ is encountered. It means a secret bit ‘1’ is embedded and the current block is
abnormal. Its succeeding index ‘CW11’ is then retrieved. The cluster label 0 of ‘CW11’ is
retrieved as the second secret bit. At last, the side-match values of ‘CW11’ and ‘CW4’ are
compared. The mismatched index ‘CW11’ is recorded since the current block is indicated
as an abnormal one.

Algorithm 3. Secret data extraction and index table recovery for de-clustering scheme.

Input: stego index table
..
T, specialized codebook B = {CWi|i = 1, 2, 3, . . . , n− 2}, codeword

mapping Output: function M.
cover index table T, secret data S.
1: Phase 1: Execute SOC decoding and extract the 2-nd layer of secret data.
2: While

..
T is not empty,

3: Retrieve 4 bits lj from
..
T.

4: If lj 6=′ 0000′ or ′1111′,

5: Decode lj into v̂j by SOC and clip 4 bits of secret data from
..
T.

6: Else
7: Extract 1 bit of secret data (0 for ‘0000’ and 1 for ‘1111’).
8: Clip an index code v̂j from

..
T.

9: End
10: Record v̂j to T̂ and secret bits to S.
End
11: Phase 2: Recover VQ index table and extract the 1-st layer of secret data.
12: For each index v̂j ∈ T̂,
13: IF v̂j 6= CW0 or CWn−1,

14: Find its cluster label L
(

v̂j

)
and counterpart v̂′j.

15: Extract secret bit b = L
(

v̂j

)
and record to S.

16: If d
(

v̂j

)
< d

(
v̂′j
)

, record v̂j to T; else record v̂′j to T. End
17: Else
18: If v̂j = CW0, record ‘0’ to S; else v̂j = CWn−1, record ‘1’ to S. End

19: Find its cluster label L
(

v̂j

)
and counterpart v̂′j.

20: Extract secret bit b = L
(

v̂j

)
and record to S.

21: If d
(

v̂j

)
> d

(
v̂′j
)

, record v̂j to T; else record v̂′j to T. End
22: End
23: End
Stream cypher S to decode.

Future Internet 2021, 13, x FOR PEER REVIEW 11 of 19

19: Find its cluster label ܮ(ݒො௝) and counterpart ݒො௝ᇱ.
20: Extract secret bit ܾ = .ܵ and record to (ො௝ݒ)ܮ
21: If ݀൫ݒො௝൯ > ො௝ᇱ to ܶ. Endݒ ො௝ to ܶ; else recordݒ record ,(ො௝ᇱݒ)݀
22: End
23: End
Stream cypher ܵ to decode.

The overall scheme of phase 1 process is illustrated in Figure 14. The three examples
presented in the embedding process of the first layer are applied to demonstrate the secret
data extraction and index table recovery in the second phase. The first example is shown
in Figure 15. We get the marked index ‘CW5’. The embedded secret bit is determined by ܾ = (5ݓܿ)ܮ = 1. Then, its counterpart ‘CW12’ is retrieved, and their side-match values are
compared. Since ݀(ܿ5ݓ) < CW5’ is recorded to the recovered index table. The‘ ,(12ݓܿ)݀
second example is shown in Figure 16. The marked index is ‘CW14’, whose cluster label 0
is retrieved as the secret bit. The side-match values of ‘CW14’ and its counterpart ‘CW7’
are calculated and compared. Since ‘CW7’ best matches the current environment, it is rec-
orded to the recovered index table. The final example is shown in Figure 17. A rear index
‘CW15’ is encountered. It means a secret bit ‘1’ is embedded and the current block is ab-
normal. Its succeeding index ‘CW11’ is then retrieved. The cluster label 0 of ‘CW11’ is
retrieved as the second secret bit. At last, the side-match values of ‘CW11’ and ‘CW4’ are
compared. The mismatched index ‘CW11’ is recorded since the current block is indicated
as an abnormal one.

Figure 14. The extraction of the second layer secret data. Figure 14. The extraction of the second layer secret data.

Future Internet 2021, 13, 215 12 of 19
Future Internet 2021, 13, x FOR PEER REVIEW 12 of 19

Figure 15. Extraction example 1: matched case.

Figure 16. Extraction example 2: mismatched case.

Figure 17. Extraction example 3: abnormal block.

4. Experimental Results
In our experiment, nine standard gray level images including (a) Tank, (b) Bridge, (c)

Elaine, (d) Lena, (e) Peppers, (f) Wine, (g) Goldhill, (h) Bird, and (i) Baboon, as shown in
Figure 18, are applied, each of them is sized as 512 × 512. VQ compression is executed
with a codebook of length 256, and all images are divided into blocks of size 4 × 4. Images
of different features, smooth or complex, are included. The platform for implementation

3 4 7 10 7
12 5 14 15||11 1
4

11
9

3 4 7 10 7
12 5
4

11
9

Recovered index table

CW13
CW14 CW0

Stego Index Table Extracted Secret Bits

d(CW5)<d(CW12)

Cluster 1 Cluster 0

CW5 CW6
CW7 CW15

CW8
CW10
CW12

CW1 CW2
CW3 CW4

CW9
CW11

3 4 7 10 7
12 5 14 15||11 1 0
4
11
9

3 4 7 10 7
12 5 7
4

11
9

d(CW14)>d(CW7)

Cluster 1 Cluster 0

CW10 CW11
CW12 CW13
CW14 CW0

CW3 CW4
CW5 CW6
CW7 CW15

Recovered index table

Stego Index Table Extracted Secret Bits

CW1 CW2 CW8 CW9

3 4 7 10 7
12 5 14 15||11 1 0 1||0
4
11
9

3 4 7 10 7
12 5 7 11
4
11
9

Stego Index Table Extracted Secret Bits

CW10 CW11
CW12 CW13
CW14 CW0

CW1 CW2
CW3 CW4
CW5 CW6

d(CW11)>d(CW4)

Recovered index tableCluster 1 Cluster 0

CW7 CW15

CW8 CW9

Figure 15. Extraction example 1: matched case.

Future Internet 2021, 13, x FOR PEER REVIEW 12 of 19

Figure 15. Extraction example 1: matched case.

Figure 16. Extraction example 2: mismatched case.

Figure 17. Extraction example 3: abnormal block.

4. Experimental Results
In our experiment, nine standard gray level images including (a) Tank, (b) Bridge, (c)

Elaine, (d) Lena, (e) Peppers, (f) Wine, (g) Goldhill, (h) Bird, and (i) Baboon, as shown in
Figure 18, are applied, each of them is sized as 512 × 512. VQ compression is executed
with a codebook of length 256, and all images are divided into blocks of size 4 × 4. Images
of different features, smooth or complex, are included. The platform for implementation

3 4 7 10 7
12 5 14 15||11 1
4

11
9

3 4 7 10 7
12 5
4

11
9

Recovered index table

CW13
CW14 CW0

Stego Index Table Extracted Secret Bits

d(CW5)<d(CW12)

Cluster 1 Cluster 0

CW5 CW6
CW7 CW15

CW8
CW10
CW12

CW1 CW2
CW3 CW4

CW9
CW11

3 4 7 10 7
12 5 14 15||11 1 0
4
11
9

3 4 7 10 7
12 5 7
4

11
9

d(CW14)>d(CW7)

Cluster 1 Cluster 0

CW10 CW11
CW12 CW13
CW14 CW0

CW3 CW4
CW5 CW6
CW7 CW15

Recovered index table

Stego Index Table Extracted Secret Bits

CW1 CW2 CW8 CW9

3 4 7 10 7
12 5 14 15||11 1 0 1||0
4
11
9

3 4 7 10 7
12 5 7 11
4
11
9

Stego Index Table Extracted Secret Bits

CW10 CW11
CW12 CW13
CW14 CW0

CW1 CW2
CW3 CW4
CW5 CW6

d(CW11)>d(CW4)

Recovered index tableCluster 1 Cluster 0

CW7 CW15

CW8 CW9

Figure 16. Extraction example 2: mismatched case.

Future Internet 2021, 13, x FOR PEER REVIEW 12 of 19

Figure 15. Extraction example 1: matched case.

Figure 16. Extraction example 2: mismatched case.

Figure 17. Extraction example 3: abnormal block.

4. Experimental Results
In our experiment, nine standard gray level images including (a) Tank, (b) Bridge, (c)

Elaine, (d) Lena, (e) Peppers, (f) Wine, (g) Goldhill, (h) Bird, and (i) Baboon, as shown in
Figure 18, are applied, each of them is sized as 512 × 512. VQ compression is executed
with a codebook of length 256, and all images are divided into blocks of size 4 × 4. Images
of different features, smooth or complex, are included. The platform for implementation

3 4 7 10 7
12 5 14 15||11 1
4

11
9

3 4 7 10 7
12 5
4

11
9

Recovered index table

CW13
CW14 CW0

Stego Index Table Extracted Secret Bits

d(CW5)<d(CW12)

Cluster 1 Cluster 0

CW5 CW6
CW7 CW15

CW8
CW10
CW12

CW1 CW2
CW3 CW4

CW9
CW11

3 4 7 10 7
12 5 14 15||11 1 0
4
11
9

3 4 7 10 7
12 5 7
4

11
9

d(CW14)>d(CW7)

Cluster 1 Cluster 0

CW10 CW11
CW12 CW13
CW14 CW0

CW3 CW4
CW5 CW6
CW7 CW15

Recovered index table

Stego Index Table Extracted Secret Bits

CW1 CW2 CW8 CW9

3 4 7 10 7
12 5 14 15||11 1 0 1||0
4
11
9

3 4 7 10 7
12 5 7 11
4
11
9

Stego Index Table Extracted Secret Bits

CW10 CW11
CW12 CW13
CW14 CW0

CW1 CW2
CW3 CW4
CW5 CW6

d(CW11)>d(CW4)

Recovered index tableCluster 1 Cluster 0

CW7 CW15

CW8 CW9

Figure 17. Extraction example 3: abnormal block.

Future Internet 2021, 13, 215 13 of 19

4. Experimental Results

In our experiment, nine standard gray level images including (a) Tank, (b) Bridge,
(c) Elaine, (d) Lena, (e) Peppers, (f) Wine, (g) Goldhill, (h) Bird, and (i) Baboon, as shown in
Figure 18, are applied, each of them is sized as 512× 512. VQ compression is executed with
a codebook of length 256, and all images are divided into blocks of size 4× 4. Images of
different features, smooth or complex, are included. The platform for implementation are
Intel Core i5-9400F CPU at 2.90 GHz and an 8 GB RAM personal computer with Windows
10 Professional operating system. The output of three processing steps for data hider are
investigated, which are the visual quality of VQ images, the effectiveness of side-match
evaluation, and the compression performance of SOC technique.

Future Internet 2021, 13, x FOR PEER REVIEW 13 of 19

are Intel Core i5-9400F CPU at 2.90 GHz and an 8 GB RAM personal computer with Win-
dows 10 Professional operating system. The output of three processing steps for data hider
are investigated, which are the visual quality of VQ images, the effectiveness of side-
match evaluation, and the compression performance of SOC technique.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 18. Nine standard grayscale test images applied in our experiment. Tank (a), Bridge (b), Elaine (c), Lena (d), Peppers
(e), Wine (f), Goldhill (g), Bird (h), Baboon (i).

4.1. Visual Quality of VQ Images
VQ compression is a widely applied image compression technique. The major differ-

ence in our application is that although the length of codebook is a typical size of 256, only
254 codewords are available during the training process. The remaining two codewords,
the head and the rear ones, are dummies and reserved for special usage. Based on this
formulation, the quality of VQ approximation is evaluated. We adopt the peak-signal-to-
noise-ratio (PSNR) as the performance metric, which is defined by ܴܲܵܰ = ଵ଴݃݋10݈ ଶହହమெௌா (2)

and the mean-square-error (MSE) is defined by ܧܵܯ = 1ܰ × ܰ ෍ ෍ ௜௝ܫ) − ௜௝)ଶே௝ୀଵே௜ୀଵ′ܫ (3)

The notations ܫ௜௝ and ܫ′௜௝ represent the original image and the VQ-decompressed
image, respectively. The PSNR values of the VQ images produced with our specialized

Figure 18. Nine standard grayscale test images applied in our experiment. Tank (a), Bridge (b), Elaine (c), Lena (d),
Peppers (e), Wine (f), Goldhill (g), Bird (h), Baboon (i).

4.1. Visual Quality of VQ Images

VQ compression is a widely applied image compression technique. The major dif-
ference in our application is that although the length of codebook is a typical size of
256, only 254 codewords are available during the training process. The remaining two
codewords, the head and the rear ones, are dummies and reserved for special usage.
Based on this formulation, the quality of VQ approximation is evaluated. We adopt the
peak-signal-to-noise-ratio (PSNR) as the performance metric, which is defined by

PSNR = 10log10
2552

MSE
(2)

Future Internet 2021, 13, 215 14 of 19

and the mean-square-error (MSE) is defined by

MSE =
1

N × N

N

∑
i=1

N

∑
j=1

(
Iij − I′ ij

)2 (3)

The notations Iij and I′ ij represent the original image and the VQ-decompressed
image, respectively. The PSNR values of the VQ images produced with our specialized
codebook are listed in Table 1. The image quality is very close to the conventional VQ
compression with a codebook of length 256.

Table 1. PSNR values of the VQ images produced with our codebook.

Images PSNR (dB) Images PSNR (dB) Images PSNR (dB)

Tank 31.75 Lena 30.66 Goldhill 29.89
Bridge 31.86 Peppers 30.49 Bird 26.45
Elaine 30.69 Wine 30.16 Baboon 25.59

4.2. Effectiveness of Side-Match Evaluation

The performance of the proposed scheme is highly dependent on the side-match eval-
uation. To know the effectiveness of side-match evaluation for different images, the number
of abnormal blocks detected in all test images are listed in Table 2. In our experiment, each
512× 512 test image is divided into 128× 128 = 16, 384 blocks in total. In the worst case of
‘Baboon’ image, only 2.3% of total image blocks are detected to be abnormal. In the best
case of ‘Bridge’ image, only one block is abnormal. These results ensure good performance
of the proposed reversible data hiding scheme.

Table 2. Number of abnormal blocks detected by side-match evaluation.

Images Abnormal Blocks Images Abnormal Blocks Images Abnormal Blocks

Tank 7 Lena 147 Goldhill 91
Bridge 1 Peppers 128 Bird 180
Elaine 85 Wine 142 Baboon 373

4.3. Performance of SOC Encoding

After switching the index value between clusters during embedding, the marked index
table is sent to SOC encoding. Since the switching for embedding intends to disrupt the
continuity between adjacent blocks for reversibility, such operation reduces the applicability
of SOC encoding. In our experiment, the assigned length of search order code is four bits.
Based on this parameter setting, the number of SOC compressible and uncompressible
blocks for the test images are listed in Table 3. The compressible percentage ranges from
25.5% for Baboon to 88.3% for Bridge and is highly dependent on the feature of cover
image. An index in a smooth image is more likely to find the same value in its neighbors
and be compressed by SOC. On the other hand, an index in a complex image is frequently
uncompressible. The total file size in bytes and image bit rate in bits per pixel are also
listed in the table. The resulting file size is larger for an image with more uncompressible
blocks. The embedding capacity in bits for different layers of the proposed scheme are
listed in Table 4.

Future Internet 2021, 13, 215 15 of 19

Table 3. Number of SOC compressible and uncompressible blocks.

Images Compressible Uncompressible File Size Bit Rate

Tank 13,016 3368 18,113 0.55
Bridge 14,472 1912 17,361 0.52
Elaine 8638 7746 20,761 0.63
Lena 9889 6495 20,279 0.61

Peppers 9562 6822 22,013 0.67
Wine 11,240 5144 19,709 0.60

Goldhill 8294 8090 20,775 0.63
Bird 6295 10,089 22,177 0.46

Baboon 4179 12,205 23,809 0.67

Table 4. Embedding capacity for different layers of the proposed scheme (bits).

Images Layer 1 Layer 2 Total

Tank 16,414 55,462 71,876
Bridge 16,398 59,814 76,212
Elaine 16,720 42,814 59,534
Lena 16,816 46,483 63,299

Peppers 16,863 51,549 68,412
Wine 16,886 50,606 67,492

Goldhill 16,615 41,497 58,112
Bird 16,883 35,768 52,651

Baboon 17,266 29,803 47,069

4.4. Comparison with Related Works

Since the proposed two-layer RDH scheme for VQ index table is a hybrid method of
de-clustering and SOC-based schemes, our experimental results are compared with the two
series of schemes. The first series are the de-clustering approaches. Table 5 compares the
embedding capacity (EC) and file size of the proposed scheme with the schemes proposed
in [28,30]. Although the series of schemes are all based on the VQ index table, the file size
of marked index table are different. Usually, a larger file size is required to embed more
secret data. To make a fair comparison, the EC and file size are converted to the total bitrate
(total BR) and data bitrate (data BR) as listed in Table 6.

Since the secret data is usually assumed to be completely random, which is supposed
to be uncompressible. Therefore, image bitrate (image BR), that represents compression
efficiency of a scheme, can be estimated by subtracting the data bitrate from the total bitrate
of a marked VQ index table. These performance evaluations are plotted in Figure 19. As
shown in the figure, the proposed scheme can embed a large amount of data with a
comparable file size. More specifically, in addition to the first layer of de-clustering
embedding, SOC compression in the second embedding phase efficiently vacates a large
room for hiding data. Figure 19b shows that the proposed scheme successfully camouflages
an uncompressed VQ index table.

The second series to be compared are the SOC-based approaches, including [20,21,23].
EC and file size are listed in Table 7. Again, the total BR, data BR, and image BR are
compared and listed in Table 8. Table values are plotted in Figure 20 for convenience of
observation. As shown in the figure, the proposed scheme provides a large amount of
EC, since the vacated room by compression is exploited to embed secret data. However,
Figure 20d shows that the compression efficiency is comparable with related works. In
addition, the IFSOC applied in our scheme is free from indicator. The series of SOC-based
schemes directly hide secret data into indicators, which are exposed to eavesdroppers. So,
the proposed indicator free RDH scheme is more secure than the related works.

Future Internet 2021, 13, 215 16 of 19

Table 5. Comparisons of EC and file size with de-clustering schemes.

Image [28] [30] Proposed Scheme

Airplane
EC (bits) — 49,394 62,066

File size (bytes) — 19,982 21,838

Baboon
EC (bits) 16,129 36,436 47,069

File size (bytes) 18,947 23,594 23,809

Boat
EC (bits) — — 64,361

File size (bytes) — — 20,696

Lena
EC (bits) 16,129 42,630 63,299

File size (bytes) 18,588 19,761 20,279

Peppers
EC (bits) 16,129 45,623 68,412

File size (bytes) 15,548 19,644 22,013

Table 6. Total bitrate, data bitrate, and image bitrate of de-clustering schemes.

Image [28] [30] Proposed Method

Airplane

Total BR — 0.609 0.666

Data BR — 0.188 0.236

Image BR — 0.421 0.429

Baboon

Total BR 0.578 0.720 0.726

Data BR 0.061 0.138 0.179

Image BR 0.516 0.581 0.547

Boat

Total BR — — 0.631

Data BR — — 0.245

Image BR — — 0.386

Lena

Total BR 0.567 0.603 0.618

Data BR 0.061 0.162 0.241

Image BR 0.505 0.440 0.377

Peppers

Total BR 0.474 0.599 0.671

Data BR 0.061 0.174 0.260

Image BR 0.412 0.425 0.410

Table 7. Comparisons of EC and file size with SOC-based schemes.

Image [20] [21] (m = 2) [21] (m = 3) [23] Proposed Method

Airplane
EC (bits) 4096 10,208 11,348 12,933 62,066

File size 16,252 14,647 14,942 13,664 21,838

Baboon
EC (bits) — 3774 5482 — 47,069

File size — 16,744 16,711 — 23,809

Boat
EC (bits) 4096 10,007 10,993 12,671 64,361

File size 16,449 14,680 14,974 13,762 20,696

Lena
EC (bits) 4096 10,183 11,390 12,770 63,299

File size 17,727 14,614 14,811 13,631 20,279

Peppers
EC (bits) 4096 9586 10,787 12,803 68,412

File size 17,006 14,843 15,106 13,729 22,013

Future Internet 2021, 13, 215 17 of 19

Table 8. Total bitrate, data bitrate, and image bitrate of SOC-based schemes.

Image [20] [21] (m = 2) [21] (m = 3) [23] Proposed Method

Airplane

Total BR 0.495 0.446 0.455 0.416 0.666

Data BR 0.015 0.038 0.043 0.049 0.236

Image BR 0.480 0.408 0.416 0.367 0.429

Baboon

Total BR — 0.510 0.509 — 0.726

Data BR — 0.014 0.020 — 0.179

Image BR — 0.496 0.489 — 0.547

Boat

Total BR 0.501 0.447 0.456 0.419 0.631

Data BR 0.015 0.038 0.041 0.048 0.245

Image BR 0.486 0.409 0.415 0.371 0.386

Lena

Total BR 0.540 0.446 0.451 0.415 0.618

Data BR 0.015 0.038 0.043 0.048 0.241

Image BR 0.525 0.407 0.408 0.367 0.377

Peppers

Total BR 0.518 0.452 0.460 0.418 0.671

Data BR 0.015 0.036 0.041 0.048 0.260

Image BR 0.503 0.416 0.419 0.370 0.410

Future Internet 2021, 13, x FOR PEER REVIEW 15 of 19

Table 4. Embedding capacity for different layers of the proposed scheme (bits).

Images Layer 1 Layer 2 Total
Tank 16,414 55,462 71,876

Bridge 16,398 59,814 76,212
Elaine 16,720 42,814 59,534
Lena 16,816 46,483 63,299

Peppers 16,863 51,549 68,412
Wine 16,886 50,606 67,492

Goldhill 16,615 41,497 58,112
Bird 16,883 35,768 52,651

Baboon 17,266 29,803 47,069

4.4. Comparison with Related Works
Since the proposed two-layer RDH scheme for VQ index table is a hybrid method of

de-clustering and SOC-based schemes, our experimental results are compared with the
two series of schemes. The first series are the de-clustering approaches. Table 5 compares
the embedding capacity (EC) and file size of the proposed scheme with the schemes pro-
posed in [28] and [30]. Although the series of schemes are all based on the VQ index table,
the file size of marked index table are different. Usually, a larger file size is required to
embed more secret data. To make a fair comparison, the EC and file size are converted to
the total bitrate (total BR) and data bitrate (data BR) as listed in Table 6.

Since the secret data is usually assumed to be completely random, which is supposed
to be uncompressible. Therefore, image bitrate (image BR), that represents compression
efficiency of a scheme, can be estimated by subtracting the data bitrate from the total bi-
trate of a marked VQ index table. These performance evaluations are plotted in Figure 19.
As shown in the figure, the proposed scheme can embed a large amount of data with a
comparable file size. More specifically, in addition to the first layer of de-clustering em-
bedding, SOC compression in the second embedding phase efficiently vacates a large
room for hiding data. Figure 19b shows that the proposed scheme successfully camou-
flages an uncompressed VQ index table.

(a) (b)

(c) (d)

Figure 19. Comparisons with de-clustering RDH schemes. EC (a), file size (b), total bitrate (c), image bitrate (d). Figure 19. Comparisons with de-clustering RDH schemes. EC (a), file size (b), total bitrate (c), image bitrate (d).

Future Internet 2021, 13, 215 18 of 19Future Internet 2021, 13, x FOR PEER REVIEW 17 of 19

(a) EC (b) file size

(c) total bitrate (d) image bitrate

Figure 20. Comparisons with SOC-based RDH schemes. EC (a), file size (b), total bitrate (c), image bitrate (d).

Table 7. Comparisons of EC and file size with SOC-based schemes.

Image [20] [21] (m = 2) [21] (m = 3) [23] Proposed Method

Airplane
EC (bits) 4096 10,208 11,348 12,933 62,066
File size 16,252 14,647 14,942 13,664 21,838

Baboon
EC (bits) — 3774 5482 — 47,069
File size — 16,744 16,711 — 23,809

Boat
EC (bits) 4096 10,007 10,993 12,671 64,361
File size 16,449 14,680 14,974 13,762 20,696

Lena
EC (bits) 4096 10,183 11,390 12,770 63,299
File size 17,727 14,614 14,811 13,631 20,279

Peppers
EC (bits) 4096 9586 10,787 12,803 68,412
File size 17,006 14,843 15,106 13,729 22,013

Table 8. Total bitrate, data bitrate, and image bitrate of SOC-based schemes.

Image [20] [21] (m = 2) [21] (m = 3) [23] Proposed Method

Airplane
Total BR 0.495 0.446 0.455 0.416 0.666
Data BR 0.015 0.038 0.043 0.049 0.236

Image BR 0.480 0.408 0.416 0.367 0.429

Baboon
Total BR — 0.510 0.509 — 0.726
Data BR — 0.014 0.020 — 0.179

Image BR — 0.496 0.489 — 0.547

Boat
Total BR 0.501 0.447 0.456 0.419 0.631
Data BR 0.015 0.038 0.041 0.048 0.245

Image BR 0.486 0.409 0.415 0.371 0.386
Lena Total BR 0.540 0.446 0.451 0.415 0.618

Figure 20. Comparisons with SOC-based RDH schemes. EC (a), file size (b), total bitrate (c), image bitrate (d).

5. Conclusions

A two-layer RDH scheme for VQ index table based on de-clustering and IFSOC is pro-
posed. After data embedding by de-clustering, IFSOC is applied to compress the marked
index table and embed the second layer of data at the same time. The total embedding
capacity is satisfactory. In addition, the compression after de-clustering embedding in-
creases the security of the first layer data, while the indicator free SOC secures the second
layer data.

Experimental results show that the proposed RDH scheme outperforms state-of-
the-art schemes under the overall evaluation of embedding capacity and image bit rate.
Hybrid RDH scheme is a promising approach. By compressing VQ index followed by
appending secret bits can successfully camouflage the original VQ index and create a high
embedding capacity.

Author Contributions: Conceptualization, C.-C.C.; Methodology, C.-C.C.; Software, J.-F.C. and
W.-J.K.; Validation, J.-H.H. and C.-C.C.; Formal analysis, J.-H.H.; Investigation, J.-H.H.; Resources,
C.-C.C.; Data curation, J.-F.C. and W.-J.K.; Writing—original draft preparation, J.-H.H.; Writing—
review and editing, C.-C.C.; Visualization, J.-H.H.; Supervision, C.-C.C.; Project administration,
C.-C.C.; Funding acquisition, J.-H.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Ministry of Science and Technology of Taiwan, grant
number MOST 110-2221-E-507-003.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors confirm that the data supporting the findings of this study
are available within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Future Internet 2021, 13, 215 19 of 19

References
1. Chang, C.C.; Liu, Y.; Nguyen, T.S. A Novel Turtle Shell Based Scheme for Data Hiding. In Proceedings of the 2014 International

Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kita Kyushu, Japan, 27–29 August 2014;
pp. 89–93. [CrossRef]

2. Chang, C.C.; Li, C.T. Algebraic secret sharing using privacy homomorphisms for IoT-based healthcare systems. Math. Biosci. Eng.
2019, 16, 3367–3381. [CrossRef]

3. Chi, H.; Chang, C.-C.; Liu, Y. An SMVQ compressed data hiding scheme based on multiple linear regression prediction. Connect.
Sci. 2021, 33, 495–514. [CrossRef]

4. Xiao, T.; Han, D.; He, J.; Li, K.-C.; de Mello, R.F. Multi-Keyword ranked search based on mapping set matching in cloud ciphertext
storage system. Connect. Sci. 2021, 33, 95–112. [CrossRef]

5. Chang, C.-C.; Li, C.-T.; Shi, Y.-Q. Privacy-Aware Reversible Watermarking in Cloud Computing Environments. IEEE Access 2018,
6, 70720–70733. [CrossRef]

6. Chang, C.-C.; Li, C.-T.; Chen, K. Privacy-Preserving Reversible Information Hiding Based on Arithmetic of Quadratic Residues.
IEEE Access 2019, 7, 54117–54132. [CrossRef]

7. Xu, S.; Chang, C.-C.; Liu, Y. A high-capacity reversible data hiding scheme for encrypted images employing vector quantization
prediction. Multimed. Tools Appl. 2021, 80, 20307–20325. [CrossRef]

8. Carpentieri, B.; Castiglione, A.; De Santis, A.; Palmieri, F.; Pizzolante, R. One-pass lossless data hiding and compression of remote
sensing data. Futur. Gener. Comput. Syst. 2019, 90, 222–239. [CrossRef]

9. Mielikainen, J. LSB matching revisited. IEEE Signal. Process. Lett. 2006, 13, 285–287. [CrossRef]
10. Chang, C.C.; Chou, Y.C.; Kieu, T.D. An Information Hiding Scheme Using Sudoku. In Proceedings of the Third International

Conference on Innova-tive Computing, Information and Control, Dalian, China, 18–20 June 2008; pp. 17–22. [CrossRef]
11. Chang, C.-C.; Horng, J.-H.; Shih, C.-S.; Wang, X. VQ-oriented data hiding based on adjustable error compensation strategy.

Connect. Sci. 2021, 1–19. [CrossRef]
12. Xie, X.-Z.; Chang, C.-C.; Horng, J.-H. An EMD-based data hiding scheme for JPEG images. Connect. Sci. 2021, 33, 515–531.

[CrossRef]
13. Gray, R. Vector quantization. IEEE Assp. Mag. 1984, 1, 4–29. [CrossRef]
14. Wallace, G. The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 1992, 38, XVIII–XXXIV. [CrossRef]
15. Xu, S.; Chang, C.-C.; Liu, Y. A novel image compression technology based on vector quantisation and linear regression prediction.

Connect. Sci. 2021, 33, 219–236. [CrossRef]
16. Chang, C.C.; Sung, C.H.; Chen, T.S. A locally adaptive scheme for image index compression. In Proceedings of the 1997

Conference on Computer Vision, Graphics, and Image Processing, Taichung, Taiwan, August 1997; pp. 93–99.
17. Hsieh, C.-H.; Tsai, J.-C. Lossless compression of VQ index with search-order coding. IEEE Trans. Image Process. 1996, 5, 1579–1582.

[CrossRef]
18. Linde, Y.; Buzo, A.; Gray, R. An Algorithm for Vector Quantizer Design. IEEE Trans. Commun. 1980, 28, 84–95. [CrossRef]
19. Kim, T. Side match and overlap match vector quantizers for images. IEEE Trans. Image Process. 1992, 1, 170–185. [CrossRef]
20. Chang, C.-C.; Chen, G.-M.; Lin, M.-H. Information hiding based on search-order coding for VQ indices. Pattern Recognit. Lett.

2004, 25, 1253–1261. [CrossRef]
21. Rahmani, P.; Dastghaibyfard, G.; Rahmani, E. A reversible data embedding scheme based on search order coding for VQ index

tables. In Proceedings of the 8th International ISC Conference on Information Security and Cryptology, Mashhad, Iran, 14–15
September 2011; pp. 79–82.

22. Hu, Y.C.; Shu, Y.Y.; Chen, Y.S.; Su, B.H. Reversible data hiding method based on the coding of VQ index table. In Proceedings of
the E-learning and Information Technology Symposium, Tainan, Taiwan, 25 March 2015.

23. Qin, C.; Hu, Y.-C. Reversible data hiding in VQ index table with lossless coding and adaptive switching mechanism. Signal.
Process. 2016, 129, 48–55. [CrossRef]

24. Lee, J.-D.; Chiou, Y.-H.; Guo, J.-M. Lossless data hiding for VQ indices based on neighboring correlation. Inf. Sci. 2013, 221,
419–438. [CrossRef]

25. Lee, J.-D.; Chiou, Y.-H.; Guo, J.-M. Information Hiding Based on Block Match Coding for Vector Quantization-Compressed
Images. IEEE Syst. J. 2014, 8, 737–748. [CrossRef]

26. Lin, C.-C.; Liu, X.-L.; Yuan, S.-M. Reversible data hiding for VQ-compressed images based on search-order coding and state-
codebook mapping. Inf. Sci. 2015, 293, 314–326. [CrossRef]

27. Rahmani, P.; Dastghaibyfard, G. An efficient histogram-based index mapping mechanism for reversible data hiding in VQ-
compressed images. Inf. Sci. 2018, 435, 224–239. [CrossRef]

28. Lin, C.Y.; Chang, C.C. Hiding data in VQ-compressed images using dissimilar pairs. J. Comput. 2006, 17, 3–10.
29. Chang, C.-C.; Hsieh, Y.-P.; Lin, C.-Y. Lossless Data Embedding with High Embedding Capacity Based on Declustering for

VQ-Compressed Codes. IEEE Trans. Inf. Forensics Secur. 2007, 2, 341–349. [CrossRef]
30. Chang, C.-C.; Lin, C.-Y.; Hsieh, Y.-P. Data hiding for vector quantization images using mixed-base notation and dissimilar patterns

without loss of fidelity. Inf. Sci. 2012, 201, 70–79. [CrossRef]
31. Chang, C.-C.; Chou, Y.-C.; Hsieh, Y.-P. Search-order coding method with indicator-elimination property. J. Syst. Softw. 2009, 82,

516–525. [CrossRef]

http://doi.org/10.1109/iih-msp.2014.29
http://doi.org/10.3934/mbe.2019168
http://doi.org/10.1080/09540091.2020.1852179
http://doi.org/10.1080/09540091.2020.1753175
http://doi.org/10.1109/ACCESS.2018.2880904
http://doi.org/10.1109/ACCESS.2019.2908924
http://doi.org/10.1007/s11042-021-10698-2
http://doi.org/10.1016/j.future.2018.07.051
http://doi.org/10.1109/LSP.2006.870357
http://doi.org/10.1109/icicic.2008.149
http://doi.org/10.1080/09540091.2021.1900073
http://doi.org/10.1080/09540091.2020.1853055
http://doi.org/10.1109/MASSP.1984.1162229
http://doi.org/10.1109/30.125072
http://doi.org/10.1080/09540091.2020.1806206
http://doi.org/10.1109/83.541428
http://doi.org/10.1109/TCOM.1980.1094577
http://doi.org/10.1109/83.136594
http://doi.org/10.1016/j.patrec.2004.04.003
http://doi.org/10.1016/j.sigpro.2016.05.032
http://doi.org/10.1016/j.ins.2012.09.020
http://doi.org/10.1109/jsyst.2012.2232551
http://doi.org/10.1016/j.ins.2014.08.057
http://doi.org/10.1016/j.ins.2017.12.041
http://doi.org/10.1109/TIFS.2007.902683
http://doi.org/10.1016/j.ins.2011.12.025
http://doi.org/10.1016/j.jss.2008.08.024

	Introduction
	Related Work
	VQ Image Compression
	Search-Order Coding (SOC)

	Proposed Scheme
	The Side-Match Evaluation
	The First Layer of Data Embedding Process
	The SOC Compression and the Second Layer of Data Embedding Processes
	Secret Data Extraction and Index Table Recovery Processes

	Experimental Results
	Visual Quality of VQ Images
	Effectiveness of Side-Match Evaluation
	Performance of SOC Encoding
	Comparison with Related Works

	Conclusions
	References

