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Abstract: Hierarchical Bayesian models (HBM) are powerful tools that can be used for spatiotemporal
analysis. The hierarchy feature associated with Bayesian modeling enhances the accuracy and
precision of spatiotemporal predictions. This paper leverages the hierarchy of the Bayesian approach
using the three models; the Gaussian process (GP), autoregressive (AR), and Gaussian predictive
processes (GPP) to predict long-term traffic status in urban settings. These models are applied on
two different datasets with missing observation. In terms of modeling sparse datasets, the GPP
model outperforms the other models. However, the GPP model is not applicable for modeling
data with spatial points close to each other. The AR model outperforms the GP models in terms
of temporal forecasting. The GP model is used with different covariance matrices: exponential,
Gaussian, spherical, and Matérn to capture the spatial correlation. The exponential covariance yields
the best precision in spatial analysis with the Gaussian process, while the Gaussian covariance
outperforms the others in temporal forecasting.

Keywords: hierarchical; Bayesian; spatiotemporal

1. Introduction

Recently, traffic flow modeling has gained significant interest in the intelligent trans-
portation and traffic management sectors, where it is used to describe and predict traffic
status by modeling historical and recent traffic data. This directly benefits the traffic man-
agement sector by enhancing the infrastructure of transportation networks and supporting
real-time decision making [1]. Additionally, traffic modeling takes into account other
traffic issues, such as traffic safety and transportation efficiency. Therefore, a number of
techniques, such as time series forecasting and spatial prediction, have been developed
to study this area of research and to predict the changes in traffic behavior [2]. However,
these traditional traffic modeling techniques perform poorly in terms of accuracy and
effectiveness. Time series forecasting techniques and spatial prediction techniques suffer
from several major drawbacks that affect the prediction accuracy [3–5], whereas time series
forecasting techniques focus exclusively on the time series of observations and construct
forecasting on the time element. These techniques are preferable when we only want to
identify a directional movement in a time series. In spatial prediction techniques, it only
takes into account the geographical space to build the prediction outcome. The lack of
temporal factor in the spatial prediction would have a detrimental impact on the prediction
accuracy [6]. Furthermore, the integration of the time and space factors in the prediction
models significantly improve the prediction results. Therefore, a number of spatiotemporal
approaches for analyzing and predicting the traffic status have been proposed in order
to gain a deeper understanding of traffic data. These spatiotemporal traffic models can
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be defined as a statistical process to represent the behavior of traffic at a given location
and time [7]. However, these proposed approaches have encountered obstacles in recent
years, due to a number of challenges concerning modeling large-scale traffic data, traffic
data with missing observations, and predicting traffic status for short-time intervals. These
challenges require models that are not highly sensitive to outliers and do not require high
computations in order to maintain good prediction accuracy [8].

Generally speaking, Bayesian-based spatiotemporal models offer a robust statistical
framework to estimate the correlation between different dependent variables and yield ac-
curate prediction results from complex data using probability rules [9]. They are structured
to estimate the posterior distribution from the prior distribution of the model parameters
using Bayes’ theorem [10,11]. Furthermore, the Bayesian approach provides a hierarchical
implementation for modeling complex problems, such as large-scale traffic data with multi-
dimensional time series [12]. The hierarchical implementation can provide an intuitive
and understandable algorithm to compute the model parameters. These parameters in
traffic data may appear to be quite complex to compute, due to the difficulties in deter-
mining the spatiotemporal dependencies between different geographic areas at different
time frames [13]. Therefore, the Bayesian hierarchical approach is suitable to apply in
traffic prediction for short-time intervals. However, most of the studies on hierarchical
Bayesian models are centered around the usage of this approach in specific applications,
such as the environment, healthcare, and finance [14–17]. This work contributes to existing
knowledge of spatiotemporal traffic prediction models by providing experimental work,
using hierarchical Bayesian models in the traffic domain.

Recent developments in the Bayesian modeling approach propose a hierarchical
structure, where the model is built in multiple levels [14]. Each level is implemented
through a number of iterations, using the Markov Chain Monte Carlo (MCMC) algorithm
in order to define the prior, the joint likelihood of model parameters, and the joint posterior.
The three levels (also known as sub-models), as described in the literature, build the
HBM model’s functions. Bakar and Sahu [18] developed a hierarchical Bayesian approach,
using three sub-models: data model, process model, and parameter model in its hierarchy.
The results of their research support the space–time and air-pollution pair datasets to
predict the daily 8 hour maximum ozone concentration [18]. The performance evaluation
of their study using GP, AR, and GPP models shows high prediction accuracy with the used
data. Utilizing their approach with different covariance matrices to predict the traffic flow
data should make an essential contribution to the domain of spatiotemporal analysis. In
this paper, we apply the HBM approach in the traffic domain, using the Gaussian process
(GP), autoregressive (AR), and Gaussian predictive processes (GPP) approximation models.
The estimation of model parameters is carried out using Bayesian inference, and different
traffic data modeled for the experiments analysis. We apply these three different models
to obtain accurate spatial prediction and temporal forecasting, using the HBM approach.
We test four different spatial correlation matrices: Exponential, Gaussian, Spherical, and
Matérn in the GP model. Constructing the temporal forecasting is based on two different
units of time: day and month. We use two different datasets collected by the Chicago Transit
Authority (CTA) about bus traffic counts to apply our model and conduct a spatiotemporal
traffic prediction. The first dataset has its spatial points relatively close to one another,
while in the second dataset, the spatial points distribution is widely spaced from each other.

2. Related Works

In the literature, various spatiotemporal modeling techniques have been proposed
for traffic prediction, which can be mainly classified into two categories: parametric and
nonparametric approaches [19]. The parametric approaches make assumptions and define
a fixed-parameter for its structural algorithm. Parametric approaches, such as STARIMA,
make assumptions on the variables and establish a structural algorithm with fixed pa-
rameters [20], while in the nonparametric approaches, such as neural networks (NNs)
and Bayesian networks, the number of the model’s parameters grows as the size of the
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training data increases [19,21]. Having an infinite number of parameters makes nonpara-
metric approaches suitable methods for analyzing and predicting spatiotemporal data.
However, due to the complexity of estimating the spatiotemporal traffic data relationships,
developing an efficient spatiotemporal traffic model becomes challenging [21].

Fusco et al. [22] propose a hybrid modeling framework for short-term traffic prediction
that incorporates Bayesian networks (BN) and neural networks (NN) to model the spa-
tiotemporal correlation between traffic variables. However, these two models have several
drawbacks, which can be summarized as follows: (1) training data that are reasonable in
size are computationally expensive when compared to other spatiotemporal models [23];
and (2) the lack of a clear methodology structure affects the reliability of the results [24].

Another research study for predicting traffic data with missing values using the ST-
Kriging approach is proposed in [2]. The study indicates the efficiency of ST-Kriging
methods in handling missing values. However, the prediction accuracy might be affected
when each road network is considered separately [25]. Furthermore, the ST-Kriging
approach faces some challenges that are highlighted in a study by Selby and Kockelman [26].
First, ST-Kriging prediction lies on the covariance matrix and the inverse covariance matrix;
with large-scale data, the matrix inversion is difficult. Therefore, ST-Kriging prediction is
implemented on data with relatively small sizes. Another challenge that the ST-Kriging
approach faces is optimizing the semivariogram estimation and selecting the optimal lag
size and the optimal number of lags [27], as there is no optimal approach for selecting
these parameters.

Jones et al. [28] and Kotusevski and Hawick [29] propose spatiotemporal traffic mod-
eling studies from a microscopic perspective. These studies, however, do not take into
account the traffic flow status; instead, these methods focus on simulating the origin-
destination (OD) element to develop a singular trajectory model that targets vehicle chang-
ing patterns associated with time and location [30]. Although there are numerous studies
concerning traffic prediction, there is still a literature gap in modeling large space–time
traffic data for short-time prediction considering both the spatial and temporal correla-
tions [20].

On the other hand, a considerable amount of literature has been published on spa-
tiotemporal modeling using a hierarchical Bayesian (HB) approach; however, these models
were developed in different application contexts, such as public health, image processing
and environmental modeling [31–33]. The basic idea behind hierarchical Bayesian mod-
eling is to integrate prior knowledge about specific observations, such as air pollution
concentrations, traffic flow values, etc., and then analyze the collected observations from
each spatial point with the prior knowledge to predict new data that are more accurate
and reliable [34]. One of the key features of the Bayesian approach is representing the
uncertainty of all the possible predictive distributions, using probability distributions.
The uncertainty in Bayesian inferences can be represented in terms of observations level,
parameters level, and processes level [16]. Together, this gives a full joint distribution in a
hierarchical manner to prove the accuracy of the hypothesis.

There is a wide variety of research on hierarchical Bayesian (HB) models applied to
spatiotemporal data, such as environmental data, including weather conditions and ozone
(O3) level concentrations [35]. These studies have shown that hierarchical Bayesian is more
effective, accurate, and resilient, compared to other models. Bakar et al. [18] propose a spa-
tiotemporal model to predict the ozone concentration level in New York City. The model is im-
plemented in their spTimer R package to use one of the three models: GP, AR, or GPP. In their
framework, they use a Gibbs sampler to estimate the likelihood functions. The structural
framework and the three models have achieved precise results in analyzing and predicting
spatiotemporal data.

In order to leverage this robust approach in the spatiotemporal traffic domain, we
apply all three different models with different traffic data, and different covariance matrices
in the GP model. The findings of the performance of the covariance matrices conclude that
covariance matrices perform differently based on different characteristics of the dataset.
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Before discussing the methodology, we look into the existing literature on the GP, AR,
and GPP models to explore the key theoretical concepts for better understanding.

2.1. Gaussian Processes (GP) Model

Gaussian processes (GP), which are also known as kernel-based learning algorithms,
have become more popular in spatiotemporal research due to their ability to effectively
model complex, nonlinear relationships [36]. GP models are very effective tools for investi-
gating implicit correlations between parameters, which makes them particularly effective
for complex nonlinear classification and regression analysis [37]. A highly appealing fea-
ture of GP models is that they are developed using a Bayesian framework, which enables
probabilistic predictions based on the model’s parameters. Furthermore, Bayesian learning
may be utilized to determine the parameters of GP models. It has been shown in a vari-
ety of research areas, including geostatistics, general regression, time series, and spatial
statistics that GP models outperform other standard techniques. In terms of traffic-related
studies, GP models have been successfully applied in different studies, such as traffic
congestion [38], travel times [39], public transportation flow [40], etc.

Additionally, GP provides excellent accuracy in learning and is relatively straight-
forward to apply. However, the GP model computational cost is expensive, due to the
covariance matrix, where its computational complexity is O(N3) and its memory complex-
ity is O(N2) [41]. This may limit the use of the GP model when N is large, where N is the
number of observations [37]. To overcome this issue, a number of studies have suggested
reducing the run-time complexity by reducing the number of the parameters, which can be
achieved by producing sub-samples of the observations using hierarchical structures [42].

2.2. Autoregressive (AR) Model

An autoregressive (AR) model is a statistical model that represents a time series
process. The AR model refers to the order (p) element in the autoregressive integrated
moving average (ARIMA), which has the order (p, d, q) and autoregressive moving
average (ARMA) with the order (p, q) [43]. The AR, MA, ARMA, and ARIMA models are
commonly used in time series forecasting studies [44]. AR models are composed of three
steps, the first of which is used to find correlations in time data. The second step defines
the model parameters, and the third step forecasts the time series future points.

Numerous studies have been conducted on traffic modeling using AR, MA, ARMA,
and ARIMA statistical models. A suggested methodology integrating ARIMA with gener-
alized autoregressive conditional heteroscedasticity (ARIMA-GARCH) [45] was applied
for traffic flow prediction in short-term time series; however, the methodology failed to
achieve significant improvement over the standard ARIMA, where the parameters model
in ARIMA is easily interpretable, unlike the GARCH model [43].

Although all these time series methods are widely used in traffic prediction, the ma-
jority of the research found in the literature focuses on applying these methods on large
time windows [46]. A study by Song et al. on short-term traffic speed prediction provides
a comparison between four prediction methods with different data collected in a varying
time window ranging from 1 min up to 30 mins [47]. The study proposes a seasonal
discrete grey model (SDGM) and compares the prediction accuracy with the seasonal
autoregressive integrated moving average (SARIMA) model, artificial neural network
(ANN) model, and support vector regression (SVR) model. The findings of this study
show that the prediction accuracy increases when the target time window is more than
10 min, whilst the prediction of the time window that is fewer than 10 min suffers from
instability. Additionally, the study shows that the SARIMA performance has the highest
error indicator in the prediction results. A probable explanation regarding these results is
that SARIMA cannot capture the variation characteristics of the traffic data in a small time
window [48].
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2.3. Gaussian Predictive Processes (GPP) Model

Gaussian predictive process (GPP) models are developed to address the significant
computational cost associated with calculating the covariance matrix in Gaussian predictive
process (GPP) models, particularly when modeling large spatiotemporal datasets [36].
GPP models work best on modeling spatial data points that are distributed over a large
distance [49]. To date, relatively little research on GPP models has been conducted on
spatiotemporal data since the current literature tends to focus on the theoretical features of
GPP models, which makes them an interesting topic for research [50].

3. Methodology and Data

We can summarize the fundamental concept of Bayesian theory into three keywords:
prior, likelihood, and posterior. The prior is an initial belief to begin with, based on the cur-
rent/historical information, and can be updated when new information arrives. The like-
lihood is the joint distribution of the data, given the model parameters β, and σ. Model
parameters can be determined after updating the prior. Lastly, the posterior is the condi-
tional probability distribution of our dependent variable θ, which depends on the data and
the prior. The posterior is computed as the product of the prior and likelihood [17].

Generally speaking, the Bayesian inference can be performed as follows: (1) define
the prior empirical probability distribution or the assumptions for the hypothesis; (2)
compute the marginal likelihood probability of the data using a sampler (e.g., MCMC) to
generate random samples from the probability distribution [51]. In each sample, calculate
the marginal likelihood probability, which contains all the relevant information to evaluate
the evidence. However, estimating the marginal likelihood typically is a difficult task
because we have to integrate all model parameters; and (3) determine the posterior, which
is the probability distribution of a particular value of the parameter after having seen the
whole data set [16]. The Bayesian inference theory is formally expressed as follows:

posterior ∝ prior × likelihood

3.1. Hierarchical Bayesian Modeling

The hierarchical Bayesian model can be structured as three levels of probabilistic
models [18]: the data model, the process model, and the parameters model. These three
levels (or stages) can be represented as follows:

First level [data | process, parameterdata]
Second level [ process | parameterprocess]

Third level [ parameterdata, parameterprocess]

In the first level, we obtain the data model according to a certain process Y(sij ;t) and some

errors εl(sij ;t) that are assumed to be independently normally-distributed (εl ∼ N(0, σ2)).
The data model is described as shown below:

Zl(sij; t) = Yl(sij; t) + εl(sij; t) (1)

The process model in Equation (2) captures the relationship of the underlying nature
expressed by the data at location s at time t. The process model can be one of three; Gaussian
process (GP), autoregressive (AR), or Gaussian predictive process (GPP). In Equation (2),
the process Yl(sij ;t) is expressed by a Gaussian process µ(sij ;t) in addition to some errors η(sij ;t):

Yl(sij; t) = µ(sij ;t) + η(sij ;t) (2)

The third level of hierarchical modeling defines the model parameters. According to
Equations (1) and (2), these parameters are the variance of εl(sij ;t), the variance of η(sij ;t),
the coefficients of the GP, and φ, which defines the spatial correlation.



Future Internet 2021, 13, 225 6 of 18

Generically, Equation (3) represents the structure of estimating the model parameters
of the hierarchical model, using Bayesian inference. Starting with the Gaussian process,
Y(sij; t), which follows a normal distribution conditioning on the model parameters θi,
where θi is a vector containing ση , β, and φ. The prior distribution of θi conditioning on φ
where φ will have a prior distribution that follows a gamma or uniform distribution.

yi ∼ p(y|θi)

θi ∼ p(θi|φ)
φ ∼ p(φ)

(3)

p(θi, φ|y) ∝ p(y|θi, φ) (4)

From Equation (4), the posterior distribution is proportional to the likelihood being
conditional on both θi, and φ multiplied by the prior for θi and φ. Based on the conditional
independence rules and knowing that our data are independent of φ, if we know θi, we
can take the joint distribution and break it down into conditional distribution p(θi|φ) and
multiply it by the distribution of p(φ). Equation (5) formalizes these steps, which is derived
from Equation (4).

p(θi, φ|y) ∝ p(y|θi, φ) = p(y|θi)p(θi|φ)p(φ) (5)

3.1.1. Gaussian Processes (GP) Model

The GP includes the temporal effect as well as the spatial effect denoted in Equation (6),
which captures the space–time relationship. [52].

[Y(s, t) : s ∈ Ds, t ∈ Dt] (6)

where Y is the value of the traffic flow at location s at time t; Ds is a set of spatial coordinates
(si, sj); and i, j = 0, . . . , (m + 1) × (m + 1), (m + 1) × (m + 1) is the total number of
locations. For the temporal component, Dt is a set of time series where we have two time
components denoted by l and t that represent the short time component and the long time
component, respectively. In our dataset, we only use the day and month at the observed
spatial points. The dataset has 28 locations, and we use the generic spatial process to
define the spatial process Yt0(s0), . . . , Yt0(s0 + 28∆). We compare the spatial process to
the temporal process Yt0(s0), . . . , Yt0+28(s0) to decompose Y in Equation (6), where the
spatial process at fixed time t0 and the temporal process at fixed spatial point s0 are denoted
by Equations (7) and (8), respectively [52]:

Yt0 = (Yt0(s0), . . . , Yt0(s0 + 28∆))> (7)

Ys0 = (Yt0(s0), . . . , Yt0+28(s0))
> (8)

By combining Yt0 and Ys0 as follows:

Yt0(si)
|Yt0(sj)

: j 6= i ∼ Gau((φt0 /(1 + φ2
t0
))Yt0(sij−1) + Yt0(sij+1), σ2

t0
/(1 + φ2

t0
)) (9)

where the dimensional distributions are determined by the mean function µ(s, t), and the
covariance matrices cov(Y(s, t), Y((s, t)′) for all spatial points s ∈ D. Since we are using
the GP to build the HBM, we define the hierarchy of the GP in Equation (10):

Yl(sij ;t) = f (xl)(sij ;t) + εl(sij ;t) (10)

The long time unit is denoted by L, where l = 1, . . . , L and the short time unit is
denoted by Tl, where t = 1, . . . , Tl.
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Our dataset is represented by Yl(sij ;t), where εl(sij ;t) is a random error that we assume

to be independently normally-distributed that follows εi ∼ N(0, σ2
ε ), and we can break

down Equation (2) as follows:

η(sij ;t0)
= (η(s11;t1)

, . . . , η(sm+1;tl)
) (11)

µ(sij ;t0)
= (µ(s11;t1)

, . . . , µ(sm+1;tl)
) (12)

Let η(sij ;t0)
be the spatiotemporal random effects, and µ(sij ;t0)

is the mean function at
location sij at time t0. The mean µ(sij ;t0)

can be represented by χβ, where β represents the
vector of regression coefficients and χ represents the matrix of the covariates between time
and space. Thus, Equation (2) can be written as follows:

f (xl)(sij ;t) = χl(si;t)β + η(sij ;t) (13)

Different spatial covariance matrices show significant positive results on the prediction
outcomes, where estimating the correlation for the space-time effect on a specific observed
value is a major step in fitting the model. In the following, we briefly describe these four
covariance matrices.

Spatial Covariance Matrices: In GP, the spatial correlation parameter is calculated by
applying one of the four covariance matrices: exponential, Gaussian, spherical and Matérn.
We refer to the spatial covariance function by κ(si − sj; φ, ν), which includes three param-
eters: φ, ν and the distance between two spatial points si and sj, which is calculated as
‖ si − sj ‖.

Sη = κ = φ + ν + coordinates (si − sj) (14)

When the distance between si and sj increases, their correlation level decays, and we
refer to this by the parameter α, where it dominates the rate of the correlation of si and sj
locations; ν is the smoothness parameter that softens the fitted curve of the model. The
term σ2

η Sη computes the variance–covariance matrix, where σ2
η is the site invariant spatial

variance. The spTimer package uses exponential as the default spatial covariance matrix.
The decay of the correlation function is calculated as follows [53–55]:

CovE(si, sj; φ) = exp(−2
√

ν ‖ si − sj ‖ φ) (15)

where φ and ν > 0. Similarly, in the Gaussian covariance matrix, the square of the
exponential covariance matrix is calculated as follows [53,54]:

CovG(si, sj; φ) = exp(−2
√

ν ‖ si − sj ‖ φ)2 (16)

The spherical covariance matrix takes in consideration the range “distance” over
pairs of spatial points. The covariance vanishes when the distance between si and sj is
zero [53,55].

CovS(si, sj; φ) = 1− 1.5× (2
√

ν ‖ si − sj ‖ φ)

+0.5(2
√

ν ‖ si − sj ‖ φ)3 (17)

The Matérn covariance matrix includes the modified Bessel functions of the second
kind that is sometimes called the Basset functions, and it is given by Equation (18) [56]:

CovM
(
si, sj; φ, ν

)
=

1
2ν−1Γ(ν)

(2
√

ν ‖ si − sj ‖ φ)νKν(2
√

ν ‖ si − sj ‖ φ)

(18)
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Let θ = (β; σ2
η ; σ2

ε ; φ; ν) denote all the generic quantities parameters of the GP model,
and we integrate the posterior predictive distribution for Yl(sij ;t) over the model parameters
with respect to the joint posterior distribution as follows:

π(Y(s′, t)|y) =
∫

π(Y(s′, t)|Nl(s′, t), σ2
ε , y)× π(N(s′, t)|θ)× π(θ|y)dN(s′, t)dθ (19)

3.1.2. Autoregressive (AR) Model

The independent AR model is proposed by Sahu et al. [18]. Let Yl = Yl(sij ;t), . . . , Yl
′
(sn ;t)

be the vector of observations and Nl = Nl(sij ;t), . . . , Nl
′
(sn ;t) be the true square root of the

bus count in l and t that represent the short time component, and the long time component
at sites (si, sj). We define the hierarchy of the AR model in Equations (20) and (21):

Yl(sij ;t) = f (xl)(sij ;t) + εl(sij ;t) (20)

f (xl)(sij ;t) = ρNlt−1 + χl(si;t)β + η(sij ;t) (21)

εl(sij ;t) is a random error that we assume to be independently normally-distributed that

follows εi ∼ N(0, σ2). We assign a prior distribution as shown in Equation (21), where ρ
denotes the unknown parameter for temporal correlation with 0 < ρ < 1. The ρ parameter
is used to reduce the computations in the GP model.

We continue to assume that χl(si;t) represents the matrix of the covariates between
time and space, and β represents the vector of regression coefficients. The spatiotemporal
random effects error η(sij ;t0)

is distributed as stationary parameter with zero mean”. Let

θ = (ρ; β; σ2
η ; σ2

ε ; φ; ν) denote all the parameters of the AR model, and we integrate the
posterior predictive distribution for Yl(sij ;t) over the model parameters with respect to the
joint posterior distribution as follows:

π(Y(s′, t)|y) =
∫

π(Y(s′, t)|Nl(s′, t), σ2
ε , y)× π(Nl(s′, t)|θ)× π(θ, y∗|y)× π(θ|y)dNl(s′, t)dy∗dθ (22)

3.1.3. Gaussian Predictive Processes (GPP) Model

The GPP model is mainly used to predict values for large spatial datasets that are
sparse, and it applies sparse matrix algorithms to overcome the high computational cost
when modeling the parameters of the large dataset, unlike the GP and AR models that use
dense matrix algorithms.

The GPP models is a modified version of the AR model, where the spatiotemporal
random effects error η(sij ;t0)

is distributed as stationary parameter with zero mean in the
AR model, while in the GPP model, we define the random effects η(sij ;t0)

at each spatial
point (si, sj), i, j = 0, . . . , m, which we call knots. Let ωlt denote the spatial random effects
at these locations ωlt1 = (ωl(sij ,t)

, . . . , ωl(sm ,t))
. We define knots of spatial points as a grid

before fitting the model. Defining the knots grid reduces the computational complexity of
the GPP model when modeling large datasets. The GPP defines the random effects of each
spatial point inside the boundary of the selected grid. Different grid sizes can be selected,
such as 4× 4, 6× 6, 8× 8, 10× 10, 12× 12, and 16× 16. The knot length needs to be equal
to or less than the number of spatial points. We define the hierarchy of the GPP model in
Equations (23) and (24):

Yl(sij ;t) = f (xl)(sij ;t) + εl(sij ;t) (23)

f (xl)(sij ;t) = ρωlt−1 + χl(si;t)β + η(sij ;t) (24)

Let θ = (ρ; β; σ2
ω ; σ2

ε ; φ; ν) denote all the parameters of the GPP model, and we integrate
the posterior predictive distribution for Yl(sij ;t) over the model parameters with respect to
the joint posterior distribution as follows:

π(Y(s, t′)|y) =
∫

π(Yl(s, t′)|Nl(s, t′), σ2
ε )× π(Nl(s, t′)|θ, N, y∗)× π(θ, N, y∗|y)dNl(s, t′)dNdθdy∗ (25)
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3.1.4. Gibbs Sampler

The Gibbs sampler is an MCMC algorithm that generates a sequence of observations
(samples) from a specific multivariate distribution of the hierarchical model parameters. It
starts by simulating a sequence of random vectors Ym

1 , Ym
2 , . . . , Ym

n , for m = 1, 2, . . . , and n =

1, . . . , D. Then, it choose a starting point p(Y1 = y1|Y2 = ym−1
2 , Y3 = ym−1

3 , . . . , Yn = ym−1
D )

for which p(Y1) > 0 [57]. (Algorithm 1)

Algorithm 1: Gibbs Sampler

initialize y(0) ∼ q(y)
for iteration m= 1,2,3,. . . do

ym
1 ∼ p(Y1 = y1|Y2 = ym−1

2 , Y3 = ym−1
3 , . . . , YD = ym−1

D )

ym
2 ∼ p(Y2 = y2|Y1 = ym

1 , Y3 = ym−1
3 , . . . , YD = ym−1

D )
...
ym

n ∼ p(YD = yD|Y1 = ym
1 , Y2 = ym

2 , . . . , YD = ym
D−1)

end

Gibbs sampling allows us to examine each variable and calculate its conditional
distribution for the random vectors Y1, Y2, . . . , Yn, and the value for each random variable
y1, y2, . . . , yn is initialized from the prior distribution. In each iteration m, the sampler
produces the samples of y1, y2, . . . , yn as follows:

ym
1 ∼ p(Y1 = y1|Y2 = ym−1

2 , Y3 = ym−1
3 ) (26)

ym
2 ∼ p(Y2 = y2|Y1 = ym

1 , Y3 = ym−1
3 ) (27)

ym
3 ∼ p(Y3 = y3|Y1 = ym

1 , Y2 = ym
2 ) (28)

ym
n ∼ p(YD = yD|Y1 = ym

1 , Y2 = ym
2 , . . . , YD = ym

D−1) (29)

The Gibbs sampler stops when all generated sampling values have the same distri-
bution size. Algorithm 1 [57,58] provides the procedure that the Gibbs sampler uses to
generate the samples. Samples are generated by examining each random variable one at a
time and obtaining samples from the conditional distributions of each variable. A sequence
of pairs of random variables is generated as follows: (Y1, y1), (Y2, y2), (Y3, y3).

3.2. Study Area and Data Preprocessing

The datasets we use in this study are collected from the Chicago Transit Authority
(CTA). The data include information about public transportation bus counts in Chicago
and the neighboring areas. We select this dataset, due to the importance of public transport,
which plays an essential role in the development of large cities and is considered an
economical way of transportation. However, this mode of transportation is often involved
in traffic congestion [1]. Understanding the public transit traffic data helps in improving
public transport services and generally enhances road traffic management. The two study
areas include 29 sensors, where the first dataset has spatial points distributed mostly in
downtown Chicago. The second dataset contains sparsely distributed spatial point data as
shown in Figures 1 and 2. Both datasets include the number of buses, their speeds, and the
number of sensor readings every 10 min from August 2018 to December 2019.
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Figure 1. The sensor locations in the dense dataset.

Figure 2. The sensor locations in the sparse dataset.

A quick exploration of the data presents the aggregate number of buses for each day
as shown in Figures 3 and 4 The reason we are showing this visual analysis is to illustrate
the variations in traffic patterns over days, which does not exhibit normal distribution.
Unlike most of the other spatiotemporal analysis techniques, HBM can efficiently deal with
data that do not have a normal distribution [59].
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Figure 3. The average volume of the bus traffic count per day in the dense dataset.
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Figure 4. The average volume of the bus traffic count per day in the sparse dataset.

We estimate the distance between all spatial points in both datasets and find that
the minimum distance is 2 km and the maximum distance is 20 km in the first dataset.
The second dataset shows a minimum distance of 4 km and a maximum distance of 79 km.
On the first dataset, we apply the GP and AR models, whereas, on the second dataset we
apply all the three models GP, AR, and GPP with three days of missing observations. Due
to the small distances between spatial points, the GPP model cannot be used with the first
dataset. We define the knot size with a grid of 4× 4, which includes the random effect of 16
spatial points. We cannot define a grid of 6× 6 or higher since it requires 36 spatial points
and our dataset only includes 28 spatial points. The approach does not perform accurately
with short-time units “hour", due to implementation limitations in the spTimer package.
That is why we opt to use the daily aggregate data. We train the model on 21 locations for
the time period starting from 1 January 2019 to 29 January 2019. Then, we test the model
performance on the eight locations that will be defined in the Gibbs sampler.

4. Results and Discussion

The hierarchical Bayesian approach using the three models GP, AR, and GPP are
applied in this study to model the correlation between time, location, and the bus speed of
the bus traffic data. In our experiment, we run GP and AR models on the dense dataset,
and then we run the three models GP, AR, and GPP on the sparse dataset with missing
observations. In terms of modeling the first dataset, the results show that the GP model
outperforms the AR model from the spatial prediction side, while the AR model provides
better performance in terms of temporal forecasting. The GPP model cannot be applied
to this data since the spatial points are close to each other, which cannot fit the sparse
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matrix. A number of performance criteria are used to measure the accuracy of the models,
including the mean absolute error (MAE), root mean squared error (RMSE), and mean
absolute percentage error ( MAPE) as shown in Tables 1–4 [60,61]. We compare the MAE,
RMSE, and MAPE outputs of the three models: the GP, the AR, and the GPP. In the GP, we
compare the results for the spatial prediction with the exponential, Gaussian, spherical,
and Matérn covariance matrices.

Tables 1 and 2 provide the performance measurements of the spatial prediction and
the temporal forecasting for the AR and the GP model with the different covariance matri-
ces. Interestingly, we observe similarities in the accuracy error between the exponential,
spherical, and Matérn in the GP model. The exponential covariance provides the best
performance with the GP in spatial prediction and is slightly better than the spherical
and Matérn. The Gaussian provides the lowest spatial prediction accuracy out of the four
covariance matrices. As for the AR model, it provides better performance in temporal
forecasting, due to the greater flexibility of the AR model in representing the changes of the
data in time series. We attribute the unsatisfactory results of the GP model, in particular
the Gaussian covariance, to the multiple distributions of the data. This explains the poor
performance that Gaussian covariance provides, where Gaussian covariance is suitable
for data with normal distribution. However, using data that follow a normal distribution
would provide significant improvements in the error results for both models.

Tables 3 and 4 provides the performance measurements of the temporal forecasting for
the three models. The GPP model outperforms the AR and GP models. Although we have
missing observations in the training data and the predicted data, the three models provide
good performance in general; however, none of these models can predict missing obser-
vations because of the limitation of the Bayesian approach when modeling missing data
points. The Bayesian approach samples unknown observations or missing observations,
using the MCMC algorithm, but when we compute the covariates in the Gibbs sampler,
the sample with missing observation will not be included.

To provide a fair comparison, we concentrate on the results of the three models
applied on the second dataset. The relationship between the residuals and the estimated
responses that present the predicted response is shown in Figures 5–7. Figure 5 illustrates
the residuals estimation plot of the GP model, using the Matérn covariance matrix where
Figures 6 and 7 represent the residuals estimation plot of the AR and the GPP models,
respectively. It appears that residuals roughly form around the zero line, especially in the
GPP model. Additionally, most of the predicted responses fall on the estimated regression
line. These points explain the relatively good correlation between residuals and fits. In
Figures 5 and 6, the mean residuals change with the fitted values, where the spread of
the residuals increases as the fitted values change. In Figure 7, the residuals are mostly
negative when the fitted value is small.

Prior to evaluating the performance of the MCMC chain, we plot the correlograms of
the autocorrelation coefficient function at different lags. The MCMC chain demonstrates a
significant relationship between the different lags. This implies that the present value is
continually influenced by the prior values, confirming their interdependence. We assess
the MCMC performance by applying some available diagnostic tests, such as Geweke’s
convergence, and Gelman and Rubin’s diagnostic. The Gelman and Rubin’s diagnostic
requires multiple MCMC chains run in parallel to compare the autocorrelation coefficient
of the multiple MCMC chains as shown in Figures 8–10. The estimated variance of each
parameter within the MCMC chain is very small, which indicates that the MCMC chain has
converged. The statistical results of the Gelman and Rubin’s diagnostic match the results
of the auto-correlation coefficient figures, where the convergence diagnostic is 1.03 in the
three models. Having convergence less than 1.1 means that the chains have converged.
We run the MCMC for 5000, 10,000,and 15,000 iterations to produce samples, and then set
the number of burn samples to 0. We conclude that running MCMC for 15,000 iterations
does not substantially enhance the prediction accuracy when compared to running MCMC
with the default 5000 iterations. This process, however, increases the computation time but
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does not achieve high accuracy. Additionally, we notice that the size of the knots has an
impact on the prediction accuracy in the GPP model, where the grid output only contains
16 spatial points and discards 12 spatial points, resulting in MCMC samples created from
only 16 spatial points. Although the GPP model outperforms the other models, the dataset
is insufficient to demonstrate the suitability of the GPP model.

Another interesting finding is that aggregating the 10 min readings to obtain the daily
average of bus counts has an effect on the data distribution, resulting in a non-stationary
distribution. The effect of the probability distribution should not be underestimated since
it affects the reliability of the MCMC samples. These findings are found on all three
models considering that we discuss deeply the results of the sparse dataset. Nonetheless,
these results raise some interesting issues that need further investigation, such as the
potential of utilizing these three temporal components (hour, day, month) in the models’
implementation for additional influences.

Table 1. Spatial prediction error of GP and AR models.

Prediction Error AR
GP

Matérn Spherical Exponential Gaussian

MAE 10.8206 7.6839 8.1898 7.6723 41.8726

RMSE 13.0264 9.1833 9.7754 9.1444 53.6856

MAPE 50.2990 37.2477 41.5263 37.1951 201.6881

Table 2. Temporal forecasting error of GP and AR models.

Prediction Error AR
GP

Matérn Spherical Exponential Gaussian

MAE 9.8014 11.4243 11.4738 11.2184 15.2290

RMSE 10.5591 13.1387 13.6285 12.8379 19.1728

MAPE 41.5620 44.5595 45.0353 44.0292 73.0119

Table 3. Spatial prediction error of GP, AR and GPP models.

Prediction Error AR
GP

GPP
Matérn Spherical Exponential Gaussian

MAE 12.1815 7.0502 7.1497 6.9503 8.2164 6.0661

RMSE 14.8013 8.4186 8.6597 8.2514 10.6448 7.7081

MAPE 62.0773 38.5571 39.2783 38.5146 40.7944 34.9146

Table 4. Temporal forecasting error of GP, AR and GPP models.

Prediction Error AR
GP

GPP
Matérn Spherical Exponential Gaussian

MAE 10.8145 9.3554 9.3864 9.1993 11.4445 6.1544

RMSE 11.7616 10.8155 11.4056 10.3655 15.9292 7.3064

MAPE 51.0616 39.9743 40.8310 40.0823 43.2680 30.0583
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Figure 5. The residuals versus the estimated responses of the GP model.
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Figure 6. The residuals versus the estimated responses of the AR model.
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Figure 8. The autocorrelation coefficient estimation using two different lists of MCMC chains in the
GP model.
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Figure 9. The autocorrelation coefficient estimation using two different lists of MCMC chains in the
AR model.
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5. Conclusions

This study applies hierarchical Bayesian modeling, using the Gaussian process (GP),
autoregressive (AR), and Gaussian predictive processes (GPP) approximation models to
predict bus counts. The GPP model does not apply for data with spatial points close
to each other. Additionally, the data distribution has a significant impact on the model
accuracy; however, the normality of the data distribution can be improved by using the
transformation log and the square-root function when running the MCMC algorithm. We
use the Gibbs sampler to obtain the samples from the bus count data and use these samples
to build spatial prediction and temporal forecasting. Different covariance matrices are used
with the Gibbs sampler, including exponential, Gaussian, spherical, and Matérn. We apply
the these models on two different datasets with different distributions. The results show
that the GPP model outperforms the AR, and GP models. In the GP model, the exponential,
spherical, and Matérn provide a higher accuracy, compared to the Gaussian covariance
matrix. The AR model provides better prediction accuracy in terms of temporal forecasting.
The results also confirm that HBM can be used effectively in spatiotemporal analysis and
yields high prediction accuracy.
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59. Džambas, T.; Ahac, S.; Dragčević, V. Numerical prediction of the effect of traffic lights on the vehicle noise at urban street

intersections. J. Acoust. Soc. Am. 2008, 123, 3924.
60. De Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean absolute percentage error for regression models. Neurocomputing

2016, 192, 38–48. [CrossRef]
61. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE). Geosci. Model Dev. Discuss. 2014, 7,

1525–1534.

http://dx.doi.org/10.1016/j.ijid.2018.07.003
http://www.ncbi.nlm.nih.gov/pubmed/29990540
http://dx.doi.org/10.1371/journal.pone.0218626
http://www.ncbi.nlm.nih.gov/pubmed/31242226
http://dx.doi.org/10.1002/sim.963
http://www.ncbi.nlm.nih.gov/pubmed/11590632
http://dx.doi.org/10.1111/j.1467-9868.2008.00663.x
http://www.ncbi.nlm.nih.gov/pubmed/19750209
http://dx.doi.org/10.1002/env.1131
http://dx.doi.org/10.1111/1467-9574.00060
http://dx.doi.org/10.1111/1467-9868.00160
http://dx.doi.org/10.17485/ijst/2018/v11i47/130980
http://dx.doi.org/10.1016/j.neucom.2015.12.114

	Introduction
	Related Works
	Gaussian Processes (GP) Model
	Autoregressive (AR) Model
	Gaussian Predictive Processes (GPP) Model

	Methodology and Data
	Hierarchical Bayesian Modeling
	Gaussian Processes (GP) Model
	Autoregressive (AR) Model
	Gaussian Predictive Processes (GPP) Model
	Gibbs Sampler

	Study Area and Data Preprocessing

	Results and Discussion 
	Conclusions
	References

