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Abstract: Reasoning on temporal knowledge graphs, which aims to infer new facts from existing
knowledge, has attracted extensive attention and in-depth research recently. One of the important
tasks of reasoning on temporal knowledge graphs is entity prediction, which focuses on predicting
the missing objects in facts at current time step when relevant histories are known. The problem is
that, for entity prediction task on temporal knowledge graphs, most previous studies pay attention to
aggregating various semantic information from entities but ignore the impact of semantic information
from relation types. We believe that relation types is a good supplement for our task and making full
use of semantic information of facts can promote the results. Therefore, a framework of Enhanced
Relational Graph Convolution Network (ERGCN) is put forward in this paper. Rather than only
considering representations of entities, the context semantic information of both relations and entities
is considered and merged together in this framework. Experimental results show that the proposed
approach outperforms the state-of-the-art methods.

Keywords: graph convolutional network; temporal knowledge graphs; entity prediction

1. Introduction

Knowledge graphs (KGs), which stores a human’s knowledge and facts of the real
world, are widely used in various applications [1–3]. However, knowledge graphs are
often uncompleted, which limits its application in real world. As the incompleteness of
facts may obstruct the reasoning procedure, it is necessary to complete knowledge graphs
by predicting the missing facts. Several methods have been proposed for completing
knowledge graphs, such as TransE [4], DistMult [5], ConvE [6]. The other issue that cannot
be ignored is that facts often change over time. In order to depict the changing trend of facts
over time, the relevant information can be organized into a series of knowledge graphs and
each of them corresponds to a group of facts at different time stamps [1,3,7,8]. This series of
knowledge graphs organized in chronological order is called temporal knowledge graphs
(TKGs). There is concern regarding whether we can predict unseen facts through historical
information. Therefore, learning the evolution of facts over time and then predicting
unseen entities on TKGs has attracted the attention of researchers and has become a hot
topic recently.

Prediction of facts over TKGs is classified into two categories: interpolation and
extrapolation [9]. Interpolation, known as the completion problem, is mainly used for
completing missing information during a given time interval [10–12]. A sample of the
interpolation problem is to infer the president of America in 2016 when this fact is not
seen between 1990 and 2020. Extrapolation, which is also known as entity prediction
tasks, involves making a forecast of unknown facts at a future time. Extrapolation is a
more difficult challenge than interpolation. An example of extrapolation is predicting who
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will win the next US presidential election. We prepare a example of entity prediction in
Figure 1. Extrapolation research is not only of practical significance, but also theoretical
value, because studying the evolution of facts can help us understand the informative
relationship hidden behind the structural knowledge graphs. There have been many efforts
focused on this problem but it is far from being solved.

The entity prediction tasks on knowledge graphs can be separated into two parts—
static prediction methods and dynamic prediction models.

According to the optimization targets, static prediction methods can be further classi-
fied into three types: distance-based methods, semantic similarity-based methods and deep
learning methods. Among the distance-based methods, TransE [4] is a classical approach
to interpret relations on KGs. TransE regards the representation of entities and relations
as transitional vectors, the goal is to minimize the distance of representation in the triple
(s, r, o), i.e., min||s + r− o||. Based on the idea, TransD [13], TransR [14] and TransH [14]
were proposed with different weight matrices to transfer entities’ vectors before scoring
the distance loss. The semantic similarity-based methods, e.g., DistMult [5], use a bi-linear
function to calculate the plausibility in the triple. Some studies on knowledge graph
completion follow this idea, such as HolE [15] and Ripplenet [3]. The scoring function is
generally formed as f (s, r, o) = sTWro where Wr is a parameter matrix to represent the
relation types. A popular genre of deep learning methods for entity prediction in KGs
is GCN-based approaches, such as GAT [16], SAGE [17]. A GCN-based block consists of
multiple layers of neural network blocks to generate hidden representations of entities
which include rich semantic information of context. A common GCN block is formed as
h(l+1)

s = σ(∑m∈Ms gm(hl
s, hl

j)) Here, hl
s, hl

j represent the hidden representations of entity s
and its related entity j in the l-th layer. Ms denotes the set of neighbors of entity s. gm is a
specific neural network function for propagating messages. For instance, Kifp et al. [18] pro-
pose a linear parameter matrix to transform representations of entities and their neighbors.
GAT [16] uses a local attention weight to distinguish the importance of the target entity’s
neighbors. SAGE [17] concatenates the embedding of a target entity and its neighbors
as a type of feature vector which is able to reserve more original features of the target.
Different from models mentioned above for graphs where there is only one type of relations,
RGCN [19] is a notable approach which introduces a relational specific transformation
function to deal with multiple relation types.

As static methods ignore the influence of time, they cannot model the evolutionary
trend of facts on knowledge graphs. In order to predict future facts based on histories,
dynamic prediction models try to train time-varying representation of facts to reflect the
evolution over time. Several works modified static methods to adapt to the temporal change
of data. One aspect of efforts adds extra weights or features to entities’ representations, such
as Time-Aware [12], TA-TransE [11], DE-TransE [20]. The comparative experiments show
that dynamic methods which learn the evolution of facts perform better. Time-aware [12] is
an early work to predict the changes of relations on TKGs. It uses an asymmetric matrix
to translate the relation matrix of TransE and add integer programming as constraints to
capture temporal features. TTransE [21] uses a series of weights to represent the relations
on different time. TA-TransE [11] directly defines the representation of time as a series
of vectors. DE-TransE [20] creates a diachronic method to represent evolution of entities.
Know-Evolve [10] and its follow-up Dyrep [22] use RNN-based models to create dynamic
representation of entities. The other aspect of efforts uses sequence-encoder modeling
methods to create extra hidden vectors standing for chronological features of facts [9].
GCRN [23] is the first sequence modeling method on TKGs. RE-NET [1] follows GCRN’s
structure but adds a global vector to represent global states of whole facts at each time.
Evolve-GCN [24] merges GCN block into a GRU [25] unit to update GCN’s weights which
allows the GCN block adapts to relations at a different time. REGCN [26] designs a static
properties algorithm to reflect the evolutionary trend of TKGs.

However, most of the previous dynamic prediction methods pay attention to extracting
semantic features on entities and their neighbors, but fail to consider the interactions
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between entities and pairwise relations. Therefore, in this research, we try to make up for the
deficiencies of previous methods through learning semantic interactions between entities
and relations, and then combining them into the prediction model. We believe that these
semantic interactions contain informative clues about context dependencies. Capturing
these factors for inferring on TKGs holds promise for making the results more reasonable.

Therefore, we propose a GCN-based model, Enhanced Relation Graph Convolution
Network (ERGCN) (code is available at https://github.com/Uynixu/ERGCN (accessed on
22 November 2022)), to accomplish the entity prediction task. The model especially focuses
on learning the full semantic information of facts between relations and entities. We try
to evaluate the performance of the model, and try to prove the necessity of adding the
full semantic interaction between relations and entities into the model. We will compare
the proposed models in this paper with previous models on relevant data through several
experiments designed for the task and then reach a conclusion. Overall, the contributions
in this paper can be summarized as below:

1. We test a new GCN-based method, named ERGCN, which takes context depen-
dencies between pairwise entities and relations into account during training, and achieves
better performance than previous methods;

2. We design a new approach to predict unseen facts on TKGs and compare it with
different models to demonstrate the necessity of using the full semantic information of
facts in relevant reasoning tasks.
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Figure 1. An example of entity prediction task on temporal knowledge graphs.

2. Methodology
2.1. Problem Definition

We firstly give the following definitions used in this paper.

Definition 1 (Temporal knowledge graphs). A temporal knowledge graph (TKG) is represented
as a set of chronological knowledge graphs with discrete time stamps, {G1, G2, · · · , GT}, where each
graph at time t is Gt = (V, R, Et), t ∈ [1, T]. Here, V is the set of entities, R is the set of relation
types, and Et is the set of edges. Each edge represents a fact which includes two entities linked by a
relation type. Therefore, Et ⊂ {(s, r, o)t|s ∈ V, o ∈ V, r ∈ R}, where the triple (s, r, o)t stands for
an event or fact that the subject entity s has the relationship r with object entity o at time t.

Definition 2 (Entity prediction task). Given the query (s, r, ?, t), the entity prediction task is to
model the conditional probability distributions of all object entities under the subjects s when relation
r is given and historical graphs in a fixed length of observation windows m, {G(t−m+1), · · · , Gt−1},
are also given. The conditional probability distribution is represented as function f1 in Formula (1).
Meanwhile, we add a sub-query (s, ?, t) to constrain the reasoning process. The sub-query is to
model the conditional probability distribution of all relation types when s and historical graphs are
given. This probability distribution is represented as function f2 in Formula (2). Therefore, our task
is to find appropriate trainable functions f1 to fit the conditional probability distribution of entities
on TKGs. The formulations are shown as:

p(o|s, r, t) = f1(s, r, Gt−1:t−m+1) (1)

p(r|s, t) = f2(s, Gt−1:t−m+1) (2)

https://github.com/Uynixu/ERGCN
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Definition 3 (Neighbor set of an entity). Given a snapshot of the TKG at time t, the entity s
with its neighbor entities and linked relations types make a sub-graph Subt(s). In this sub-graph,
all nodes from the neighbor entity set of s, which is denoted as Nt

e(s). Its linked relations constitute
the neighbor relation set of s, denoted as Nt

r(s).

2.2. Framework of the Model

Following the study of RENET [1], the key idea of our approach is to learn the local
context dependencies near the central facts by our ERGCN block as well as to learn the
global semantic structure of the whole graph on TKGs. The reasoning logic is based on the
following assumptions: (1) Reasoning future facts can be regarded as a sequential inference
processing via past relevant histories at different timestamps. (2) Temporal adjacent of facts
may contain necessary informative patterns which imply the evolutionary trend of facts.

To approach the problem, our model is divided into two parts, the local learning
unit and the global unit. The local learning unit is made for aggregating features in the
neighborhood to extract the local dependency around the specific entity which stands for
the local temporal features. As the same time, the goal of the global unit is to generate a
single vector to represent the informative structure of the current graph as a whole, referred
to as the global representation.

Both the local learning unit and the global unit follow the encoder–decoder structure.
Here, the encoder part consist of certain layers of the GCN block and one layer of the
GRU block. The GCN block integrates the dependencies of edges in a knowledge graph at
each timestamp, and then the informative sequential features learned in GCN and their
pairwise time presentations are merged into single vectors to represent the evolution of
facts at different timestamp via the GRU block. Based on these various vectors and the static
representation of entities and relations, temporal reasoning results at the next timestamps
can be evaluated by the decoder function. The structure of our model that reflects the above
idea is illustrated in Figure 2.

Figure 2. Main structure of ERGCN.
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2.3. Local Learning Unit

To represent the semantic features of entities and relations, we use internal initialized
embedding vectors, E(s,o) ∈ Rn×d and Er ∈ Rr×d, to stand for entities and relations,
respectively. Here, n, r stand for the number of entities and relation types, respectively, and
d is the dimension size of each embedding.

Since static embedding vectors are not able to reflect the evolution characteristics of
facts over time, two types of representations, the local temporal feature and the global vector,
are proposed to reflect the evolution of facts. The local temporal feature ht

s summarizes
the local information around a central entity until timestamp t, reflecting the change of
relationships between these linked facts in the past. The global vector gt focuses on leaning
the trend of background information of entire facts on the current knowledge graph. The
two types of dynamic representation capture different aspect of informative knowledge
from TKGs, which allows us to verify the reasoning process in different ways.

To capture the local structural information around the fact, GCN blocks are proposed
to aggregate neighbor information and transform them into a single representation standing
for the main feature of the central entity. The problem is that previous GCN blocks used
in knowledge graphs ignore the semantics of relations, and some recent models only
regard relation types as a part of entities. However, classical knowledge graph embedding
studies show that semantic features from entities and relations have different effects on
the performance in the model. To illustrate this divergence, we introduce a new GCN
algorithm, which uses the full semantic information of facts to create representations of
facts, named ERGCN. The aggregator is formally defined as follows:

hl+1
s,t = W l

0hl
s,t +

1
n ∑

r∈Nt
r (s)

∑
o∈Nt

e (s)

(W l
r,1eo + W l

r,2er) (3)

Here, hl
s,t stands for the neighborhood message of entity s at the l-th layer. W l

0 and
W l

r,1, W l
r,2 are trainable parameters for self-loop and aggregating features at the l-th layer.

eo, er represent the embedding of entities and relations. n is the number of neighbor of
entity s.

Therefore, the local historical representation of entity s at time t can be illustrated as a
sequence of the neighborhood message in an observed length m:

h(s, t) = {hs,t−1, hs,t−2, · · · , hs,t−m+1} (4)

Then, we update the state of the local temporal feature for query and its sub-query via
a GRU block:

Ht
s = GRU1([hm(s, t) : Tm(t)]) (5)

We use the final hidden state vector Ht
s to represent the local temporal feature of entity

s at time t. Tm(t) is the sequential temporal features trained in the global unit and it will be
discussed in the next part. The symbol: represents the concatenation operation.

2.4. Global Unit

Distribution of entities on certain knowledge graphs represents specific temporal
information to imply the evolutionary trend of facts. Therefore, we try to represent these
global evolutionary trends by modeling the entity distribution over time. We assume that
the entity distributions depend on historical graph features at the last m steps. Therefore,
the entity distribution is modeled by function f3 in Formula (6), where the current graph
embedding vector Tt is inputs:

p(s|t) = f3(Tt) (6)
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To learn the graph embedding, we propose the global unit to capture the global
structural state of the entire current graph and record the evolutionary trend of the state.
To capture the global structural state at each TKG, we use our ERGCN block to learn
the semantic vectors of all entities {hs,t} and then propose an element-wise max-pooling
operation fmax to represent the current global state:

gt = fmax({hs,t}) (7)

Then, we use the graph historical sequence in the last timestamps m to represent the
evolutionary trend:

gm(t) = {gt−1, gt−2, · · · , gt−m+1} (8)

To reflect the evolutionary trend from gm(t), we use the hidden state trained from a
GRU block:

Tt = GRU2(gm(t)) (9)

Tt summarizes the evolutionary trend of the whole graph with a global view. Obvi-
ously, a neighbor message aggregated from ERGCN only provides a local view around the
facts. Therefore, many context dependencies and semantic interactions between distant
facts lose if we only focus on the local views. To compensate for this drawback, we use the
graph embedding as a complement of the local views to represent a global view of whole
facts. Then, we define the historical sequences of global embedding Tm(t) as the global
temporal features in an observed windows with length m:

Tm(t) = {Tt−1, Tt−2, · · · , Tt−m+1} (10)

2.5. Decoding Process

To answer the query and sub-query, the conditional distributions of predicted objects
p(ōt|s, r) and relations p(r̄t|s) are modeled by two linear functions. The formulas are
presented as Formula (11) and (12)

p(õ|s, r, t) = [Ht
s; es; er]W>o + bo (11)

p(r̃|s, t) = [Ht
s; es]W>r + br (12)

As the entities prediction task is considered as a multi-classification task, cross-entropy
loss is selected as the loss function. For simplicity of expression, we omit the notations of
prediction in Formula (13). The loss function is as follows:

L = − ∑
(s,r,o)t∈Gt

logp(o|s, r, t) + λlogp(r|s, t) (13)

Here, λ is a hyper-parameter to balance the importance between two parts. In en-
tity prediction tasks, we aim to predict objects depending on relevant subjects and their
linked relations.

We summarize the whole training process as shown in Algorithm 1. Our training
approach is divided into two steps. In the first step, during the preset maximum number
of iterations epochs, we generate the graph embedding from the global unit and save the
optimal results for the next step. It is noticed that we choose 2-norm as the loss function in
the global model to fit the temporal distribution of all subject entities Ds,t. In the second
step, we use the local learning unit to estimate the conditional probability distribution
of object entities p̂(o|s, r, t) and answer the queries. It is worth noting that, at the preset
maximum iteration number epochs, we regard the model with the best MRR ratio as the
best situation of our model.



Future Internet 2022, 14, 376 7 of 12

Algorithm 1: Learning algorithm of ERGCN

Step 1: Obtain the graph embedding via the Global Unit;
Input: observed TKGs: {Gt}; temporal distribution of all subject entities Ds,t;

maximized iteration number: epochs
Output: An estimation of subjects temporal distribution D̃s,t; graph embedding Tt

1 Lmin = ∞;
2 epoch = 0;
3 while epoch >= epochs do
4 Obtain all semantic representations via two layers of ERGCN block

{hs,t} ← ERGCN(Gt);
5 Generate current graph state gt ← fmax(hs,t);
6 Search historical state of the current graph gm(t) = {gt−1, · · · , gt−m+1};
7 Estimate the graph embedding T̂t ← GRU(gm(t));
8 Predict the distribution of subjects D̃s,t ← T̂tW>d + b;
9 Calculate the loss score L∗ = 1

n ∑ ||Ds,t − D̂s,t||2;
10 if L∗ < Lmin then
11 Lmin ← L∗;
12 Tt ← T̂t

13 end
14 epoch± 1
15 end
16 Step 2: Predict conditional distributions of entities in the local learning unit;

Input: the query set {(s, r, t)}; observed TKGs: {Gt}; graph embedding Tt;
maximized iteration number: epochs

Output: An estimation of conditional probability distribution of object entities:
p̄(o|s, r, t)

17 MRRbest = 0;
18 while epoch >= epochs do
19 for query do
20 Obtain hidden representation of entity s, hs,t ← ERGCN(s, Gt);
21 Search historical sequences of s,

hm(s, t)← {hs,t−1 : Tt−1, hs,t−2 : Tt−2 · · · , hs,t−m+1 : Tt−m+1};
22 Generate hidden state vector of s, Ht

s ← GRU(hm(s, t));
23 Estimate the query: p̂(o|s, r, t)← [es : er : Ht

s]W>o + bo ;
24 Estimate the sub-query: p̂(r|s, t)← [es : Ht

s]W>r + br ;
25 end
26 Calculate the total loss score:

L∗ = ∑[L(p(o|s, r, t), p̂(o|s, r, t)) + λL(p(r|s, t), p̂(r|s, t))];
27 estimate the MRR ratio: MRR∗ = 1

n ∑ 1
Pi

;
28 if MRRbest < MRR∗ then
29 MRRbest ← MRR∗;
30 p̄(o|s, r, t)← p̂(o|s, r, t) as estimation
31 end
32 epoch± 1
33 end

3. Results
3.1. Datasets

To evaluate the performance of ERGCN, we selected six representative datasets widely
used in previous works for the entity prediction task on TKGs. They are YAGO [27],
WIKI [21], ICEWS14 [11], ICEWS15 [11], ICEWS18 [28] and GDELT [29]. YAGO and WIKI
include temporal facts extracted from open-source datasets. The series of ICEWS are event-
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based datasets from the Integrated Crisis Early Warning System. GDELT is from the Global
Database of Events, Language and Tone. The statistical details of all datasets are shown in
Table 1.

Table 1. Dataset statistics.

Dataset N_Train N_Valid N_Test Entities Relations Time Gap

YAGO 161,540 19,523 20,026 10,623 10 1 year
WIKI 539,286 67,538 63,110 12,554 24 1 year

GDELT 1,734,399 238,765 305,241 7,691 240 15 min
ICEWS14 74,845 8,514 7,371 6,869 230 24 h
ICEWS15 368,868 46,302 46,159 10,094 251 24 h
ICEWS18 373,018 45,995 45,995 23,033 256 24 h

3.2. Evaluation Metrics

In the experiments, MRR and Hits@1, 3, 10 are selected as the metrics for entity
prediction. Because the Hit@1 in YAGO and WIKI are not reported in previous works [1,26],
we only record Hit@3, 10. It is worth noting that some previous works use different filter
settings to evaluate the performance of their works. Hence, in order to make the results
comparable, we only report the original results (named raw metric) of each model.

3.3. Benchmarks

Our ERGCN model is compared to two types of models: static KG models and
dynamic TKG reasoning models. Here, Distmult [5], ConvE [6], RGCN [19], HyTE [30] are
selected as static models. On the other hand, TTransE [21], TA-Distmult [11], R-GCRN [23],
RENET [1], REGCN [26] are selected as dynamic methods released in recent years.

3.4. Implementation Settings

The embedding dimension d is 200 in both the local learning unit and the global unit.
The number of ERGCN layers in the local learning unit is 1, but that in the global unit is 2.
The dropout rate is 0.2 in both units. We test the length of history m from 1 to 10 and find
that the optimal length is 5 in all datasets. The experiments include one-step inference in
the validation and test. All experiments only report the results of reasoning the objects in
test set with the raw metric. We obtain the results in five runs on each datasets and report
the average of the results.

3.5. Result Analysis

The experimental results are illustrated in Tables 2 and 3. ERGCN outperforms the
benchmarks on WIKI and ICEWS. Especially, the performances on WIKI rise significantly.
The experimental results show that it is helpful to make full use of semantic information in
entity prediction tasks. Obviously, ERGCN works better than static models because ERGCN
captures the evolutionary pattern of facts. Thus, it can achieve higher performance when
testing on unseen temporal knowledge graphs. Compared with recent dynamic models,
such as REGCN and RENET, our ERGCN overtakes the others in most tasks. Although
ERGCN does not have the best performance on YAGO and GDELT, its performance is
very close to the best results. Therefore, ERGCN’s overall performance is better. The
results verify the importance of differential treatment for various relation types, which
contains much useful semantic information about the temporal dependencies of facts. As
mentioned above, we only use a one-layer ERGCN block in the tasks. The reason is that the
performance on the high-accuracy metrics, such as Hit@1 and Hit@3, drops significantly
when the layers are more than one. This phenomenon may indicate that ERGCN focuses
on 1-hop neighborhoods, while long-distance relationships may interfere with the entity
reasoning process. However, ERGCN still outperforms the other dynamic models and these
results suggest that information in the 1-hop neighborhood is underutilized in previous
approaches, and that ERGCN can extract these information more effectively.
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Table 2. Experimental results of entity prediction on ICEWS14, 15 and 18 in raw metrics.

ICEWS14 ICEWS15 ICEWS18
Model

MRR hit1 hit3 hit10 MRR hit1 hit3 hit10 MRR hit1 hit3 hit10

Distmult 20.32 6.13 27.59 46.61 19.91 5.63 27.22 47.33 13.86 5.61 15.22 31.26
ConvE 30.30 21.30 34.42 47.89 31.40 21.56 35.70 50.96 22.81 13.63 25.83 41.43
RGCN 28.03 19.42 31.95 44.83 27.13 18.83 30.41 43.16 15.05 8.13 16.49 29.01
HyTE 16.78 2.13 24.84 43.94 16.05 6.53 20.2 34.72 7.41 3.11 7.33 16.01

TTransE 12.86 3.14 15.72 33.65 16.53 5.51 20.77 39.26 8.44 1.85 8.95 22.38
TA-Distmult 26.22 16.83 29.72 45.23 27.51 17.57 31.46 47.32 16.42 8.61 18.13 32.51
R-GCRN 33.31 24.08 36.55 51.54 35.93 26.23 40.02 54.63 23.46 14.24 26.62 41.96
RENET 35.77 25.99 40.10 54.87 36.86 26.24 41.85 57.60 26.17 16.43 29.89 44.37
REGCN 37.78 27.17 42.50 58.84 38.27 27.43 43.06 59.93 27.51 17.82 31.17 46.55

ERGCN (ours) 37.95 28.77 42.54 55.32 43.65 33.48 48.92 62.94 28.29 18.46 32.60 47.47

Table 3. Experimental results of entity prediction on WIKI, YAGO and GDELT in raw metrics.

WIKI YAGO GDELT
Model

MRR hit1 hit3 hit10 MRR hit1 hit3 hit10 MRR hit1 hit3 hit10

Distmult 27.96 - 32.45 39.51 44.05 - 49.70 59.94 8.61 3.91 8.27 17.04
ConvE 26.03 - 30.51 39.18 41.22 - 47.03 59.90 18.37 11.29 19.36 32.13
RGCN 13.96 - 15.75 22.05 20.25 - 24.01 37.30 12.17 7.40 12.37 20.63
HyTE 25.40 - 29.16 37.54 14.42 - 39.73 46.98 6.69 0.01 7.57 19.06

TTransE 20.66 - 23.88 33.04 26.10 - 36.28 47.73 5.53 0.46 4.97 15.37
TA-Distmult 26.44 - 31.36 38.97 44.98 - 50.64 61.11 10.34 4.44 10.44 21.63
R-GCRN 28.68 - 31.44 38.58 38.58 - 43.71 48.53 18.63 11.53 19.81 32.42
RENET 30.87 - 33.55 41.27 46.81 - 52.71 61.93 19.60 12.03 20.56 33.89
REGCN 39.84 - 44.43 53.88 58.27 - 65.62 72.97 19.15 11.92 20.41 33.19

ERGCN (ours) 51.28 - 55.78 62.28 55.25 - 64.22 70.69 18.96 11.65 20.24 33.14

ERGCN is similar to RENET, but we pay more attention to applying full semantic
information of facts. By capturing more precise temporal representation of sequential
knowledge, ERGCN overtakes RENET in the majority of the datasets and our results are
close to those of RENET on GDELT. Different from REGCN, which includes a new recurrent
block to learn sequential histories of entities, the structure of ERGCN is simple, but the
performance is good.

Compared with the previous best results on WIKI, ERGCN has improved 11.44% in
MRR metric, 11.35% in Hit@3 metric and 8.40% in Hit@10 metric, respectively. In this
dataset, temporal facts are widely collected from the open-source dataset, Wikipedia. The
informative interactions between different entities are discrete, temporal dependencies
around facts are often limited in small areas, and then 1-hop neighborhoods contain the
most important structural information of dependencies. Different from concentrating
attention on neighbors’ entities, ERGCN concerns the interaction between entities and their
linked relation types, which provides more relevant structural dependencies between facts.

The results on ICEWS show that, compared with other methods, using more semantic
information of facts provides more accurate temporal characteristics for the reasoning
process. In terms of the MRR metric, the performance of ERGCN is 0.17/5.38/0.78% higher
than the previous best on ICEWS14/ICEWS15/ICEWS18, respectively. Moreover, ERGCN
improves Hit@1,3,10 in each dataset as well. The ICEWS series dataset is event-based and
facts here often change frequently. Therefore, learning the relation type becomes a key
point, which is able to provide basic information indicating the trend of the facts. Different
from previous studies, ERGCN focuses on learning the interaction between entities and
relation types, which reserves various temporal dependencies. If these complex structural
dependencies are ignored, there will be a lot of loss in modeling sequential patterns.
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The results demonstrate that ERGCN is more capable of learning the complex temporal
structures in TKG.

ERGCN’s performances on YAGO and GDELT are a little worse than the previous
best. YAGO consists of lots of temporal facts with repetitive patterns. ERGCN does not
handle this problem well, but this phenomenon does not appear in other datasets. GDELT
includes massive concepts and definitions that follow specific rules. This situation makes
entity reasoning difficult. The results of all models are similarly poor in GDELT.

It is noticed that the results of all methods on ICEWS18 and GDELT are still at a low
level. For example, the MRR is under 20% and 30% in GDELT and ICEWS18, respectively.
This phenomenon shows that capturing the evolutionary trends of facts on TKGs is still a
hard challenge and we need further studies to identify the complex dependent relationships
between facts at different time.

3.6. Ablation Study

In this part, we discuss the effect of each part in ERGCN. To test the contribution
of each part in ERGCN, we conduct the ablation studies in WIKI and ICEWS18. To test
the importance of graph embedding, we remove the global unit in our approach, named
as ERGCNwtg. To illustrate the essential context semantic information, we remove the
learnable weight Wr,2 in ERGCN, named ERGCNwtr. To demonstrate the necessity of the
semantic interaction, we remove the sub-query when training, named ERGCNwtc. The
further discussion of the contributions of each part in ERGCN is reported in Tables 4 and 5.

To illustrate how the global embedding affects the results, we conduct experiments
without the global model. The results are denoted as ERGCNwtg. It can be seen that
removing the global embedding results in a significant decline in the performance on WIKI
and ICEWS18. When we remove the global embedding, ERGCN will lose lots of temporal
dependencies around the whole graphs and the model will only focus on learning the
neighbor structural information.

After removing the independent weight on relation types from the model, the model
becomes ERGCNwtr. Therefore, our ERGCN becomes similar to the other studies where
entities and relations share the same transform weights in training process. Since the
correlations between various entities and relations are usually different, after removing
the weight on relation types from the model, we will lose specific features between certain
combinations of facts. The results prove our prediction as the results decrease by about
1–2% in WIKI and ICEWS18.

The results are labeled as ERGCN wtc, where the relation constraint between entities
and relations are removed. The relation constraint can be seen as interactions between
entities and their linked relations, which helps the model obtains the combination features
of facts.

Table 4. Ablation studies on WIKI.

Model MRR hit1 hit3 hit10

ERGCN 51.28 44.52 55.78 62.28
ERGCN wtg 40.87 31.21 48.71 54.36
ERGCN wtr 49.09 42.71 53.41 59.07
ERGCN wtc 49.12 42.67 53.55 59.22

Table 5. Ablation studies on ICEWS18.

Model MRR hit1 hit3 hit10

ERGCN 28.29 18.46 32.60 47.47
ERGCN wtg 26.97 17.31 31.94 46.71
ERGCN wtr 27.13 16.68 31.18 47.07
ERGCN wtc 26.88 16.59 30.98 46.77
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4. Conclusions

After reviewing previous literature, we found that the interaction of semantic features
between entities and relations are often omitted and many studies focus on designing
methods to extract features on entities and their neighbors. We propose different approaches
to model the interaction of semantic features between entities and relations and we propose
the Enhanced Relational Graph Convolution Network (ERGCN), which is modified from
previous GCN models to assemble relations and entities together. Although experiments
show that relations themselves can provide less information for prediction tasks than
entities, combining relations and entities together enhances the context information between
entities and relations and benefits the tasks. The results of experiments show that the
improvement is significant.

In future work, we are going to apply ERGCN in different datasets or applications to
verify the effectiveness of this model and we will also try other possible methods to further
extract information from the interaction between entities and relations. We notice that our
method focuses on aggregating closed information around the source entity, but it is hard
to utilize the information of long-distance relational paths. Finding ways to capture this
information to promote the model’s performance is an important part of our further work.
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