
Citation: Ogata, K.; Fujita, S.

Decentralized Storage with Access

Control and Data Persistence for

e-Book Stores. Future Internet 2023,

15, 406. https://doi.org/10.3390/

fi15120406

Academic Editor: Qiang Qu

Received: 16 November 2023

Revised: 8 December 2023

Accepted: 14 December 2023

Published: 18 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Decentralized Storage with Access Control and Data Persistence
for e-Book Stores
Keigo Ogata and Satoshi Fujita *

Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima,
Hiroshima 739-0046, Japan; m223332@hiroshima-u.ac.jp
* Correspondence: satoshi.fujita.g@gmail.com

Abstract: The e-book services we use today have a serious drawback in that we will no longer be able
to read the books we have purchased when the service is terminated. One way to solve this problem
is to build a decentralized system that does not depend on a specific company or organization by
combining smart contracts running on the Ethereum blockchain and distributed storage such as an
IPFS. However, a simple combination of existing technologies does not make the stored e-book data
persistent, so the risk of purchased e-books becoming unreadable remains. In this paper, we propose
a decentralized distributed storage called d-book-repository, which has both access management
function and data durability for purchased e-books. This system uses NFTs as access rights to realize
strict access control by preventing clients who do not have NFTs from downloading e-book data.
In addition, e-book data stored on storage nodes in the distributed storage is divided into shards
using Reed–Solomon codes, and each storage node stores only a single shard, thereby preventing
the creation of nodes that can restore the entire content from locally stored data. The storage of
each shard is not handled by a single node but by a group of nodes, and the shard is propagated
to all nodes in the group using the gossip protocol, where erasure codes are utilized to increase the
resilience against node departure. Furthermore, an incentive mechanism to encourage participation
as a storage node is implemented using smart contracts. We built a prototype of the proposed system
on AWS and evaluated its performance. The results showed that both downloading and uploading
100 MB of e-book data (equivalent to one comic book) were completed within 10 s using an instance
type of m5.xlarge. This value is only 1.3 s longer for downloading and 2.2 s longer for uploading
than the time required for a simple download/upload without access control, confirming that the
overhead associated with the proposed method is sufficiently small.

Keywords: blockchains; decentralized applications; decentralized storage system; e-book store; smart
contracts

1. Introduction

The electronic publishing market is projected to grow at a CAGR of 6.4%, reaching
USD 37,940.7 million by 2028 from USD 24,650.5 million in 2021 [1]. Furthermore, the sales
of e-books accounted for over 22% of total book sales in 2018. This trend regarding e-books
is expected to continue for the next few decades. However, current e-books have the
drawback that purchased books become unreadable when the service is terminated. This
issue was exemplified when an e-book service provided by Microsoft became inaccessible
in July 2019 [2]. To address this problem, one potential solution is to deploy a decentralized
architecture that does not rely on any specific company or organization.

Recently, distributed technologies such as blockchain [3–5] and Merkle tree [6] have
garnered significant attention as a method to decentralize server-based distributed systems.
Many appealing services, including Audius and Bluesky, have been developed using these
technologies and have gained popularity among users (according to the official Audius
website, Audius has over 6 million monthly active users). Bluesky is a decentralized social

Future Internet 2023, 15, 406. https://doi.org/10.3390/fi15120406 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15120406
https://doi.org/10.3390/fi15120406
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0006-5575-6771
https://orcid.org/0000-0001-9412-7309
https://doi.org/10.3390/fi15120406
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15120406?type=check_update&version=3

Future Internet 2023, 15, 406 2 of 20

networking service that offers personal data server (PDS) functionality, allowing users to
store their private data, including chat messages. This approach greatly reduces the risks of
censorship and tampering. Audius is a music distribution service that utilizes an IPFS [7]
as the distributed storage, enabling direct payments from listeners to music creators using
tokens issued by Ethereum.

In the realm of e-book systems, a distributed e-book store called Publica [8] was
launched in 2017. Publica effectively addresses issues associated with server-based systems,
such as single points of failure and censorship, by storing e-book data on IPFS-based
distributed storage. However, it still faces the problem of being unable to download
purchased content due to the lack of data persistence in the existing distributed storage.
For example, the IPFS has a property that makes it difficult for unpopular files to be cached,
leading to situations where a file may only be cached by a very small number of nodes.
Consequently, if these nodes leave the network or selectively delete the file to increase
available storage capacity, it becomes impossible to download the file from an IPFS (see
Section 2 for a detailed discussion on this point).

In the context of e-book stores, distributed storage requires not only data persistence
but also robust access control mechanisms. This is because e-book data should only be
accessible to users who have purchased the book, and preventing non-purchasers from
downloading e-book data is crucial. It is important to note that such non-purchaser users
include those who provide distributed storage for e-book data. The challenge in decen-
tralizing e-book systems lies in achieving both data persistence and robust access control,
as described above. However, to the best of the authors’ knowledge, there is currently no
existing distributed storage solution that meets these requirements simultaneously.

This paper presents a decentralized storage system for e-books, referred to as “d-book-
repository”, that effectively addresses the aforementioned requirements. The proposed
system employs a smart contract to manage access rights, ensuring that data are only
transferred to authorized clients and preventing unauthorized downloads. To bolster data
security, we divided the nodes in the system into multiple groups, each responsible for
storing a distinct data shard. This approach prevents any single storage-providing node
from accessing the entirety of the stored content, enhancing data security. To improve
data persistence, we utilized Reed–Solomon codes [9] to generate shards and implement
group-based replication. Furthermore, we introduce an economic incentive mechanism
that regularly audits storage content, promoting reliable storage practices and supporting
the goal of data integrity. In summary, our designed decentralized storage system, d-
book-repository, simultaneously fulfills the requirements of robust access control and data
persistence, providing enhanced security and encouraging reliable data storage practices.

We constructed a prototype of the proposed system on AWS and conducted an eval-
uation of its basic performance. The results demonstrated that both downloading and
uploading 100 MB of e-book data (equivalent to one comic book) were accomplished within
10 s. Notably, when using the m5.xlarge instance type, the time required for the aforemen-
tioned tasks was only 1.2 s longer for downloading and 2.2 s longer for uploading than a
simple download/upload process without access control. This finding confirms that the
overhead associated with the proposed method is negligible, indicating the efficiency of
our approach.

We also conducted simulations on the increase and decrease in node numbers for
various group settings and evaluated the data retention capability of the proposed system.
Furthermore, we carried out simulations under the same conditions for Arweave’s archi-
tecture and compared the results. As a result, it was shown that when the total amount of
stored data is large (more than 10 TB), even with the same number of nodes, the proposed
system has a lower risk of data loss.

The remainder of this paper is organized as follows. Section 2 provides an overview
of blockchain and smart contracts. In Section 3, we review the decentralized distributed
storage systems that have been built so far and point out that all of them are insufficient for
our purpose. Section 4 describes the details of our proposed method. The details of our

Future Internet 2023, 15, 406 3 of 20

prototype system and the results of experiments conducted on it are presented in Section 5.
Section 6 discusses several important considerations for the practical application of the
d-book-repository. Finally, Section 7 concludes the paper with concluding remarks and
future work.

2. Distributed Ledger Technology

This section presents an overview of distributed ledger technology, which is a mecha-
nism for maintaining a consistent ledger across a distributed network without the need for
centralized authority. The subsequent subsections outline the fundamental framework of
distributed ledger technology, using Bitcoin as an illustrative example (Section 2.1), and
then delve into the significance of smart contracts in controlling user access rights within
the proposed system (Section 2.2).

2.1. Blockchain as a Distributed Ledger

Blockchain is a distributed technology originally proposed for a cryptocurrency called
Bitcoin [10]. Its fundamental concept revolves around enabling each user to verify the
balance of funds held in their account by sharing the transaction history between accounts
across all nodes in the network. In blockchain technology, a fixed number of transactions
are combined into a single block, and each transaction undergoes verification to ensure its
consistency with previous transactions. Consequently, each block is designed to be devoid
of inconsistent transactions, such as double expenditures or an insufficient balance. As
there is no centralized entity managing the entire system, every node within the network
can independently create blocks from transactions issued by each user. Each generated
block includes a hash value of the preceding block, creating a collection of blocks linked
together by their respective hash values. It is important to note that tampering with the
transactions contained in a block can easily be detected, as the subsequent block contains
the hash of the affected block, thus preserving data integrity within the chain.

However, this process is not enough for our purpose, as each node can generate its
own chain of blocks. To address this, the blockchain protocol enforces a rule known as
the “longest chain rule”, where the longest chain of blocks is considered valid. Bitcoin,
in particular, employs a mechanism called proof of work (PoW), which requires nodes to
expend a certain amount of time and computational effort to create a block [11]. Attempting
to tamper with a transaction within an approved block, following the longest chain rule,
necessitates modifying the hash values in all subsequent blocks at a faster pace than the
blockchain grows through contributions from other nodes. Nonetheless, under PoW, such
tampering is practically infeasible, establishing a crucial property of the blockchain: once
consensus is achieved, it becomes practically immutable and cannot be overturned [12].

2.2. Ethereum as a Decentralized Platform

Ethereum [13] is another cryptocurrency with the notion of blockchain, but it is
widely recognized as a decentralized platform designed for the execution of self-executing
programs known as smart contracts [14,15]. The description language for these smart
contracts is considered Turing-complete, allowing for the support of various types of
computations. This subsection provides an overview of Ethereum as a decentralized
platform and its capabilities.

The concept of accounts is crucial in the context of smart contracts. Accounts are
categorized into two types: externally owned accounts (EOAs) and contract accounts, each
assigned a unique address as an identifier. EOAs are accounts managed by regular users
using their private keys. Conversely, contract accounts are specialized accounts responsible
for executing smart contracts, housing internal code and data storage (note that in Ethereum,
once a contract account is created, its internal code is fixed and cannot be altered).

In the Ethereum network, each node is equipped with a virtual machine called an
Ethereum virtual machine (EVM), which executes the code embedded in a contract account
on each node. The execution of the internal code within a contract account is triggered

Future Internet 2023, 15, 406 4 of 20

by transactions initiated by an EOA. In these transactions, the contract account serves as
the counterparty of the EOA, and the desired functions and parameters are included in
the transaction as supplementary data. To prevent infinite execution of loops and reduce
the burden on the network, each instruction in the code is assigned a predetermined cost
(e.g., 3 for ADD, 5 for MUL, etc.), and the execution of an instruction consumes a specific
amount of gas, which corresponds to the transaction fee. This gas mechanism ensures that
resource usage is controlled during code execution. However, it is important to note that
this mechanism can increase the gas costs associated with writing data, making Ethereum
less feasible as a data repository for large files, such as e-books, due to potential high costs.
On the other hand, simple data fetching without state transitions or money transfers can be
performed without creating a transaction, leading to no gas consumption in such cases.

One important application of smart contracts is non-fungible tokens (NFTs) [16]. In
the NFT standard, ERC721 [17], each token is identified by a uint256 token ID, and the
owner of each token is recorded on the blockchain through mappings on the contract. The
owner of an NFT has the right to transfer their NFT to another address so that the NFT
can be used as a digital collector’s item that can be bought and sold, such as games or
art. The most notable feature of NFTs is that ownership is managed on the blockchain, so
information about the item and its owner is never lost.

3. Existing Decentralized Storage Systems

This section offers an overview of existing decentralized storage systems, with a
particular focus on access management and data persistence aspects. We explore the
distinctive characteristics of each storage type and identify the challenges associated with
using these systems for e-book storage. Table 1 compares the characteristics of the existing
decentralized storage systems reviewed in this section with those of the proposed system.

Table 1. Feature-based comparison of decentralized storage systems.

Storage Systems DLT Crypto
Incentives Data Persistence Access Control Contract

Duration

IPFS N/A No Depends No No

ACL-IPFS Ethereum (smart contract) No Depends Yes No

Filecoin Filecoin blockchain Yes Yes No Yes

Arweave Arweave (blockweave) Yes Yes No No

Proposed System Ethereum (smart contract) Yes Yes Yes No

3.1. InterPlanetary File System (IPFS)

The InterPlanetary File System (IPFS) is an open-source, peer-to-peer decentralized
file system primarily developed by Protocol Labs in 2014 [7]. Since the architecture of
the IPFS does not depend on a central server or super node, the IPFS has no single point
of failure and is expected to operate with zero downtime. Each peer within the IPFS is
recognized by a PeerID, obtained by hashing its public key. Peers can be located efficiently
using a distributed hash table (DHT) based on S/Kademlia and Coral. Specifically, content
uploaded to the IPFS is given a unique content identifier (CID), generated by hashing the
content, and is split into numerous chunks and stored using a data structure known as
a Merkle DAG. The vertices within this DAG are data types called IPFS objects, which
comprise chunks and links to other IPFS objects. Each IPFS object possesses the CID of
the original content as one of its attributes. A content-based addressing scheme leverages
this CID, facilitating decentralized content storage with an expectation of high availability.
Moreover, a DHT is used to create and index a mapping between the CID and its owning
PeerID for rapid content retrieval.

In a distributed application called IPFS Cluster, file persistence and availability are
enhanced by combining the replication of stored files to multiple peers and pinning them

Future Internet 2023, 15, 406 5 of 20

to the local storage of the peers. Specifically, a peer cluster formed by the IPFS Cluster
manages the pins of a specific dataset to prevent important files from being lost from the
network and evenly allocates files to peers in the cluster to distribute the load of uploaders
and increase the tolerance to peer failures and departures.

Despite its advantages, an IPFS lacks access control functions, allowing anyone to
freely obtain uploaded content [18]. Furthermore, the absence of a mechanism for persisting
uploaded content poses challenges, as nodes holding chunks can leave the network, and
required chunks may become unavailable due to factors like priority deletion when a node
nears its storage capacity [19]. Consequently, an IPFS may not be suitable as a repository
for e-book services that require exclusive access to e-book data by the purchasing user on a
permanent basis.

3.2. Acl-IPFS

Acl-IPFS [20], proposed by Steichen et al. in 2018, is an extension of an IPFS that
incorporates access control features. It leverages Ethereum smart contracts to control access
rights, allowing nodes to send chunks of data after referring to and validating these smart
contracts. The risk of a node accessing the entire content without proper access rights
can be mitigated by dividing the content into multiple shards. Different nodes are then
assigned to store these shards, with each node granted specific access rights.

One of the key challenges for acl-IPFS is that nodes cannot freely replicate chunks
unless access rights are granted, which poses an obstacle to ensuring data persistence. To
address this limitation, one possible approach is to maintain the number of chunk replicas
above a certain threshold to enhance resilience against node departures and chunk deletions.
However, achieving this requires a mechanism for autonomously generating chunk replicas
when a decrease in the number of replicas is detected by a node. Unfortunately, under the
above restriction, nodes can only generate replicas if they are granted access rights, leading
to a natural decrease in the number of granted nodes and creating the need to grant new
access rights to other nodes, which conflicts with our goal of strict access control.

3.3. Filecoin

Filecoin [21] serves as an incentive layer of an IPFS, introduced in 2014 with its
Mainnet launched in 2020, addressing the critical issue of data persistence. To store data in
Filecoin, users first engage in contracts with storage providers, referred to as miners. These
contracts define the data’s storage volume, duration, and the corresponding price for the
storage service. Upon entering into an agreement, users reward miners with native tokens
(FIL), and the transaction history of FIL is recorded on the Filecoin blockchain. Filecoin
implements two incentive mechanisms, namely proof of replication (PoRep) and proof of
spacetime (PoSt), to bolster data persistence within the IPFS. PoRep operates as a challenge-
response protocol that verifies the presence of a file in the designated storage. Once the
network successfully verifies the proof, the result is recorded on the blockchain. PoSt, on
the other hand, enforces miners to periodically submit proof and validate the correctness of
their stored data. Miners failing to submit or verify their PoSt will incur penalties, leading
to a partial loss of their deposit. Additionally, Filecoin leverages a combination of erasure
coding and replication strategies to heighten data availability.

Access control for stored data in Filecoin can be implemented in the same manner
as in acl-IPFS. However, Filecoin is not suitable for our e-book repository, which requires
indefinite data retention. This is because the content storage contract in Filecoin is estab-
lished by specifying a completion time for the contract. The requirement to set a contract
completion time is rooted in the design concept of paying for data storage with native
tokens and the inherent challenge of accurately predicting the long-term price fluctuations
of the cryptocurrency used for rewards. As a result, distributed storage systems such as
Storj [22] and Sia [23], which offer contract-based persistence, are also unsuitable for our
intended purpose.

Future Internet 2023, 15, 406 6 of 20

3.4. Arweave

Arweave [24] is a project primarily aimed at persistent data storage and was introduced
as “Archain” in 2017. In contrast to Filecoin, it allows indefinite data storage for a one-time
fee. Arweave employs a blockchain-like data structure known as Blockweave as the content
storage, and nodes in Arweave can verify transactions without storing all blocks, which
can be realized by synchronizing the block hash list with the wallet list. The data storage
incentive structure comprises two elements: proof of access (PoA) and Wildfire. In PoA,
older blocks are randomly selected and required for block generation, while in Wildfire,
block and transaction dissemination priority is based on the speed of response to requests.
These aspects encourage peers to retain as much data as possible.

The capability of indefinite data storage in Arweave seems well-suited for our use case.
However, the lack of an access control function presents a challenge, and implementing
such a function is also difficult. Specifically, the system makes it problematic to permit data
storage exclusively on nodes that have been granted access rights. This is due to Arweave’s
requirement that all nodes maintain a complete copy of the transactions referenced in a
block within their local transaction pool to validate them. If access rights are granted to
only a subset of nodes, it would hinder the ability of other nodes to validate the block.

3.5. Summary

In this section, we have surveyed several existing decentralized storage solutions.
Each of these is designed and implemented to fulfill specific objectives, and adapting
them for our purposes presents difficulties. In the following section, we will introduce a
novel decentralized storage mechanism that can efficiently offer both access control and
data persistence.

4. Proposed System

As described in the previous sections, the basic characteristics required of the e-book
store envisioned in the proposed methodology are the following two points:

• Persistent distributed storage is used so that data are never lost once uploaded.
• Only the user who has the access right to the e-book can retrieve the e-book data. (With-

out access rights, the node providing storage cannot retrieve the entire e-book data.)

The proposed system realizes these functions using a decentralized distributed storage
called d-book-repository and a smart contract called Access Control Contract (ACC) to
manage access rights. In the following, we show a concrete procedure for uploading/-
downloading content in the proposed system, followed by an explanation of the supporting
mechanisms in the order of access control and data persistence.

4.1. Two Specific Usage Scenarios

To facilitate a clear understanding of the roles of individual components in the pro-
posed system, we outline two specific usage scenarios. The first scenario involves the
upload of e-book data. See Figure 1 for an illustration. The author A of an e-book uploads
their e-book data to the proposed system. The system employs Reed–Solomon codes to
divide the data into k shards. The value k corresponds to the number of node groups, which
will be described later. The register function of the ACC is called to record metadata,
such as the title and price of the e-book, in the blockchain. Next, each of the k shards is
uploaded to the d-book-repository. The system automatically propagates each shard to
multiple storage nodes that constitute the d-book-repository, enabling efficient distribution
without requiring A (the author) to wait for the entire process to be completed. Upon
receiving a shard from A, each storage node verifies the integrity of the data to ensure they
has not been tampered with; the specific tamper detection method will be detailed later.

Future Internet 2023, 15, 406 7 of 20

Figure 1. The flow of uploading e-book data.

On the other hand, when reader B purchases a book and seeks to obtain its e-book
data, the following steps are executed (see Figure 2 for illustration). Initially, B acquires
the non-fungible token (NFT) of the desired e-book by invoking the mint function of the
ACC. Subsequently, B establishes a connection with the d-book-repository to identify the
storage nodes holding the necessary shards for reconstructing the e-book data. Afterwards,
B sends a request for a shard to each storage node, where the request contains the “book
title and the signature of reader B”, where the signature is generated by the private key of
B’s Ethereum account with the PeerID of the receiver as the message. Upon receipt of the
request, each storage node verifies the Ethereum address of sender B from the signature
and consults the ACC to confirm the access rights to the requested book of B’s account.
Upon confirmation, the requested shard is sent back to B. Subsequently, B restores the
e-book data by decoding the shard using Reed–Solomon code after verifying the integrity
of the received shards.

Figure 2. The flow of downloading e-book data.

4.2. Decentralized Access Control to the Stored Data

In distributed storage such as an IPFS, the provision of storage functions is open to
anyone, which introduces complexity to access management for the data stored within the
distributed storage. This complexity arises from the need to apply access control not only
to external users but also to the storage nodes themselves that constitute the distributed
storage. To address this challenge, the proposed system employs an Access Control Con-
tract (ACC), a smart contract responsible for managing access rights as NFTs, enabling
decentralized control of access rights. Additionally, to effectively manage access rights for
storage nodes, the proposed method involves dividing e-book data into shards and dis-
tributing them among node groups. In this subsection, we provide a detailed step-by-step
explanation of the access management mechanism implemented in the proposed system.

4.2.1. Access Control Contract (ACC)

An ACC provides three fundamental functions used for access management: register,
which registers books, mint, which issues NFTs corresponding to access rights, and
hasAccessRight, which checks whether a user has access rights to a book. The relationship
between ACCs, authors, and readers is shown in Figure 3.

First, the authors register e-book metadata using the register function, but this regis-
tration must be performed before the e-book data are uploaded to the d-book-repository.
The register function is given the book title, price, and Merkle root of the e-book data as

Future Internet 2023, 15, 406 8 of 20

arguments, and the price, Merkle root, and author’s Ethereum address are recorded on the
blockchain as mappings keyed to the book title. After registration is complete, readers can
use the mint function to publish NFTs associated with the book. The mint function issues
new NFTs by paying a cryptographic asset equal to the price set by the author, and the
paid cryptographic asset is transferred directly to the author. At that time, the token ID of
the issued NFT is associated with the purchased book, this mapping is also recorded in
the blockchain. Only books registered with the register function can be associated with
NFTs, but there is no upper limit to the number of NFTs that can be issued per book. The
hasAccessRight function is used to check whether a given account has access rights to a
given book. This function is called by a storage node when the node receives a request to
upload a shard to a reader, and the requested shard will not be uploaded if it finds that
the user does not hold access rights. Note that since this function only refers to data on an
ACC, no gas cost is required to execute it.

Figure 3. The relationship between an ACC, an author, and a reader.

Although it is possible to implement a similar system on a smaller scale by simply
mapping books to their purchasers without utilizing NFTs, the adoption of NFT standards
is believed to facilitate more active utilization through third-party services such as OpenSea.

The code for the register Listing 1, mint Listing 2, and hasAccessRight Listing 3
functions is as follows:

Listing 1. Solidity code for the register function.

function register(uint price , string memory title , string memory merkleRoot)
↪→ public {
require(bytes(_contentMerkleRoots[title]).length == 0);
_authors[title] = msg.sender;
_prices[title] = price;
_contentMerkleRoots[title] = merkleRoot;
_content_title_list.push(title);

}

Listing 2. Solidity code for the mint function.

function mint(string memory title , address to) payable external {
require(_prices[title] == msg.value);
payable(_authors[title]).transfer(msg.value);
_contents[nextTokenId] = title;
_safeMint(to, nextTokenId , ’’);
nextTokenId ++;

}

// This function is called when minting.
function _beforeTokenTransfer(address from , address to , uint tokenId)

↪→ internal override {
if(from != address (0)) _accessRights[_contents[tokenId]][from]--;
_accessRights[_contents[tokenId]][to]++;

}

Future Internet 2023, 15, 406 9 of 20

Listing 3. Solidity code for the hasAccessRight function.

function hasAccessRight(address account , string memory title) public view
↪→ returns(bool) {
return _accessRights[title][account] != 0 || _authors[title] == account;

}

4.2.2. Distributed Storage of Shards in Node Groups

Storage nodes participating in the d-book-repository are assigned unique PeerIDs
generated from their secret keys, similar to existing distributed storage systems like the
IPFS. However, in the proposed system, these storage nodes are organized into k groups
based on the remainder of their PeerID when divided by k. The number of groups, k, is
specified at the time of ACC deployment and cannot be changed thereafter. The number
of groups can be determined by taking into account the persistence strength, as described
in Section 5.3. Upon uploading, the e-book data provided by the author are divided into k
shards using Reed–Solomon codes, with the ith shard being stored on all storage nodes
within the ith group. Utilizing Reed–Solomon codes for shard generation ensures that
the original data can be restored from only a certain number of shards without requiring
all types of shards. This property enables the restoration of the e-book data even if some
groups encounter issues or entirely disappear (similar techniques are also observed in
RAID5 and RAID6).

In the mentioned distributed storage method, a storage node belonging to the ith group
stores only the ith shard and no other shards. Consequently, if a storage node B does not
own the access rights to the e-book, it cannot restore the complete e-book data solely from
locally stored shards. Although it may attempt to recover e-book data by acquiring shards
one by one from k− 1 other storage nodes, the ACC prevents unauthorized acquisition
requests if storage node B lacks access rights to the e-book.

4.3. Incentive Mechanisms for Permanence Enhancement

In the proposed method, each shard generated by the author is stored in all stor-
age nodes in a node group, and such a configuration is achieved by a combination of
two processes. The first is a push process in which storage nodes participating in the
d-book-repository are subscribed to a topic for the node group to which they belong in ad-
vance, and shards published to that topic by the author are propagated to the entire group
using gossipsub [25]. Note that gossipsub can spread data only to the nodes that have not
yet received them by sending gossip messages before spreading the data themselves, so
shard propagation can be performed more efficiently than normal floodsub.

The second is a pull process, in which each node goes for its own missing shard,
usually after the shard has been distributed to the entire group by the gossibsub. From
the discussion described above, each storage node can identify its own missing shards
in the following steps: (1) Each storage node can obtain a list of e-books from the book
information registered on the ACC, and if it stores no shard of an e-book in the list, it
recognizes that a shard of the e-book is missing. (2) Each node can determine which of the
k shards it should store from its own PeerID, and if shards generated from the e-book have
been pushed by the author, someone in the group must have stored the shard (even if it
does not have it itself).

In order to enhance the persistency of stored data, the proposed system provides
an incentive for each storage node to “repeat the pull process within a node group until
the storage node that finds its missing shard runs out of missing shards”. Specifically, it
verifies the absence of missing shards by using a sampling quiz, where smart contracts are
used to answer quizzes and receive rewards. (In the current implementation, such a quiz
function is included on the ACC to save on gas costs, but it is possible to implement it as a
completely separate smart contract).

The sampling quiz is issued every time N blocks are added to the blockchain used by
the ACC. Note that it is issued at approximately regular time intervals without any trigger

Future Internet 2023, 15, 406 10 of 20

by the central authority since blocks in a blockchain are autonomously created at regular
time intervals. In the sampling quiz, each storage node is requested to (1) extract segments
specified by random values from the shards in its own storage and (2) concatenate them
to form the answer (i.e., a proof), where the hash value of the latest (i.e., the Nth) block
is used as the random number. See Figure 4 for an illustration. The answer period for a
quiz is until the (N + X)th block is generated after issuing the quiz. Each storage node
creates a new common key by the end of the answer period and records the encrypted
proof in the ACC. The period between the end of the answer period and the generation of
X more blocks is called the disclosure period, during which the common key is passed to
the ACC to decrypt the encrypted proof. Next to the disclosure period is the claim period,
in which the most common answer recorded in the answer period is considered the correct
answer, and storage nodes that correctly answer the quiz receive a reward in proportion to
the amount of the deposit, where the reward of the quiz is paid in the original token called
DBookToken (DBT), which is issued by the ACC. On the other hand, incorrect answers to
the quiz will forfeit the deposit.

Figure 4. The flow of sampling quiz.

The code for the vote Listing 4, disclosure Listing 5, and claim Listing 6 functions is
as follows:

Listing 4. Solidity code for the vote function.

function vote(bytes32 encrypted_answer) payable public {
require(block.number % event_length < event_length /3, "Out of voting

↪→ period.");
uint event_id = block.number / event_length;
uint group = _groups[_account_peer_id_map[msg.sender]];
require(group > 0, "You aren’t registered.");
require (! encrypted_answer_exists[event_id][group][encrypted_answer], "The

↪→ same answer already submitted.");
encrypted_answer_exists[event_id][group][encrypted_answer] = true;
_deposits[event_id][group][msg.sender] += msg.value;

}

Listing 5. Solidity code for the disclosure function.

function disclosure(bytes32 answer , bytes32 key) public {
require(block.number % event_length >= event_length /3 && block.number %

↪→ event_length < event_length *2/3, "Out of disclosure period.");
uint event_id = block.number / event_length;
uint group = _groups[_account_peer_id_map[msg.sender]];
require(encrypted_answer_exists[event_id][group][keccak256(abi.encode(

↪→ answer , key))], "invalid answer and key");
require(_answers[event_id][group][msg.sender] == bytes32 (0), "Answer

↪→ already disclosed.");
_answers[event_id][group][msg.sender] = answer;
if (++ _answer_counts[event_id][group][answer] == 1) _answer_lists[

↪→ event_id][group].push(answer);
}

Future Internet 2023, 15, 406 11 of 20

Listing 6. Solidity code for the claim function.

function claim() public {
require(block.number % event_length >= event_length *2/3, "Out of

↪→ disclosure period.");
uint event_id = block.number / event_length;
uint group = _groups[_account_peer_id_map[msg.sender]];
bytes32 ans = _answers[event_id][group][msg.sender];
uint ans_cnt = _answer_counts[event_id][group][ans];
for (uint i=0; i < _answer_lists[event_id][group]. length; i++) {

bytes32 ans_i = _answer_lists[event_id][group][i];
require(ans_i == ans || _answer_counts[event_id][group][ans_i] <

↪→ ans_cnt , "Your answer is wrong");
}
uint deposit = _deposits[event_id][group][msg.sender];
_deposits[event_id][group][msg.sender] = 0;
payable(msg.sender).transfer(deposit);
dbt.mint(msg.sender , deposit * 10); // reward

}

4.4. Autonomous Management of Node Groups

In the proposed method, the number of replicas of a shard is equal to the size of
the node group corresponding to the shard, so a group with a small number of nodes is
susceptible to node departures and chunk deletions. In order to overcome this problem, the
d-book-repository introduces a smart contract that assigns a newly joined node to the group
with the smallest number of nodes at that time, whereas before, the current implementation
realizes this smart contract as part of the ACC. The specific flow for the registration of a
storage node proceeds as follows: First, a new storage node identifies a group with the
smallest number of nodes by referring to the next_group function of the ACC. Then, the
node creates a PeerID for that group by executing registerNode and pays a registration
fee to join the ACC. At the end of the registration, the number of nodes in the group is
increased by one on the ACC. A similar procedure is used for the unregistration of a node.
Specifically, it calls leaveNode for the registration and canceling of the registration, the
number of nodes in the group recorded in the ACC is decreased by one, and the registration
fee is refunded when the process of unregistration is completed. Note that the PeerID of
the caller can be calculated from msg.sender.

The code for the registerNode Listing 7, next_group Listing 8, and leaveNode Listing 9
functions is as follows:

Listing 7. Solidity code for the registerNode function.

function registerNode(string memory peer_id) payable public {
require(_groups[peer_id] == 0, "This peer id is already used.");
require(msg.value == registration_fee , "Registration fee is required.");
uint group = next_group ();
_groupNodeCounter[group]++;
_groups[peer_id] = group;
_account_peer_id_map[msg.sender] = peer_id;

}

Listing 8. Solidity code for the next_group function.

function next_group () public view returns (uint) {
uint group = 1;
uint mi = _groupNodeCounter [1];
for (uint i=2; i<= node_number; i++) {

if (mi > _groupNodeCounter[i]) {
mi = _groupNodeCounter[i];
group = i;

}
}
return group;

}

Future Internet 2023, 15, 406 12 of 20

Listing 9. Solidity code for the leaveNode function.

function leaveNode () public {
string memory peer_id = _account_peer_id_map[msg.sender];
uint group = _groups[peer_id];
require(group != 0, "This peer is not registered.");
_groups[peer_id] = 0;
_groupNodeCounter[group]--;
_account_peer_id_map[msg.sender] = "";
payable(msg.sender).transfer(registration_fee);

}

Note that charging a participation fee for node registration is intended to prevent Sybil
attacks. In addition, the fact that a node cannot specify the group it will join increases the
difficulty of a 50% attack on the incentive system and makes it difficult to create multiple
accounts to join the system as storage nodes to restore arbitrary content.

4.5. Lightweight Tamper Detection Using Merkle Tree

In order to provide tamper resistance to stored data, the d-book-repository provides a
verification function using a Merkle tree. The specific procedure is as follows: First, the
author constructs a Merkle tree with the hash values of the shards as the leaves and submits
the Merkle root to the ACC when the e-book is registered. See Figure 5 for an illustration.
The Merkle proof is then attached when the shard is uploaded to the d-book-repository. In
this way, a client receiving a shard from a storage node can verify whether the shard has
been tampered with or not by referring to the Merkle proof attached to the shard and the
Merkle root stored in the ACC. The main reason for using the Merkle tree is to save on gas
costs. In addition, this method can significantly reduce the storage cost since only the root,
not the hash value of each shard, needs to be stored.

Figure 5. Overview of Merkle tree built from content shards.

5. Evaluation

In this section, we assess the performance of the proposed system by combining
empirical data obtained through experiments conducted with a cloud-based prototype
system and predictive values derived from event-driven simulations. We begin by describ-
ing the implementation of the core functionalities of the prototype system in Section 5.1,
followed by a presentation of experimental outcomes obtained from the prototype in
Section 5.2. The primary objective of these experiments is to verify the practical speed of
the proposed system’s operation. Subsequently, in Section 5.3 and subsequent sections, we
proceed to evaluate various aspects, including persistence, fault tolerance, and the cost of
the functionalities.

Future Internet 2023, 15, 406 13 of 20

5.1. Prototype System

As described in the previous section, the proposed system comprises two key com-
ponents: the d-book-repository and the ACC. In the present implementation, the ACC is
written in Solidity, a JavaScript-like programming language for specifying smart contracts,
while we selected Rust for writing the d-book-repository because it is a memory-safe and
fast language. The implementation of d-book-repository leverages various pre-existing
technologies. The management of PeerIDs, the propagation of e-book data through the
gossipsub protocol, and message exchange between peers are all realized through the
utilization of the libp2p library [26], a technology previously employed in the development
of the IPFS. Additionally, the discovery of a peer with a designated PeerID is achieved by
utilizing the Kademlia DHT [27] provided by the libp2p library. In addition, sha256 was
adopted for the hash function used to create the Merkle tree and verify the received data.

In the prototype system, we employed an EC2 instance of Amazon Web Services
(AWSs) as the host of the storage nodes for the d-book-repository. In the experiments
described below, the number of node groups is fixed at 40, and Reed–Solomon codes are
set so that the original e-book data could be restored by collecting 20 of the 40 shards.
Each group is pre-registered with one storage node that never leaves the group, so that
each group has at least one storage node. In addition to those forty storage nodes, the
d-book-repository has one node for issuing upload/download requests. For the ACC, the
Hardhat Network was run on another EC2 instance and deployed there, where the Hardhat
Network is a test Ethereum client embedded in the smart contract development tool called
Hardhat. In summary, the number of EC2 instances used in the experiment is 42, including
1 for the Hardhat Network, which is used as a mock-up of the Ethereum network, and 41
for running the d-book-repository node. Experiments were conducted using two instance
types: m5.xlarge (vCPU: 4, RAM: 16 GiB) and t2.micro (vCPU: 1, RAM: 1 GiB). All instances
were hosted in the Asia Pacific (Tokyo, Japan) region, and communication between nodes
was achieved with sufficiently low latency.

5.2. Time Required to Download/Upload e-Book Data

The central functionalities of the proposed system encompass enabling e-book authors
to upload their e-book data to the d-book-repository and facilitating e-book readers, who
have made purchases, to access and download the e-book data from the repository. The
practical viability of the proposed system hinges significantly on the overhead associated
with managing access rights and ensuring the persistence of e-book data. Consequently, we
conducted measurements to gauge the time required for both uploading and downloading
e-book data on the prototype system. For this purpose, we utilized three distinct sizes of
e-book data: 1 MB, 10 MB, and 100 MB. These sizes were chosen because they encompass
the typical range of text-based e-book data, which varies from 1 MB to 100 MB, while also
accounting for the size of a comic book, which typically falls at around 100 MB in size.

5.2.1. Downloading

Table 2 summarizes the time taken to download e-book data from d-book-repository
for different types of EC2 instances and data sizes. This table indicates that, in the cloud
environment where the prototype system is deployed, 100 MB of e-book data could be
retrieved within 10 s, indicating that there is no problem in practical use. In fact, in the case
of Amazon Kindle, it takes about one minute to retrieve 100 MB of e-book data from the
cloud server and depends on the network environment.

Table 2. Total time for downloading e-book data.

1 MB 10 MB 100 MB

t2.micro 1033 ms 1381 ms 7692 ms
m5.xlarge 517 ms 922 ms 4815 ms

Future Internet 2023, 15, 406 14 of 20

In the prototype system, the downloader of the e-book data performs the following
four steps in this order: (1) Discover 20 storage nodes belonging to different groups;
(2) Request and receive shards from the discovered storage nodes; (3) Retrieve the Merkle
root of the e-book data from the ACC and verify the authenticity of shards using the
Merkle proof attached to the downloaded shard; (4) Apply the Reed–Solomon decoding to
restore the original e-book data. Since a simple file transfer from storage nodes corresponds
roughly to the second step, we measured the time required for each of the above four steps.
Figure 6 summarizes the results. The figure shows that, as the size of e-book data increases,
the percentage of overhead other than file transfer decreases, but when the data size is 1 MB,
the percentage of time used for peer discovery is the largest among all steps, confirming
that the overhead is not negligible. However, such a high percentage of overhead causes
no practical issues since downloading 1 MB of e-book data itself only takes about 1 s.

Figure 6. Breakdown of the download time.

5.2.2. Uploading

Table 3 summarizes the time required for uploading e-book data for different EC2
instance types and data sizes. As shown in the table, the upload of 100 MB of data using
t2.micro failed because the uploader ran out of memory at the time of sending data to
40 storage nodes, causing a forced termination. This problem can be solved by preventing
the uploader from using more memory than the upper limit, for example, by sending
shards one at a time. In this case, however, the trade-off with the total upload time would
become another issue. In all other cases, the upload of e-book data is completed within
10 s, as in the case of downloading.

Table 3. Total time for uploading e-book data.

1 MB 10 MB 100 MB

t2.micro 1101 ms 2582 ms failed
m5.xlarge 458 ms 1367 ms 9442 ms

Uploading e-book data to the d-book-repository consists of the following four steps,
where we assume that the metadata of e-books has been registered with the ACC in advance
and will not be included in the measurements: (1) Divide the e-book data into 40 shards by
Reed–Solomon encoding; (2) Construct a Merkle tree of the shards using sha256 and record
the Merkle root in the ACC; (3) Discover 1 storage node from each of the 40 node groups;
(4) Send the corresponding shard and Merkle proof to the discovered nodes. It should be
noted that the uploader is only involved in sending a shard to the first node in each group
in the fourth step, and it is not involved in propagating the shard within the group.

Figure 7 shows a breakdown of the time required for each step. In the d-book-
repository, the process of uploading is similar to downloading in the sense that it requires

Future Internet 2023, 15, 406 15 of 20

the discovery of storage nodes. However, the upload requires 40 nodes to be discovered,
whereas the download requires only 20 nodes, so it requires extra time for the fourth step
of uploading. In fact, although the ratio of data transmission to the total time increases as
the data size increases, the increase in the ratio is more significant because the number of
destinations increases from 20 to 40. For the same reason, the ratio of node discovery time
becomes larger when the data size is 10 MB. Specifically, it is 86% for uploads on t2.micro,
whereas it is 61% for downloads.

Figure 7. Breakdown of the upload time.

5.3. Evaluation of Persistency of Stored Data

Next, we evaluate the persistence of data stored in the d-book-repository. In the
experiments, we evaluate the degree to which the continuity of storage service is disrupted
by the departure of storage nodes. We assume that the join and leave of the nodes occur
asynchronously and follow a random walk in which a new node joins with probability p
and an existing node leaves with probability 1− p. We say that the system fails to persist
if an e-book’s data cannot be downloaded even once in the middle of an event sequence
of length L generated, assuming p = 1/2. Note that L = 10,000 corresponds to about
270 years when the change in the node number occurs once every 10 days on average.

We assess the persistence of the proposed system in comparison to Arweave, using
the following specified parameters: In the proposed system, the initial state consists of X
nodes allocated within each group. When a new node joins, it is assigned to the group with
the smallest number of nodes at that moment. Conversely, departing nodes are randomly
selected from the entire set of nodes. As previously indicated, persistence is deemed
unsuccessful if, at any point within an event sequence of length L, a group containing
zero nodes emerges. In a scenario where the number of groups is set to 20, with each
node offering 1 TB of storage capacity, the entire system can accommodate 20 TB of e-book
data. This corresponds to 200,000 e-books of 100 MB each, excluding the size of the Merkle
proof. In contrast, Arweave employs a different approach. When a storage node capable
of accommodating 1 TB of e-book data joins, it receives 10,000 e-books of 100 MB each,
randomly selected without duplication. In the simulation, the initial state consists of Y
nodes, each holding 1 TB worth of e-books, and the criterion for persistence failure is the
presence of at least one e-book with zero replicas at any point within an event sequence.
For the experiment, we generated 1000 event sequences, each with a length of L = 10,000,
and recorded the count of event sequences that successfully persisted.

Table 4 summarizes the experimental results for the proposed method. As can be seen
from the table, the number of nodes required to maintain the same level of persistence
increases as the number of groups k increases. Specifically, if we want to keep the persistence
failure rate below 1%, 15, 11, and 9 (initial) nodes are required per group when the number
of groups is 20, 30, and 40, respectively, which corresponds to a total of 300, 330, and
360 storage nodes, respectively. This indicates that, for the same number of nodes, a

Future Internet 2023, 15, 406 16 of 20

smaller k is better in terms of data persistence. However, it should be noted that, in reality,
the storage service can continue even if several groups disappear up to the number of
parities due to the nature of the Reed–Solomon codes. In addition, in actual environments,
persistence can also be improved by monitoring the number of nodes for each group and
adding storage nodes when it falls below the required success rate.

Table 4. The number of event sequences that did not fail to persist in the proposed system (out
of 1000).

X 5 6 7 8 9 10 11 12 13 14 15

k = 20 399 536 648 763 795 868 910 942 964 980 990
k = 30 555 719 841 902 942 979 992 999 999 1000 1000
k = 40 678 856 927 971 992 999 999 1000 1000 1000 1000

Table 5 summarizes the results for Arweave. Comparing with Table 4, it can be seen
that the proposed system achieves higher data persistence for the same number of storage
nodes. For example, when storing 200,000 books (of 100 MB each) with 400 storage nodes,
the number of successes of the proposed system is higher than that of Arweave regardless
of the number of groups k(≥20). On the other hand, Arweave has an advantage in that the
data persistence increases as the number of stored books decreases, due to an increase in
the number of replications per e-book. In fact, Table 5 shows that the number of successes
is much higher at 100,000 books than at 200,000 books, while the proposed system still
shows superior results even with 100,000 books.

Table 5. The number of event sequences that did not fail to persist in Arweave (out of 1000).

Y 100 200 300 400 500 600

200,000 books (=20 TB) 0 0 56 585 943 998
100,000 books (=10 TB) 0 454 900 993 1000 1000

5.4. Evaluation of Incentive Mechanism

In the proposed system, the persistence of stored data is maintained by actively
reducing the number of chunks that each storage node is missing, in addition to devising
methods for replicating and storing chunks. Specifically, the proposed system encourages
each storage node to acquire all of the corresponding chunks by using a quiz as an incentive
mechanism that increases the percentage of correct answers (and the amount of reward
obtained) for the absence of missing chunks. In this subsection, we evaluate the cost of the
incentive mechanism. The frequency of quiz questions affects the strength of persistence,
and the evaluation results described below confirm that a quiz frequency of about once a
day has little or no effect on the system performance.

As mentioned in the previous section, to answer the quiz, each storage node gen-
erates a proof of holding chunks specified by the contestant. Specifically, in the current
implementation, a proof is generated according to the following procedure:

1. Query the ACC for the block hash;
2. Obtain the bit indicating the location of the chunk calculated from the block hash for

all stored shards, and add the obtained bits to Vec<bool> sequentially;
3. Hash Vec<bool> with keccak256 to complete the proof.

In the experiments, we measure the time to generate the proof by changing the number
of files as 10,000, 100,000, and 200,000 on an EC2 instance hosting the storage node, where,
in order to focus on the computational cost of storage nodes, we exclude the query time for
the block hash in the first step from the measurement time. Note that, since the generation
of a proof does not require reading the entire file, there is no direct relationship between
the e-book size and the generation time.

Future Internet 2023, 15, 406 17 of 20

Table 6 summarizes the generation time of a proof for different numbers of files and for
two different EC2 instances, t2.micro and m5.xlarge. The most time-consuming case is the
handling of 200,000 files on t2.micro, but even in this case, the time required is only about
one and a half minutes. Therefore, we can conclude that this is well within the practical
range as long as the quiz is issued at a frequency of about once a day. In addition, m5.xlarge
is faster than t2.micro, and the degree of speedup is more significant when the number of
files is smaller. Behind this phenomenon may be the influence of the cache and hardware
characteristics of the EC2 instance.

Table 6. Time taken for generating an answer to the quiz.

of e-Books 10,000 100,000 200,000

t2.micro 4128.06 ms 39,196.68 ms 90,958.94 ms
m5.xlarge 74.59 ms 1804.42 ms 24,736.23 ms

5.5. Execution Cost of ACC Functions and Performance Comparison by Blockchain

As of 2023, numerous public blockchains have emerged as viable options for im-
plementing decentralized applications like ACCs. Given that the smart contracts of the
proposed system are deployable on any blockchain that supports the Ethereum virtual
machine (EVM), the choice of blockchain for app development becomes a crucial issue. In
this subsection, we focus on Polygon [28], Arbitrum [29,30], and Solana [31,32] as notable
alternatives to Ethereum and evaluate these blockchains in terms of max recorded TPS,
real-time TPS, block time, and average transaction fee, where TPS stands for the number
of transactions processed per second and block time is the average time for generating a
block. Table 7 summarizes the results. The table shows that Ethereum exhibits the lowest
TPS, and its long block time and high transaction fee make it less user-friendly. In fact,
the best choice in terms of TPS and transaction fee is Solana, especially in TPS, which is
far ahead of other blockchains, and Arbitrum is the best choice in terms of block time. It
should be noted, however, that there is a tradeoff between speed and security [33], and this
consideration arises because public blockchains necessitate security-dependent transaction
fees, which are ultimately borne by the app’s users.

Table 7. Comparison of performance metrics across major blockchains.

Blockchain Max Recorded TPS [34] Current TPS [34] Block Time [34] Transaction Fee (Avg) [35]

Ethereum 57.91 tx/s 10.98 tx/s 12.24 s 1.30 USD
Polygon 273 tx/s 57.05 tx/s 2.44 s 0.00061 USD
Arbitrum 175 tx/s 15.56 tx/s 0.25 s 0.0046 USD
Solana 2712 tx/s 447 tx/s 0.42 s 0.00032 USD

Finally, we evaluate the cost of running ACC functions on Ethereum. Table 8 sum-
marizes the cost of each function measured using the hardhat-gas-reporter. Although the
costs of functions vary widely depending on Ethereum price fluctuations and network
conditions, the gas price and ETH price were 26 Gwei/gas and 2151.72 USD/ETH at the
time of evaluation. The table shows that the most expensive ACC function is registerNode
at USD 10.21, while the mint function, which is considered the most frequently used by
users, costs USD 8.49. Considering that the price of a Kindle book is around USD 4 to 15,
this result means that deploying the service on Ethereum will be a big burden for e-book
users. Since the execution cost on other blockchains is proportional to the transaction fee
(avg) shown in Table 7, the execution cost on those blockchains is not a big issue.

Future Internet 2023, 15, 406 18 of 20

Table 8. Estimated gas fees for ACC contract functions at 26 Gwei/gas, 2151.72 USD/ETH.

Function Execution Cost (USD)

claim 5.09

disclosure 6.03

leaveNode 2.62

mint 8.49

register 7.63

registerNode 10.21

vote 4.45

6. Discussion

This section discusses several points to be noted in the practical application of the
d-book-repository.

The first issue concerns the storage capacity limit. The d-book-repository is designed to
store shards generated from contents on all storage nodes in a uniform manner. Therefore,
as long as the storage capacity provided by each node is fixed, the total capacity does not
increase with the number of nodes, as in many other distributed storage systems. For
example, assuming that each node provides 1 TB of storage and that each content item is
encoded in 20 shards, the system can store up to 20 TB of content no matter how many
nodes are added. This amount is equivalent to 200,000 e-books of 100 MB, which seems
to be sufficiently large at the present time. However, since the amount of stored content
grows monotonically, it is likely to eventually be used up over time.

The easiest way to solve this problem is to keep replacing the storage devices of each
node in the system with larger capacity ones as the underlying device technology advances,
but this imposes the burden of updating on the storage node provider, thus compromising
sustainability. One solution to overcome this issue is to increase the capacity of all nodes’
contributions after reaching an agreement among all storage nodes. If less than half of
the storage nodes do not comply with the agreement, they will not be able to answer the
incentive quiz correctly and will not receive a reward, thus the result of the agreement will
be binding.

The second issue is how to prevent unauthorized downloads. There may be rogue
nodes on the network that fail to verify the downloader’s access rights, and users of the
proposed system can restore the entire content regardless of the existence of access rights
if they find the required number of rogue nodes belonging to different groups. Potential
solutions to this issue encompass penalizing nodes that fail to verify access rights or
utilizing encryption in conjunction with content protection measures.

The third issue is countermeasures against uploading illegal contents and unautho-
rized registration by non-copyright holders [36]. Once illegal content is uploaded to the
network, it is difficult to completely remove it, and it is also difficult to verify with certainty
whether the Ethereum address (EOA) used for content registration belongs to the copyright
holder. Similar problems have been noted with other distributed storage systems. For
example, Arweave claims to employ a blacklist to prevent the spread of illegal content, but
the effectiveness of this approach is questionable. Presently, the most efficacious preemp-
tive measure against such threats appears to involve pre-upload screening by a trusted
third party.

The fourth issue is the protection of user privacy. If a public blockchain such as
Ethereum is used to implement the proposed method, the history of books purchased
by users through their Ethereum accounts can be read by anyone. A possible approach
to addressing this problem is to utilize self-sovereign identity (SSI), a system that allows
individuals to manage their own identity information and share it securely as needed.
This could allow users to have strict control over their own identity information, purchase
history, and other data [37].

Future Internet 2023, 15, 406 19 of 20

7. Concluding Remarks

In this paper, we propose and evaluate a decentralized architecture for realizing
persistent e-book services. The proposed system consists of a smart contract called ACC
to control access rights and a d-book-repository to store e-book data in a distributed and
persistent manner. Similar to existing decentralized storage systems, the d-book-repository
applies Reed–Solomon codes to e-book data to generate k redundant shards, but unlike
existing systems, the set of storage nodes is explicitly partitioned into k groups, and each
shard is uniformly copied to all nodes in one node group. The persistence of the stored
e-book data is achieved by the fact that nodes within a node group continue to maintain
copies of all shards corresponding to that group, and access rights control is achieved by
having each storage node verify the access rights of the downloaders. We built a prototype
of the proposed system on AWS and evaluated its performance in various settings. As
a result, we confirmed that uploading and downloading a 100 MB file can be completed
within 10 s in an environment with low network latency and that the costs required for
access control and persistence of stored data are sufficiently small.

The proposed method can solve the problem of the inaccessibility of purchased e-books
due to reasons such as service termination or intentional data removal by the publisher.
However, several issues remain to be addressed, including the enlargement of storage
capacity, enhancement of access control functions, and countermeasures against illegal
content and unauthorized uploads.

Author Contributions: Conceptualization, K.O. and S.F.; methodology, K.O. and S.F.; software, K.O.;
validation, K.O.; writing—original draft preparation, K.O.; writing—review and editing, S.F. and K.O.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. The Insight Partners. Digital Publishing Market Forecast to 2028—COVID-19 Impact and Global Analysis by Content Type

(Text, Video, and Audio) and End User (Individual, and Enterprises). Available online: https://www.marketresearch.com/TIP-
Knowledge-Services-v4095/Digital-Publishing-Forecast-COVID-Impact-30120207/ (accessed on 18 November 2023).

2. Lee, D. Microsoft’s eBook Store: When This Closes, Your Books Disappear too. BBC News, 4 April 2019.
3. Nofer, M.; Gomber, P.; Hinz, O.; Schiereck, D. Blockchain. Bus. Inf. Syst. Eng. 2017, 59, 183–187. [CrossRef]
4. Yaga, D.; Mell, P.; Roby, N.; Scarfone, K. Blockchain technology overview. arXiv 2019, arXiv:1906.11078 .
5. Crosby, M.; Pattanayak, P.; Verma, S.; Kalyanaraman, V. Blockchain technology: Beyond bitcoin. Appl. Innov. 2016, 2, 71.
6. Merkle, R.C. Protocols for public key cryptosystems. In Proceedings of the 1980 Symposium on Security and Privacy, Oakland,

CA, USA, 14–16 April 1980; IEEE Computer Society: Washington, DC, USA, pp. 122–133.
7. Benet, J. IPFS—Content Addressed, Versioned, P2P File System. arXiv 2014, arXiv:1407.3561.
8. Publica. Publica.com, White Paper. 2017. Available online: https://www.bbc.com/news/technology-47810367 (accessed on 18

November 2023).
9. Plank, J.S. A tutorial on Reed–Solomon coding for fault-tolerance in RAID-like systems. Softw. Pract. Exp. 1997, 27, 995–1012.

[CrossRef]
10. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Bitcoin.org, White Paper, October 2008. Available online:

http://www.bitcoin.org/bitcoin.pdf (accessed on 18 November 2023).
11. Bonneau, J.; Miller, A.; Clark, J.; Narayanan, A.; Kroll, J.A.; Felten, E.W. SoK: Research Perspectives and Challenges for Bitcoin

and Cryptocurrencies. In Proceedings of the 2015 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 17–21 May 2015;
pp. 104–0121.

12. Gervais, A.; Karame, G.O.; Wüst, K.; Glykantzis, V.; Ritzdorf, H.; Capkun, S. On the security and performance of proof of work
blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
24–28 October 2016; pp. 3–16.

13. Buterin, V. Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform. Ethereum Foundation,
White Paper, January 2014. Available online: https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_
contract_and_decentralized_application_platform-vitalik-buterin.pdf (accessed on 18 November 2023).

https://www.marketresearch.com/TIP-Knowledge-Services-v4095/Digital-Publishing-Forecast-COVID-Impact-30120207/
https://www.marketresearch.com/TIP-Knowledge-Services-v4095/Digital-Publishing-Forecast-COVID-Impact-30120207/
http://doi.org/10.1007/s12599-017-0467-3
https://www.bbc.com/news/technology-47810367
http://dx.doi.org/10.1002/(SICI)1097-024X(199709)27:9<995::AID-SPE111>3.0.CO;2-6
http://www.bitcoin.org/bitcoin.pdf
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf

Future Internet 2023, 15, 406 20 of 20

14. Zheng, Z.; Xie, S.; Dai, H.-N.; Chen, W.; Chen, X.; Weng, J.; Imran, M. An overview on smart contracts: Challenges, advances and
platforms. Future Gener. Comput. Syst. 2020, 105, 475–491. [CrossRef]

15. Wu, K.; Ma, Y.; Huang, G.; Liu, X. A first look at blockchain-based decentralized applications. Softw. Pract. Exp. 2021, 51,
2033–2050. [CrossRef]

16. Wang, Q.; Li, R.; Wang, Q.; Chen, S. Non-Fungible Token (NFT): Overview, Evaluation, Opportunities and Challenges. arXiv 2021,
arXiv:2105.07447.

17. Entriken, W.; Shirley, D.; Evans, J.; Sachs, N. ERC-721: Non-Fungible Token Standard. Ethereum Improvement Proposals, Created
2018-01-24. Available online: Https://eips.ethereum.org/EIPS/eip-721 (accessed on 18 November 2023).

18. Benisi, N.Z.; Aminian, M.; Javadi, B. Blockchain-based decentralized storage networks: A survey. J. Netw. Comput. Appl. 2020,
162, 102656. [CrossRef]

19. Daniel, E.; Tschorsch, F. IPFS and friends: A qualitative comparison of next generation peer-to-peer data networks. IEEE Commun.
Surv. Tutorials 2022, 24, 31–52. [CrossRef]

20. Steichen, M.; Fiz, B.; Norvill, R.; Shbair, W.; State, R. Blockchain-Based, Decentralized Access Control for IPFS. In Proceedings
of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada,
30 July–3 August 2018; pp. 1499–1506. [CrossRef]

21. Protocol Labs. Filecoin: A Decentralized Storage Network. Protocol Labs, White Paper, July 2017. Availbale online: https:
//filecoin.io/filecoin.pdf (accessed on 18 November 2023).

22. Wilkinson, S.; Lowry, J. Metadisk: Blockchain-Based Decentralized File Storage Application; White Paper; Storj Labs Inc.: Atlanta, GA,
USA, 2014.

23. Vorick, D.; Champine, L. Sia: Simple Decentralized Storage; White Paper; Nebulous Inc.: Boston, MA, USA, 2014.
24. Williams, S.; Diordiiev, V.; Berman, L.; Uemlianin, I. Arweave: A Protocol for Economically Sustainable Information Permanence.

arweave.org, Tech. Rep., 2019. Available online: https://arweave.org/yellow-paper.pdf (accessed on 18 November 2023).
25. Vyzovitis, D.; Psaras, Y. GossipSub: A Secure PubSub Protocol for Unstructured, Decentralised P2P Overlays. In Proceedings of the

Protocol Labs TechRep, PL-TechRep-gossipsub-v0.1-Dec19; Protocol Labs: San Francisco, CA, USA, 2019 ; 8p.
26. Protocol Labs. libp2p: A Modular Network Stac. Protocol Labs, Software Repository, 2023. Available online: https://github.com/

libp2p (accessed on 18 November 2023).
27. Maymounkov, P.; Mazieres, D. Kademlia: A peer-to-peer information system based on the xor metric. In Proceedings of the

International Workshop on Peer-to-Peer Systems, Cambridge, MA, USA, 7–8 March 2002; Springer: Berlin/Heidelberg, Germany,
2002; pp. 53–65.

28. Kanani, J.; Nailwal, S.; Bhardwaj, A. Polygon: A Scalable Framework for Building Ethereum-Compatible Blockchain Networks; White
Paper; Polygon Technology: Bengaluru, India, 2021.

29. Zhou, Q.; Huang, H.; Zheng, Z.; Bian, J. Solutions to scalability of blockchain: A survey. IEEE Access 2020, 8, 16440–16455.
[CrossRef]

30. Kalodner, H.A.; Goldfeder, S.; Chen, X.; Weinberg, S.M.; Felten, E.W. Arbitrum: Scalable, private smart contracts. In Proceedings
of the USENIX Security Symposium, Baltimore, MD, USA, 15–17 August 2018.

31. Neon Labs. Neon EVM set to go live on mainnet: Welcome to a new era of Ethereum scalability on Solana. Medium, Article,
November 2022. Available online: https://medium.com/neon-labs/neon-evm-set-to-go-live-on-mainnet-welcome-to-a-new-
era-of-ethereum-scalability-on-solana-63b25bcc77a3 (accessed on 18 November 2023).

32. Yakovenko, A. Solana: A New Architecture for a High Performance Blockchain; White Paper; Solana Labs: San Francisco, CA, USA,
2017.

33. Kiayias, A.; Panagiotakos, G. Speed-Security Tradeoffs in Blockchain Protocols. In Cryptology ePrint Archive; Paper 2015/1019;
2015. Available online: https://eprint.iacr.org/2015/1019 (accessed on 18 November 2023).

34. ChainSpect. Blockchain Transaction Per Second (TPS) Metrics. ChainSpect, Dashboard, December 2023. Available online:
Https://chainspect.app/dashboard/tps (accessed on 18 November 2023).

35. CoinTool. Cryptocurrency Analytics and Tools. CoinTool, Dashboard, December 2023. Available online: https://cointool.app/
dashboard (accessed on 18 November 2023).

36. Gottsegen, W. NFT Forgeries Aren’t Going Away. Coindesk, December 2021. Available online: https://www.coindesk.com/layer2
/2021/12/20/nft-forgeries-arent-going-away/ (accessed on 18 November 2023).

37. Ferdous, M.S.; Chowdhury, F.; Alassafi, M.O. In search of self-sovereign identity leveraging blockchain technology. IEEE Access
2019, 7, 103059–103079. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.future.2019.12.019
http://dx.doi.org/10.1002/spe.2751
Https://eips.ethereum.org/EIPS/eip-721
http://dx.doi.org/10.1016/j.jnca.2020.102656
http://dx.doi.org/10.1109/COMST.2022.3143147
[
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00253
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://arweave.org/yellow-paper.pdf
https://github.com/libp2p
https://github.com/libp2p
http://dx.doi.org/10.1109/ACCESS.2020.2967218
https://medium.com/neon-labs/neon-evm-set-to-go-live-on-mainnet-welcome-to-a-new-era-of-ethereum-scalability-on-solana-63b25bcc77a3
https://medium.com/neon-labs/neon-evm-set-to-go-live-on-mainnet-welcome-to-a-new-era-of-ethereum-scalability-on-solana-63b25bcc77a3
https://eprint.iacr.org/2015/1019
Https://chainspect.app/dashboard/tps
https://cointool.app/dashboard
https://cointool.app/dashboard
https://www.coindesk.com/layer2/2021/12/20/nft-forgeries-arent-going-away/
https://www.coindesk.com/layer2/2021/12/20/nft-forgeries-arent-going-away/
[
http://dx.doi.org/10.1109/ACCESS.2019.2931173

	Introduction
	Distributed Ledger Technology
	Blockchain as a Distributed Ledger
	Ethereum as a Decentralized Platform

	Existing Decentralized Storage Systems
	InterPlanetary File System (IPFS)
	Acl-IPFS
	Filecoin
	Arweave
	Summary

	Proposed System
	Two Specific Usage Scenarios
	Decentralized Access Control to the Stored Data
	Access Control Contract (ACC)
	Distributed Storage of Shards in Node Groups

	Incentive Mechanisms for Permanence Enhancement
	Autonomous Management of Node Groups
	Lightweight Tamper Detection Using Merkle Tree

	Evaluation
	Prototype System
	Time Required to Download/Upload e-Book Data
	Downloading
	Uploading

	Evaluation of Persistency of Stored Data
	Evaluation of Incentive Mechanism
	Execution Cost of ACC Functions and Performance Comparison by Blockchain

	Discussion
	Concluding Remarks
	References

