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Abstract: The agriculture sector plays a crucial role in supplying nutritious and high-quality food.
Plant disorders significantly impact crop productivity, resulting in an annual loss of 33%. The early
and accurate detection of plant disorders is a difficult task for farmers and requires specialized
knowledge, significant effort, and labor. In this context, smart devices and advanced artificial
intelligence techniques have significant potential to pave the way toward sustainable and smart
agriculture. This paper presents a deep learning-based android system that can diagnose ginger plant
disorders such as soft rot disease, pest patterns, and nutritional deficiencies. To achieve this, state-of-
the-art deep learning models were trained on a real dataset of 4,394 ginger leaf images with diverse
backgrounds. The trained models were then integrated into an Android-based mobile application
that takes ginger leaf images as input and performs the real-time detection of crop disorders. The
proposed system shows promising results in terms of accuracy, precision, recall, confusion matrices,
computational cost, Matthews correlation coefficient (MCC), mAP, and F1-score.

Keywords: smart agriculture; deep learning; smartphone application; pests; nutritional deficiency

1. Introduction

The most significant challenges that any crop faces are diseases [1], pests [2], weeds [3],
and nutritional deficiencies [4]. For instance, a 20–40% loss occurs due to plant diseases [5]
and plant pests [6] annually. Similarly, nutritional deficiency also influences the productivity
of agricultural foods [7]. Farmers and domain experts used manual methods for detecting
disorders by visualizing the plant’s leaf with the naked eye. However, this method became
infeasible due to the large size of fields, physical conditions, time, and cost [5]. Therefore,
automatic, robust, precise, fast, and cost-effective methods and techniques for plant disorder
identification have been demanding research in smart agriculture in recent years.

Deep learning has made considerable progress in image-based classification prob-
lems [8,9]. A key benefit of deep learning is that it reduces the effort required for feature
extraction, which is time-consuming and requires expertise. In this context, convolutional
neural networks (CNN) have gained a lot of success in image classification and object recog-
nition. Deep CNN, an extended version of CNN, has been used in detection, classification,
and recognition problems. However, training these models requires considerable training
data and computing resources.

In the literature, a rise in the use of deep learning-based methods can be noticed in
identifying the different diseases associated with crops such as wheat, tomato, cucumber,
apple, rice, pearl millet, citrus plants, and cassava. For instance, a [10] study worked
on identifying cassava plant disease. In this work, the CNN model was employed on
720 images of the dataset and classified the seven cassava plant diseases and one healthy
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class. However, they gained a lower classification rate when tested on real-time image
classification. The authors in [2] proposed a deep-learning framework for pest and disease
identification problems. They employed a CNN model to diagnose 27 plant diseases. The
authors conducted a series of tests that revealed an overall detection accuracy of 86.1%.
A DL-based CNN model is trained using 2029 images and detects the five apple diseases
on leaves. As they trained on a small dataset, this reported a classification accuracy of
78.8%. Using an open source dataset, PlantVillage, the authors in [11] constructed deep
CNN models for plant leaf disease detection. This dataset contains 54,306 images showing
a total of 26 diseases collected from different plants in a lab environment. The authors [12]
worked on numerous disease detections by considering 12 crops using real-field images.

Farmers are also confronted with pest attacks despite plant diseases. Pests are en-
vironmental disasters that prevent plants from growing normally or even killing them.
When pests attack crops, they leave certain patterns on the leaves. These pest patterns on
leaf detection are a very challenging process. Therefore, deep learning is introduced to
detect the pest patterns on the leaves of crops [13]. The classification of plant pests using
automatic deep learning-based methods have been performed in various studies. The
authors in [13] detected the pests of the strawberry plant, which is sown in a greenhouse
environment. In this work, a classical machine learning-based support vector machine
algorithm is applied to detect the housefly and whitefly pests of the strawberry plant. The
authors [14] proposed coffee tree disease identification using different classical and deep
learning methods. In this study, InceptionV3 proved challenging for testing the dataset [15].
The study combined saliency techniques and CNNs to build an insect detection system.
The system is 92.43% accurate on small datasets and 61.93% accurate on large datasets.

A deficiency will emerge when a plant lacks a necessary nutrient for growth and will
indicate various signs of defects. Hence, detecting nutrient deficiencies is critical for early
diagnosis to avoid severe losses. Deep learning frameworks show their performance in
nutrient deficiency recognition [7]. In recent studies, work on nutrient deficiency classi-
fication problems can also be seen. The goal of the work [7] was to provide a thorough
review of the methods utilized to identify plant nutrient deficiencies using digital images.
The authors in [16] detected nitrogen deficiencies in one variety of rice plant, capturing
an image of 5 megapixels and gaining 0.92% accuracy. The authors in [17] detected seven
nutrient deficient types with the ResNet-50 model, having 4,088 images of black gram and
showing an accuracy of 65.44%. By combining inception-ResNet and the autoencoder, the
system accurately identified the three nutritional deficiencies for 571 tomato plant images
and obtained a 91% test accuracy. However, the dataset they employed is limited in scope,
only covering N, Ca, and K nutrients [18].

The research community has presented extensive work on plant defect identification
and recognition problems in recent decades. However, there is still a need for work on
ginger plant defect identification, recognition, and classification. To cover the existing
issues of the ginger plant, we used various deep-learning models to classify ginger plant-
associated disorders such as pest pattern, nutrient deficiency, and soft rot disease. This
work is an extension of our previous work on the ginger plant [19]. In the former study, we
proposed identifying and classifying ginger plant soft rot disease, nutritional deficiencies,
and pest patterns at early as well as multiple stages using different deep learning-based
models such as CNN, VGG-16, MobileNetV2, and ANN. The proposed deep learning
models were trained and tested on the dataset of ginger plant leaf images consisting of
healthy plants, pest patterns, nutrient deficiency, and soft rot disease acquired from an
entire field of a standing crop. The study analyzed the performance and capability of
the deep learning methods for ginger plant disorder detection. Here, the previous work
is extended by considering the identification and classification of ginger plant disorders
in real time. We developed an automatic, android-based detection system that takes the
leaf images of the crop in the field as input and provides real-time identification results.
Moreover, the system also provides a recommendation to the end user based on the detected



Future Internet 2023, 15, 86 3 of 23

results. In addition, this study presented an in-depth analysis of the system’s performance
in terms of timing complexity and accuracy.

The key contributions of this paper are given as follows:

• Creating a large dataset of ginger plant leaf images containing patterns of health, pests,
nutrient deficiency, and soft rot disease.

• Presenting ginger plant pest patterns, nutritional deficiencies, and soft rot disease
identification by applying deep learning classification and detection models such as
CNN, MobileNetV2, VGG-16, and YOLOv5.

• Analyzing the performance of the proposed models in terms of time complexity and
accuracy under different conditions.

• Validating a deep learning-based detection platform that executes on smartphones in
a real-time environment, generates identification results based on the given input, and
recommends appropriate actions to the farmers.

The rest of the paper is organized as follows. Section 2 reviews the related work.
Section 3 discusses the proposed methods, followed by obtaining results and discussion in
Section 4, and finally, Section 5 concludes the paper.

2. Related Work

This section describes various research studies that were carried out to detect plant
leaf disorders using classical and advanced deep learning methods.

The spread of crop diseases might harm the economy. Traditionally, crop disease
diagnosis is made manually, which is time-consuming and lacks accuracy. The authors
in [20] performed image binarization, contour extraction, and fox fitting techniques using
deep learning. This work utilized different deep learning models and achieved 73%
accuracy. However, the adopted models showed poor performance on the other datasets.
Moreover, the recommended model, however, requires a lot of computation during training
to identify various diseases.

Identifying citrus plant diseases was addressed. The authors in [21] employed K-
means, classification, and neural network techniques. The study emphasized the traits,
advantages, and disadvantages associated with citrus. The study also showed that new
technologies would be needed to identify and categorize citrus plants in the future. Addi-
tionally, they mentioned that citrus plants’ automatic recognition and classification are still
in their early stages.

In [22], the authors developed pipelines based on fuzzy, support vector machine and
neural network for plant leaf disease detection. Although the study achieved significant
results, the authors highlighted the pros and cons of computer vision-based methods in
plant disease detection. This study also suggested exploring new tools and techniques for
disease identification at different stages.

For the task of detecting wheat leaf disease from finely grained image categorization
in [23], the authors employed improved CNN. The suggested model was implemented with
many neurons, data sources, and connecting channels. The findings showed that VGG16
with AlexNet can achieve approximately 90% accuracy. Furthermore, the study highlighted
that other models, such as GANs, would produce better results using a large dataset.

In [24], the authors focused on the fusarium head blight disease that affects wheat
crops. Images of wheat leaves are processed to identify the damaged area using CNN
and image processing techniques. The model correctly identifies the crop’s sick regions in
training with a mean average precision of 92%. The outcomes surpass those of k-means and
Otsu’s techniques. To more accurately diagnose the unhealthy components, this approach
needs vast datasets.

The CNN classification technique was exploited in study [25] to identify the strengths
and weaknesses of works that used a CNN to detect crop diseases. The study proposed
developing a more balanced and reliable agricultural tool for food production.

In [26], deep learning, machine learning, transfer learning, and deep convolutional
neural network were applied. The proposed model successfully classified 38 different
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diseased classes. The results showed 96.46% accuracy by the proposed model. This
accuracy exceeds standard machine learning techniques.

In [27], the diseases and pests of corn crops were captured at early stages from the field.
The images were segmented by using image texture-based and iterative clustering methods.
Then, the obtained features from the segmented images were used in the classification
process. Moreover, the classification was performed via a multi-class support vector
machine (SVM). The results showed 52% accuracy for the pest detection problem. However,
the most common pest attack on the corn crop is an aphid, which is not considered in
this study.

In [28], authors explored the application of deep learning to identify rice plant-
associated diseases. This study demonstrated that ResNet-101, VGG-16, and YoloV3 are
robust to blurred and irregularly shaped images. However, when creating frames, they
cannot extract the right frames because the main features of frames are fewer, while new
frames are spectra that result in a waste of computation resources.

In [29], authors worked on identifying the ginger plant diseases at the initial stage.
This work adopted traditional computer vision and image-processing techniques for leaf
disorder identification. Farmers can capture plant leaves using the deployed system
connected to a digital or web camera. Furthermore, image-processing techniques are used
to determine the affected part. Farmers are informed of the disease type via a global
system for mobile communications (GSM) interface. The relay then activates the device’s
pump, releasing the appropriate medication to treat the affected plant’s condition. The
implementation results show that SVM and k-means algorithms produce better results than
traditional methods. However, the used dataset is insufficient to generalize the technique,
and ginger diseases with pest attacks are not considered.

3. Materials and Methods

Figure 1 presents an overview of the research work conducted in this study. First, a
dataset of ginger plant leaf images is collected and categorized into healthy, pest patterns,
nutrient deficiency, and soft rot diseases. Then, data pre-processing and augmentation
are performed to strengthen the dataset. This is followed by implementing various deep-
learning models to train the processed dataset. Subsequently, the trained models are
integrated into an android application that classifies various ginger plant leaf disorders in
real time. In the next section, we discuss the proposed methodology in more detail.

3.1. Ginger Plant Dataset

The dataset was collected from a field located at the orchard of PMAS—Arid Agricul-
ture University Rawalpindi, Pakistan. The location of the field is presented in Figure 2. In
this experiment, ginger crop digital images were collected with a total of 4394 images of
destructive behavior in early and multiple stages. The digital images dataset consists of
3 categories, namely soft rot disease, pest attacks, and deficiency nutrients. A summary of
the gathering of the images of the ginger plant is depicted in Figure 3.

We took the photos 4–5 months after planting the plant (drill sowing at 50 cm). There
were two small rows of ginger plant seeds from China and Thailand. The images were
captured manually in the presence of pathologists using an Infinix Hot 9 mobile. The
sample inputs for each category are depicted in Figure 4.

During image acquisition, the following rules were considered:

• The camera lens is kept at a distance of 30–45 cm;
• We only target the affected part of the leaf;
• We capture the top and back view of the affected part of a leaf.
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Figure 1. A general framework of the work: the dataset is collected and pre-processed. Then, deep
learning models are used for training and testing and further integrated into an android application
to provide a real-time ginger disorder identification mechanism.

Figure 2. The study area of the collected dataset location.
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(a) (b) (c)

Figure 3. Distribution of the dataset. (a) Data distribution for pest patterns. (b) Data distribution for
nutritional deficiency. (c) Data distribution for soft rot disease.

(a) Pest pattern (b) Nutritional deficiency (c) Soft rot disease

Figure 4. Sample input data of ginger plant disorders.

3.2. Data Preparation

Image pre-processing plays a vital role in ginger plant disorder classification and
identification tasks because the images are different in size and contain noise and blur.
The images of the ginger plant were taken from one device, but there may be variability
in image size (width and height) due to the difference in the camera’s distance from the
plant’s leaves. Deep learning requires homogeneous images for better training and testing
results. Therefore, pre-processing is necessary to eliminate the noise and other external
factors before passing the dataset into the model. All images in this study were resized by
the CV2 library and saved in .jpg format. After resizing, all images were renamed using a
Python script. Then, images were converted into a NumPy array using the NumPy Python
library for normalization. These arrays of size 150 and 150 were used as the input given to
the models used for feature extraction and classification.

In the experiments, a data augmentation process is applied to improve the volume and
variants of the dataset. In this study, data are augmented by ImageDataGenerator, which
performs rotation, flipping, horizontal shift, width shift, and zoom features to increase the
dataset size.

3.3. Classification Approaches

Deep learning is widely used in machine vision and pattern recognition domains [30].
In contrast to traditional machine learning techniques, which require a largely manual pro-
cess, deep learning-based methods can perform latent feature extraction autonomously [31].
This study implemented well-known deep learning models such as CNN and VGG-16 for
ginger plant disorder classification.

A widely used model in deep learning is CNN, which has an edge in image identifica-
tion due to the enormous model capacity and detailed information produced by CNN’s
core structure properties. It is a complex network structure that performs convolution
operations. Due to CNN’s better feature extraction abilities, CNN-based classification
networks have been adopted and are now the most frequently used model in classifying
plant diseases and pests. Input, hidden, and output are the three levels of the CNN model.
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A tumbling convolution layer and a pooling layer in the CNN feature extraction phase
typically follow a full connection layer and a sigmoid classification structure [18].

We also implemented the VGG-16 model on ginger plant disease, nutritional deficiency,
and pest attack detection. VGG-16 is a CNN architecture, which took place in the ILSVRC
2014, and has over 138 million parameters. The most significant feature of this architecture
is that it never varies the convolutional layers, the padding and maximum pooling layers,
which always use a 2 × 2 filter with stride 2, and the maximum pooling layer, which uses a
3 × 3 filter with stride 1. The VGG-16 architecture adheres to this design of convolution
and maximum pooling layers. The last three fully connected (FC) layers are the last with
sigmoid activation function and the first two with ReLu. The 416 × 416 image size is
given to the input layer in this 16-layer design [30]. Recent research has demonstrated
the efficiency of the VGG-16 network in identifying the images of affected crops [32]. In
our experimental study, CNN models also demonstrated substantial results in classifying
plant disease detection [33,34]. We selected these models for this experiment in prior
investigations. We assessed and compared the model’s behavior to the acquired images in
the field dataset of the ginger crop. We adopted the standard training strategy to train our
dataset’s model layers. Weights were randomly initialized rather than using pre-trained
weights in training the models. The training and validation datasets were trained by
models using a 120-batch size with 42 epochs, whilst the “Adam” optimizer was trained
with default values parameters using a 0.001 learning rate. The binary cross entropy
function was deployed as the loss function throughout the training phase.

In addition, we also implemented a transfer learning approach (pre-trained network).
A deep learning-based MobileNetV2 network was used in our images-based ginger crop
dataset. Transfer learning is prevalent nowadays, and we used the MobileNetV2 model as
a transfer learning approach. It was developed from MobileNetV1 [31], with the addition
of inverse residuals and linear bottleneck modules. The basis of the MobileNet architecture
was depth-wise convolution [31]. The model takes an input of 150 × 150 pixels image. The
pre-trained weights were used in this study, and the other layers were frozen. The model
provides the input layer, and the sigmoid function is utilized in the final/output layer. We
deployed a pre-trained ImageNet model using the Keras library. The performance of the
deployed model is evaluated and compared with the CNN and Vgg-16 models. Table 1
details the hyperparameters used during implementation.

Table 1. Training hyper parameters for CNN, MobileNetV2 and VGG-16.

Dataset
Healthy and effected class for each pest pattern, nutrient deficiency, and
soft rot disease with the ratio of 70% and 30% for training and testing,
respectively

Pre-processing Data renaming and resizing to 150 × 150

Batch size 16, 32, 64, and 128

Epochs 42, 50, 64, and 70

Learning rate 0.001

Optimization
algorithm Adam optimizer

3.4. Detection Approach

The deep learning models are also very useful in detecting and localizing the affected
part of the input image. In this regard, various state-of-the-art models are available in the
literature. For instance, in this work, we tested one of the commonly used detection models,
YOLOv5, for the pest pattern, nutrient deficiency, and healthy leaf detection. Furthermore,
the model is also being tested for detecting soft rot disease and healthy leaves using the
seed images collected in the field.
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The working of the deployed model YOLOv5n is generally explained in the network
architecture (see Figure 5). The model mainly consists of three components, e.g., the
backbone, neck, and head. CSPDarknet [35] is used for feature extraction at the backbone.
This is responsible for solving the issue related to the repetition of gradient information
during the network training by fusing gradient changes with the feature map from start
to finish. This resulted in reducing model the parameters while increasing the detection
performance. In this part, two CSP structures (one residual and one non-residual) are used.
In addition, spatial pyramid pooling (SPP) [36] is also used to solve anchor and feature map
alignment issues. The next part of the neck layer is the combination of FPN and PANet [37].
This layer is responsible for feature fusion and performs multi-scale prediction across
various layers. This helps in the enhancement of semantic representation and localization
at different scales. Moreover, the CBL layers are further concatenated in the last step in
order to extract the pixel information for mask formation. In the prediction part, the model
uses a joint loss function using bounding box regression, classification, and confidence and
is expressed as follows:

L = Lclc + Lbox + Lcon f (1)

where Lclc is used to represent the classification error, Lbox represents the bounding box
regression error, and Lcon f shows the confidence error.

Figure 5. The architectural diagram of the YOLOv5 model.

The Lclc is computed as follows:

Lclc =
k2

∑
i=0

li
C

∑
c=1

E( p̂i(c), pi(c)) (2)

where li takes either 1 or 0 for class objects and p̂ and pi show predicted and true probability.
The Lbox is computed as follows:

Lbox = 1 − IoU(Ap, Ag) +
Ac − Ap − Ag + I

Ac (3)

where it is also known as a generalized intersection over union (GIoU) localization loss. It
is useful to locate a closed bounding box bounded by the predicted box Ap and the true
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box Ag. Here, Ac, C, and I are used for the desired area, the overlapping area, and the real
area, respectively. The intersection ratio of the estimated and real area in the image frame
is represented by IoU. Lcon f is calculated as follows:

Lcon f =
k2

∑
i=0

M

∑
j=0

Ii,jE(Ĉi, Ci)− λnoobj
k2

∑
i=0

M

∑
j=0

Ii,j(1.Ii,j)E(Ĉi, Ci) (4)

k2 depicts image partitioning into k × k grids, yielding m candidate anchors. Ii,j = 0or1
denotes negative or positive samples. The confidence levels of the ith predicted bounding
box and the true bounding box are represented by Ci and Ci, respectively. Moreover, E(.)
indicates a binary cross-entropy loss and is defined by:

E(X̂i, Xi) = X̂iln(Xi) + (1 − X̂i)ln(1 − Xi) (5)

3.5. Implementation

All the models were deployed under the framework “Keras”—a high-level Python
interface for developing and deploying various neural network models [9]. A high-speed
GPU was used for the experiments. Table 2 shows the system specification and configura-
tion during the experiments.

Table 2. Hardware and software configuration.

Name Parameters

Operating system 64 bit operating system

CPU processor Intel(R) Core(TM) m3-7Y30 CPU @ 1.00 GHz 1.61 GHz

Graphics processing unit (GPU) 1820

RAM 8.00 GB

Framework Keras with tensorflow

Environment Google Colab

Language Python

After that, for detection purposes, the YOLOv5 model was deployed on a desktop
platform where Ubuntu 20.04, Pytorch, and the YOLOv5 environment were deployed.
Furthermore, Cuda 11.3 and Cudnn 8.2.0 are used in conjunction with a GeForce RTX 3080
Ti 32 GB on an Intel Core i7-12700K × 20. During the experiments, the “Adam optimizer”
set the rounds of training for 40 epochs, a batch size of 64, and a learning rate of 0.004. In
addition, the dataset was split into 90% training and 10% validation. In addition, we used
a pre-trained model, the YOLOv5n version.

The adopted model is evaluated on our developed ginger dataset, which consists of
leaf images of healthy, pest pattern, and nutrient deficiency, and the rhizome images of
healthy and soft rot disease. We performed an experimental study on the ginger dataset in
order to verify the applicability of the YOLOv5 models despite the previous classification
models that are shown in our study.

4. Results and Discussion
4.1. Performance Metrics

First, the dataset was distributed among the training, validation, and testing to evalu-
ate the adopted models’ performance. At the same time, 70% data were used for training
and validation, and the remaining 30% were used for testing. Here, the entire dataset was
segregated in Python script in the environment of Spyder. To assess the proposed system’s
performance regarding the identification of ginger plant disorders, we used accuracy, con-



Future Internet 2023, 15, 86 10 of 23

fusion metrics, precision, recall, F1-score, computational cost, and the Mathews correlation
coefficient (MCC).

4.2. Performance Analysis of the Models

The systematic evaluation accuracy for classifying the images into accurate classes is
shown in Figure 6. An accuracy from approximately 90% (MobileNetV2 in pest patterns)
to 99% (CNN in soft rot) was observed in ginger plant disorder detection. The proposed
models’ testing accuracies were tested for the rise and fall in all ginger disorders’ pest
patterns, nutrient deficiency, and soft rot. For training purposes, 70% of the dataset was
employed, and the models attained the highest accuracies. It can be observed that VGG
demonstrated the highest accuracy during the testing phase as compared to other models.
The findings indicate that the proposed methods performed admirably despite the dataset’s
varied and heterogeneous background. These results also demonstrated that a significant
number of training images are needed for deep-learning models to identify and extract the
fundamental characteristics of the studied data.
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In Figures 7–9, the confusion matrices are presented for the employed models using
the 70–30 data configuration. Here, the diagonal values show that the number of accurately
predicted results matched with the validation data. The values presented off-diagonal show
the inaccurate prediction results on the validation data. The confusion matrix indicates
that the proposed models can accurately predict the healthy and affected ginger disorder
leaf images.
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Figure 9. Confusion matrices on soft rot disease based on 77 validation images.

Moreover, the model performance is also evaluated in terms of precision, recall, and F1-
score, as shown in Figure 10. The pest pattern results of the evaluation metrics are shown in
Figure 10a. Here, it is demonstrated that CNN remains average in precision, recall, and F1-
score, while the recall was not quite promising for the MobileNetV2 model. The deficiency
of nutrients reveals that CNN and VGG-16 perform better than the MobileNetV2 model
shown in Figure 10b. In Figure 10c, the deep learning models CNN and MobileNetV2
reported that the soft rot prediction in precision is outstanding. Recall and F1-score perform
better in CNN and MobileNetV2. The VGG-16 model does not attain the best performance
but remains average in detecting the soft rot disease of the ginger plant.

In Table 3, we present the MCC results against each employed algorithm. In Table 4, we
investigate the computational cost of the proposed models in terms of trainable parameters
and training time per epoch. It is clear from the Table that MobileNetV2 contains a smaller
number of parameters in training the model, while CNN includes a larger number of
parameters. Figure 11 shows that the models take a maximum training time per epoch
for both the pest pattern and nutrient deficiency, while soft rot takes less time in terms of
training time/epoch.

Table 3. Model evaluation in terms of the Mathews correlation coefficient (MCC).

Algorithm Pest Pattern Nutrient Deficiency Soft Rot Disease

CNN 0.71 0.29 0

VGG-16 0.53 0.46 0

MobileNetV2 0 0 0
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Table 4. Number of trainable parameters.

Algorithm Number of Parameters

CNN 3,453,121

VGG-16 14,716,740

MobileNetV2 1281
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Figure 10. Overall average precision, recall, and F1-score.

Extensible Markup Language (XML) and the Android SDK were used to develop
the smartphone application. A smartphone was deployed to accomplish the task of the
detection of disease, nutritional deficiency, and pest patterns in a real-time environment.
This android application was combined with deep learning models to track the results of
classification models. We converted the models of the type .h5 file into type .tflite file for
converting and using in the android application.
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Figure 11. Computational cost on different datasets.

The interface of the application is shown in Figure 12, where the user can select the
detection problem and call the corresponding function by pressing the defined buttons.
Once we click on the “Disease Detection”, “Pest Pattern”, or “Deficiency Nutrients” but-
tons, a new screen appears, as shown in Figure 12b,c. The figures depict the screen view
from which farmers either take an image from the affected plant or post a stored image
from their smartphone. We conducted an experimental analysis of our prototype imple-
mentation’s performance and classification accuracy. We integrated monitoring into the
smartphone application to measure the processing time of different operations, such as
taking an image, analyzing, and recognizing the image of an affected plant. Regarding
the classification accuracy, we determined that our system performs well in a real-time
environment, even when images are captured at various positions. Figure 13 demonstrates
the interpretation outcomes of the ginger disease outcomes on the smartphone and effi-
ciently identifies the healthy rhizome and the soft rot disease of the ginger crop as shown
in Figures 13a and 13b, respectively. Similarly, nutritional deficiency and pest patterns are
accurately predicted in the real-time environment at higher confidence values, as depicted
in Figures 14a, 14b and 14c, respectively. The developed application also recommends
treatments to eliminate these three disorders. According to the overall performance of
the study, the VGG-16 approach performs superior to the other two models in classifying
ginger plant disorders, including pest pattern, deficiency nutrients, and soft rot disease.
Moreover, the CNN and VGG-16 models generated remarkable outcomes in prediction
accuracy and computational complexity. Consequently, based on the empirical study, the
suggested VGG-16 model efficiently recognizes the images of ginger crop disorders.
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(a) Home page (b) Take image (c) Select image

Figure 12. Android application user’s pages.

(a) Healthy (b) Soft rot

Figure 13. Example 1: Android application results.
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(a) Deficiency (b) Pest pattern (c) Healthy

Figure 14. Example 2: Android application results.

4.3. Comparative Analysis with Previous Studies

In Table 5, we compared the effectiveness of our deep learning models and others in
the literature for identifying ginger plant disorders. It is noted that in the other studies,
the dataset was collected from the PlantVillage dataset, which was developed in a lab
environment. Deep learning models were not well trained from these images because
they are only effective in detection in the lab. However, our models with heterogeneous
backgrounds achieve good results in classifying the images of ginger plant disorders.

Table 5. A comparison with the previous work. The last column indicates the results of each adopted
algorithm on pest pattern, nutrient deficiency, and soft rot disease respectively.

Ref Dataset Source Method Accuracy
(%)

[38] Own collected
dataset

Under field con-
ditions

CNN, VGG-16,
ResNet-50 98.53

[39] PlantVillage, own
collected dataset Lab environment VGG-16, ResNet-

50, MobileNetv3 87

[40] PlantVillage Lab environment Resnet-50, VGG-
16, DenseNet169 40

[41] PlantVillage Lab environment DCNN 99.31

Our study Own dataset In field CNN 96, 95, 98
VGG-16 97, 96, 99
MobileNetV2 90, 93, 93
YOLOv5 80, 80, 79

Ablation Studies

We investigate the computational cost of deep learning models using the training
time per epoch and batch size. Figure 15 shows that the training time per epoch decreases
when the batch size increases. We presented the experimental results of the models in
disease, pest pattern, and deficiency nutrients trained considering 16, 32, 64, and 128 batch
sizes. As the batch sizes increase, the results show that the computational time is reduced
and the accuracy increases. During model training, 128 batch sizes were employed with
optimal outcomes. Testing accuracies at various model training epochs are shown in
Figures 16–18. Figure 16 exhibits that, as the batch size increases, the testing accuracy
also increases. The VGG-16 model performs better in all batch sizes for pest pattern
identification. The CNN and VGG-16 models show the best performances and remain
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smooth during nutrient deficiency identification, as shown in Figure 17. Similarly, in
comparing the testing accuracies with batch sizes in soft rot disease identification, as shown
in Figure 18, the MobileNetV2 model shows a lower performance compared to CNN and
VGG-16 models. Hence, we conclude that the VGG-16 and CNN models performed better
in ginger disorders than the MobileNetV2 model.
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Figure 15. Computational cost vs. batch size.
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Figure 16. Testing accuracies of the pest pattern with variant batch sizes.
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Figure 17. Testing accuracies of the deficiency nutrients with variant batch sizes.
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Figure 18. Testing accuracies of the soft rot with variant batch sizes.

4.4. Performance Analysis of the Detection Model

In this section, we present the detection results obtained from the YOLOv5 deployment.
After training and validation, the model’s loss function values were computed and plotted
in Figures 19 and 20. These curves indicate the bounding box detection loss, object detection
loss, and classification loss. The bounding box detection loss is used to show whether the
model is capable of identifying the center point of the target object and whether the target
object is correctly covered by the predicted bounding box. Similarly, the object loss is used
to show the model detection capability in ROI. The classification loss accurately indicates
the model’s capability of detecting the class. The smaller values of these curves denote
the good performance of the model. Thus, it is evident from the obtained results that the
loss functions had a downward trend during the training and validation processes. At
each iteration, the loss functions were rapidly changed while the model accuracy increased.
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After a few iterations, the loss functions slowly decreased towards the minima. Finally, the
model stabilized and the best optimal training weights were computed.

Figure 19. Model evaluation during training on pest pattern and nutrient deficiency classes.

Figure 20. Model evaluation during training on soft rot disease class.

The model’s visualization capability is derived in Figures 21 and 22, where different
ginger defects are shown. It is noticeable that the model accurately identified the correct
classes of each input image. Here, the pest pattern, nutrient deficiency, and soft rot disease
are detected and localized by the deployed YOLOv5 model.
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Figure 21. Set 1 of visual examples showcasing the qualitative evaluation of the YOLOv5 model on
ginger dataset.

The model is also statistically evaluated in terms of precision, recall, and mAP scores.
The obtained results against different ginger defect classes are reported in Table 6. It can be
noted from the Table that the algorithm has achieved a precision rate of 0.86743, 0.80899,
and 0.80569, a recall rate of 0.79167, 0.79028, and 0.78028, and a mAP rate of 0.79004, 0.80931,
and 0.80151 on soft rot, pest pattern, and nutrient deficiency, respectively. In short, the
deployed YOLOv5 model outperformed the developed ginger dataset and showed its
effectiveness and applicability for ginger defect detection.

Table 6. YOLOv5 results on different ginger defects classes.

Category Precision Recall mAP

Soft rot disease 0.86743 0.79167 0.79004

Pest pattern 0.80899 0.79028 0.80931

Nutrient deficiency 0.80569 0.78028 0.80151
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Figure 22. Set 2 of visual examples showcasing the qualitative evaluation of the YOLOv5 model on
the ginger dataset.

5. Conclusions

This study captured a unique dataset containing the 4396 digital images of ginger
plant disorders at the early and last stages with congested backgrounds, poor contrast,
and under various illuminating conditions. We presented the design and deployment of
different deep-learning classification and detection models to classify and detect ginger
plant disorders. Furthermore, an android application for ginger plant disorders detection
was developed. Various experiments were conducted to determine the functionality and
classification performance of the system. The following conclusions were made based on
the research conducted on the classification and detection of disorders on ginger plant
leaves and their implementation in mobile applications:

• This research was trained on classification models such as CNN, VGG-16, and Mo-
bileNetV2 using the digital images of ginger plant disorders such as soft rot disease,
pest patterns, nutrient deficiency, and healthy leaves. The VGG-16 model exhibited
the best results in classifying the ginger plant’s disorders. The performance metrics
prove that the VGG-16 and CNN models showed the highest results.

• The ginger plant disorders were also trained on the object detection model YOLOv5
and gained an average mAP50 value of 80%, 80%, and 79% for pest pattern, nutrient
deficiency, and soft rot disease, respectively. The YOLOv5 model detects and localizes
the affected part of the ginger from the digital image in a real-time environment.
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• A deep-learning-enabled mobile-based system for detecting ginger leaf disorders has
several benefits over the status quo, including:

Higher accuracy: Deep learning models are trained on a significant amount of data,
which results in improved accuracy in comparison to the traditional methods.
Cost-effectiveness: The application can be used on a smartphone and does not require
any expensive equipment for the detection of ginger leaf disorders.
Rapid detection: The application facilitates the real-time detection of disorders, which
allows farmers to take preventive measures in a timely manner before the spread
of disease.
Accessibility: The smartphone application facilitates the system’s accessibility so
that farmers in remote and underprivileged areas can easily recognize ginger plant
disorders without any specialized training or dedicated equipment.

In the future, we aimed to increase the dataset by adding more classes. Moreover, de-
tecting multiple diseases that affect leaves, stems, roots, and rhizomes with the localization
of the affected area will be another potential future research direction.
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