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Abstract: Image-based localization has been widely used for autonomous vehicles, robotics, aug-
mented reality, etc., and this is carried out by matching a query image taken from a cell phone or
vehicle dashcam to a large scale of geo-tagged reference images, such as satellite/aerial images or
Google Street Views. However, the problem remains challenging due to the inconsistency between the
query images and the large-scale reference datasets regarding various light and weather conditions.
To tackle this issue, this work proposes a novel view synthesis framework equipped with deep
generative models, which can merge the unique features from the outdated reference dataset with
features from the images containing seasonal changes. Our design features a unique scheme to ensure
that the synthesized images contain the important features from both reference and patch images,
covering seasonable features and minimizing the gap for the image-based localization tasks. The
performance evaluation shows that the proposed framework can synthesize the views in various
weather and lighting conditions.

Keywords: image-based localization; deep learning; generative neural networks; style transfer

1. Introduction

Image-based localization, also known as cross-view geo-localization, involves finding
corresponding points or regions between images taken from different viewpoints at the
same location. It plays an important role in many applications, including remote sensing
and localization in unmanned aerial vehicles (UAVs) [1–3], vehicle localization [4–8], wide-
area augmented reality, and so on. The goal is to establish correspondences between images
captured from different camera view angles, such as query images captured by a dashcam,
mobile camera, etc., versus references views captured by satellite, UAV, and more, which
allows the images to be aligned and compared to each other.

Recent advances in computer vision and deep learning have enabled significant
improvements in cross-view image localization performance [5,8]. However, it is still
a common practice to make both query and reference images look similar to improve
performance [9,10]. Therefore, it is still a challenge to address the variability of image
appearances caused by differences in lighting, scene structure, and weather conditions. For
example, the Google Maps Platform provides public access to Google Street Views [11]
and Satellite Views at given locations, which can serve as reference points for cross-view
geo-localization tasks [4,5,8,9,12]. However, these photos are taken globally and uploaded
to the Google Street View database at infrequent times. Many images that are used in
Google Street View can be outdated, from by about a month to years, depending on
the location. This is not to mention that the reference images are usually taken in a
single light condition, i.e., clear light, whereas real-world users may capture a photo in
any light condition. Figure 1 shows an example of when different Google Street View
images are taken at different timestamps at the same location. Apparently, if a mobile
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user tries to match a cell phone image taken at this location with a Google Street View
captured at a completely different time or season, the matching performance would be
degraded. Experiments in [12] have evaluated the performance degradation caused by the
misalignment of matching pairs.
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taken at the same location in July 2017.

To alleviate the differences between the matching pairs caused by various lighting,
scene structure, and weather conditions, in this paper we propose a framework to convert
outdated reference images, such as Google Street View, with a patch image that provides
desired weather/light information. The patch images are collected from Flickr, an image-
sharing platform, where we can obtain a set of images contributed by people who live
in the area of interest. The reconstructed output images synthesize critical features from
the original reference images, as well as the weather/light embedding from the patch
images. To accomplish the goal of view synthetization, the proposed framework contains
three parts: a patch image generator, an autoencoder-based style exchanger [13], and an
auxiliary deep learning model, Places365 [14], to provide the semantic understanding of
both reference and patch images.

Although several works have already discussed latent space manipulation [13,15–17],
i.e., transferring styles between images, the standard approach to determine the quality
of transferred images does not apply to our scenario as we need to consider whether the
information is equally carried over from patch and reference images. In most cases, users
do not have full control of the style transfer, as the parameters and algorithms of the deep
neural network determine the transfer process. This can make it challenging to achieve
the desired result, especially when transferring styles between images with significant
differences in content and style. Therefore, in most cases transfer results are evaluated in the
form of similarity instead of fairness. To address this issue and produce a more generative
framework for the view systems task, we analyzed the different attributes extracted from
patch and reference images before and after the synthesis. A fairness score was calculated
from the attributes extracted from the synthesized outputs compared with the individual
attributes obtained from the reference image and the patch image.

In summary, the contributions of this work are as follows:

1. We proposed a deep generative network-based view synthesis framework to address
the challenges in the existing cross-view matching tasks. It was accomplished by
updating the reference images, which are usually updated in an infrequent manner,
with a weather/time patch. The synthesized reference view contains features from
reference views, current time, and weather conditions.
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2. We propose a novel evaluation metric to measure the quality of the view synthesis
instead of a subjective judgment. With the assistance of an auxiliary attribute extrac-
tion network, we can effectively select the best synthesis results by comparing the
attributes before and after the view synthesizing under various testing conditions.

The rest of the paper is organized as follows. Section 2 discusses the related works.
Section 3 presents the main design of the proposed framework. Section 4 discusses the
ways to evaluate the performance, and Section 5 concludes the paper.

2. Related Work

Image-Based Localization. Cross-View-Matching (CVM) techniques have been widely
adopted in the application that requires image localization [4–6,18–20], which relies on
matching query images (from ground view) to a set of geo-tagged reference images.
Depending on the scenarios for the image localization, query images can be 360-panorama
ground view images, dashcam images with limited view angles [12], or aerial images
captured by UAVs [21]. Reference images can also be aerial/satellite views or Google Street
View [12,22]. Cross-View-Matching is achieved by adopting two Siamese networks with
identical network designs to extract the features from the same structure that appeared in
the different views. Recent models either take advantage of polar transformation [9,23,24]
or advanced Vision Transformer Networks [8] to achieve a better performance in matching
stationary panorama images with satellite images in good light/weather conditions.
SAFA [9] proposes a design of polar transformation to regenerate the reference image
and produce a similar layout with prior knowledge of the two views. Refs. [5,8] adopted
vision transformers as more effective feature extractors to align objects from two views.
However, such models were incapable of matching query images captured from mobile
devices such as vehicle dashcams or mobile phones. Ref. [12] adopted an Autoencoder
to transfer the styles between Google Street Views and dashcam images to mitigate the
performance degradation caused by the various light/weather conditions. However,
such one-to-one transformation has a high computation cost, a lack of control regarding
the degree of transformation, and the consideration of unqualified patch images. In
additional, indoor localization [25–27] also relies on the features learnt from the images.
Ref. [25] proposed the use of a clustering algorithm and dynamic compensation to enhance
the accuracy of indoor positioning. Ref. [26] presented a graph-based image matching
approach for indoor localization, which was based on the identification of common visual
features in images of indoor environments. Ref. [27] proposed a high-accuracy recognition
and localization method for moving targets in an indoor environment using binocular
stereo vision.

Style Transfer (Table 1). Style transfer enables the creation of impressive and realistic
synthesized images from images of different domains. DCGAN [28] is the first milestone
work that proposes using Generative Adversarial Networks (GANs) to manipulate styles
between images. StyleGAN and StyleGAN2 [15,29] are developed for synthesizing high-
resolution photorealistic images with fine details, such as hair, fur, and textures, as well
as high-level features, such as facial features and body posture. Ref. [16] addressed
issues when combining GAN and the Variational Autoencoder (VAE), which had issues
discarding high-frequency details but had stable training dynamics. To fix the issues of
both models, an Introspective Adversarial Network (IAN), a combination of the GAN and
VAE models, was proposed, which used an interpolating mask with multiscale dilated
convolution blocks and orthogonal regularization to produce small quality changes on
pre-existing images. Ref. [13] proposed a variant of the autoencoder architecture that used
a swapping module to swap features between two input images, allowing for precise
and fine-grained control over the manipulation of image attributes such as structure
and texture.
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Table 1. Major notations.

AE Attribute extractor
ST Style transfer

IP, AP Patch image and the corresponding attributes
IR, AR Reference image and the corresponding attributes
IO, AO Output image and the corresponding attributes

Mp Pretrained model for style transfer

3. System Design

After introducing the related techniques for style transferring and attribute extraction,
in this section we describe the technical details of our system in transferring the features
from a patch image to a reference image with lower updating frequency.

3.1. Framework Overview

Figure 2 illustrates the proposed framework, which is composed of the following
components: patch image generator, reference image, style transfer, attribute extractor,
and comparison. The fundamental idea was to generate a synthesis view for the reference
images, such as Google Street View, with lower updating frequency by transferring the
style from patch images, which contain the latest weather/season information from an
external data source, such as Flickr [30]. Flickr is an online photo management and sharing
application that covers various images with different lighting and weather from anywhere
in the world. Most importantly, the large number of active users ensures that the image
database is updated at a very high frequency. Once we obtain the qualified patch images by
providing a time frame and a geo-location near the desired reference images, we can pass
patch images and reference images to the style transfer component to produce an image
that contains the features from both images. The auxiliary deep learning model contains an
attribute extractor, which can recognize the scenes when the model is given images. The
attribute extractor then produces a set of attributes to best describe the images. The set of
attributes is then passed to the comparison component with the performance evaluator to
determine the results of the attributes extracted and transferred.
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3.2. Patch Image Generator

To patch the reference images such as Google Street View, which are updated irregu-
larly, we need to select images that reflect the changes of weather and season in the area
of interest by giving a timestamp and a geo-location using the Flickr API with a specific
keyword, such as indoor/outdoor, forest, cloudy, etc., and the date of selection. However,
such filtering may not provide the appropriate images to accurately reflect the weather
and light condition if the owner of the image provided the wrong tag for the images. For
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example, Figure 3 shows two search results of an attempt to search for photos uploaded
near Virginia Beach on 7 February 2023, with the tag “outdoor”. However, Figure 3b does
not return an outdoor image due to mislabeling by the system. It is possible to be led in
the wrong direction if we solely rely on keyword searching to retrieve the patch images
with the latest weather and seasonable information. Therefore, a more effective approach is
needed to select patch images from a pool of Flickr images returned by the search engine.
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Flickr search API. (a) is an outdoor image tagged with a correct label. (b) is an indoor image but
tagged as “outdoor”. The copyright of both images was obtained from the city of Virginia Beach.

3.3. Attribute Extractor

In order to precisely select the patch images from the search engine to provide accurate
weather and seasonal information, we selected an image classifier to extract the attributes
associated with each image. This was accomplished by using Places365-CNN, a convolu-
tional neural network (CNN) trained on a public dataset, Places365 [14], which contains
1.8 million images from 365 scene categories. Ref. [14] used a group of subjects to define the
different scenic attributes which provided part of the training dataset for the CNN model.
The CNN model trained on this dataset can effectively recognize the scene associated with
it by showing the probability of each category. Therefore, we used the categories with high
probabilities as the dominant category associated with the image. As a comparison, Table 2
shows the prediction results for both Figure 3a and Figure 3b, respectively. Clearly, we can
easily remove images that do not qualify for the patch image from the search results.

Table 2. Scene category and attribute outputs from Places365-CNN.

Figure 3a Figure 3b

Type of environment Outdoor Indoor

Scene categories Beach, swamp, lagoon, coast Alley

Scene attributes
Natural light, open area, natural,

trees, foliage, sunny, leaves, faraway
horizon, vegetation

Plaza, shopping mall/indoor, gym/indoor,
atrium/public, construction site

In general, we used Ai to denote a set of attributes extracted from the image Ii, as
expressed in Equation (1), where AE represents the Attribute Extractor.

Ai = AE(Ii) (1)
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Additionally, the attribute extractor was also used in the performance evaluation,
which measures the output attributes from the transferred images. A good transformation
should contain the attributes from both patch images and reference images. A full list of
attributes can be found in [14].

3.4. Style Transfer

Style transfer is a computer vision technique that involves transferring the style of
one image to another. This can be achieved by using deep neural networks, such as
convolutional neural networks (CNNs), to learn an image’s texture and appearance and
then apply this information to another image to give it a similar style. A style transfer
algorithm usually involves two parts: the content and the style. The content of an image is
the basic structure or shape of the image, while the style is its texture, color, and appearance.
The process of style transfer involves preserving the content of one image and applying
the style of another image to it, resulting in a new image that combines the content of one
image with the style of another. There are several variations of style transfer, each with
its own set of algorithms and techniques. Some popular style transfer algorithms include
neural style transfer, which uses a deep neural network to transfer the style of one image
to another, and fast style transfer, which uses a simplified neural network architecture to
transfer the style of an image in real-time.

In the case of a swapping autoencoder proposed in the paper [13], the network was
trained to reconstruct an image by first encoding it into a compact representation, called a
latent code, and then decoding the latent code back into an image. The key difference with
a swapping autoencoder is that the network is trained to swap the latent codes between
two images and then decode the swapped codes to produce a new image. This allows
the network to transfer the style or appearance of one image to another. There are three
pre-trained models provided in [13], i.e., the mountain model, the church model, and the
bedroom model, which are trained by LSUN Church, Bedroom [31], and Flickr Mountains,
respectively. Figure 4 shows the view synthesis results when we attempted to transfer the
weather/light information extracted from a forest image to a Google Street View Image
with each pre-trained model.
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Figure 4. Forest images are combined with a reference image with three pre-trained models with
swapping autoencoder [13].

The transformation can be expressed in Equation (2), where ST(⊕) is a function
transferring the style from a patch image (IP) to a reference image (IR) with the pre-trained
model Mp. IO denotes the synthesized view after the style transformation.

ST
(

IP ⊕ IR, Mp
)
= IO (2)
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4. Performance Evaluation for View Synthesis
4.1. Dataset and Experimental Setup

The framework was developed with Python running on Ubuntu 20.04, and the deep
learning model for style transfer and attribute extractor were implemented in PyTorch
with Nvidia GPU 1080Ti. To evaluate the performance of the proposed image patching
framework, we selected Google Street View as the reference image data source, which is
also used [12,22] for various cross-view geo-localization tasks. Google Street View images
are sampled from the GPS locations reported BDD100K [32], one of the largest self-driving
datasets, with 100,000 vehicle driving trajectories from diverse locations under different
weather conditions and different times of the day. We sampled one GPS location from each
vehicle trajectory to represent the area of interest, then acquired the patch images from the
same area by using the Flickr API accordingly.

4.2. Subjective Evaluation

Existing similarity measures, such as self-similarity distance [33] and single-image
FID [34], care about the similarity in deep feature spaces based on the features that are
represented in each image. However, such methods lack judgment on how good the
transformation is at keeping the structure features from the reference images while adding
weather/season information.

Figure 5 shows the style transfer results when we tried to patch images generated from
Flickr to three Google Street View images with three pre-trained models, i.e., the mountain
(first row), church (second row), and bedroom (third row) models.
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“Forest”, “Overcast”, and “Roads”, respectively.

Apparently, the synthesized images produced by the pre-trained models have a com-
bination of the structure from Google Street View and weather information from the patch
image, i.e., snow. However, models achieved a different level of transformation in terms
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of the texture of objects in the original Google Street View image, such as roads, trees,
and buildings. Specifically, the mountain and bedroom models accurately changed the
color of trees and road surfaces from green to white but failed to keep the buildings on the
roadsides in the transfer results. The church model keeps a building on the roadside but
does not update the color of the trees. Therefore, we needed to find a numerical approach
to effectively measure the quality of the view synthesis to determine which style transfer
output can better reflect the changes from the inputs.

Table 3 shows a subjective evaluation of the results in Figure 5, which takes a closer
look at how the reference and patch images are combined to create new images. The
mountain, forest, and bedroom models created similar images. The three models kept the
road and the trees within the images. These three models also had trouble keeping the
buildings behind the trees in the image. Upon closer inspection of the three model images,
the texture of the road and sky is different from the original Google Street View image.
Additionally, the forest model image adds extra branches in the top right corner. While the
images are not perfect, it can be inferred that the original Google Street View image was
changed to include snow on a cloudy day.

Table 3. Subjective evaluation of the quality of the synthesized view on different pre-trained models
in Figure 5. The “X” shows that the model did not retain the original structure. The “O” shows that
the model kept the original structure of the reference image.

Keywords for Filtering Patch Images

Mp

Keyword Cloudy Forest Overcast Roads

Mountain O O X O
Church O O X X

Bedroom X X X X

4.3. Evaluation Using Jain Index

To determine if the new images created by Style Transfer were accurately and equally
carrying the features from the reference image and patch image, we used the Jain Index [35]
to measure the fairness of each attribute extracted from the images.

For IP, IR, and IO, we obtained the top five attributes from AP, AR, and AO , respec-
tively. Since Style Transfer has three different models, as mentioned, i.e., mountain, church,
and bedroom, each model had four sets of patch images with the matching keyword:
cloudy, forest, overcast, and roads. From these image sets, twelve images were taken with
five attributes, for a total of sixty attributes across the twelve images. If a previous attribute
from AP or AR was seen in AO, that attribute was added to the total amount of correct
attributes carried over, which defined the rule of a strict set of matching. Only attributes
that were in the previous images AP or AR would be tallied. Then, they would be divided
by the total amount of attributes to obtain the average accuracy of the model, which is
expressed in (3).

Accuracy =
∑N

n=1 ∑K
k=1(Ank)

N × K
(3)

If any attributes related to the respective image groups were seen, those attributes
were added to the total number of matched attributes carried over. For example, if the AO
in the forest image set had any attributes related to forests, flora, or fauna, those attributes
would be added to the correct attributes. Once the total matched attributes carried over
had been tallied, they were then divided by the total amount of attributes in the image
set to produce the average that the respective model would have in carrying an attribute
over to AO.

With this, we can find the average accuracy percentage in each table. ∑N
n=1 ∑K

k=1(Ank)
represents the summation of all the matched attributes from each image in the category,
where N represents the total number of images and K represents the total number of



Future Internet 2023, 15, 126 9 of 13

attributes. AR(n), AP(n), and AO(n) are the attribute lists of the nth reference, patch
image, and output image, respectively. Ank is a binary value, which is equal to 1 if the Kth
attribute of the nth image belongs to the attribute list of the nth reference image or the nth
patch image.

OR(n) =
K

∑
k=1

Gnk (4)

OP(n) =
K

∑
k=1

Fnk (5)

R(n) = Jain(OR(n), OP(n))

= (OR(n)+OP(n))
2

2(OR(n)
2+OP(n)

2)
2

(6)

In Equation (4), Gnk is equal to 1 if Kth AR(n) belongs to AO(n). Otherwise, Gnk is
equal to 0. In Equation (5), Fnk is equal to 1 if Kth AP(n) belongs to AO(n). Otherwise, Fnk
is equal to 0.

Equation (6), which is known as the Jain Index, judges the fairness of how many
attributes from AR and AP carried over to AO. Fairness means the attributes of the output
image came from the attributes of the reference image and patch image equally. For
example, if the total attributes of AO were four, then two attributes should have come from
AR and two attributes should have come from AP.

Table 4 shows the average accuracy when only one attribute is selected from the image.
“Sub.” means subjective ruling, and “Str.” means strict ruling. Table 5 shows the average
accuracy when five attributes are selected from the image.

Table 4. Average accuracy when only one attribute is selected from each image.

Cloudy Forest Overcast Roads

Sub. Sub. Sub. Sub. Sub. Sub. Sub. Sub.

Bedroom 0% 0% 0% 0% 0% 0% 0% 0%
Church 15% 15% 5% 0% 10% 10% 8.33% 8.33%

Mountain 10% 5% 5% 3.33% 8.33% 1.67% 0% 0%

Table 5. Average accuracy when five attributes are selected from each image.

Cloudy Forest Overcast Roads

Sub. Sub. Sub. Sub. Sub. Sub. Sub. Sub.

Bedroom 5% 5% 28.33% 11.67% 1.67% 5% 5% 28.33%
Church 33.33% 31.67% 50% 28.33% 20% 33.33% 31.67% 50%

Mountain 41.67% 41.67% 40% 40% 46.67% 41.67% 41.67% 40%

In Figure 6, the data points are broken into three different colors and four different
shapes. The data points in red come from the mountain model, the data points in green
come from the church model, and the data points in blue come from the bedroom model.
Then, the data points with the circle symbol are from the overcast image group, the data
points with the star symbol are from the forest image group, the data points with the
diamond symbol are from the cloudy image group, and the data points with the square
symbol are from the road image group.
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From the Jain index results from all the images that were tested, the results that were
the closest to 1.0 showed the image had an even distribution of attributes from both patch
images from the Flickr dataset and reference images from Google Street View. Results that
had a Jain index result of 0.5 or less showed an uneven distribution of attributes from both
Flickr and Google Street View. Based on the results, the mountain model created more
images with a Jain index closer to 1.0 than the church and bedroom models. In contrast, the
bedroom model performed the worst out of the three models by having the most images
with a Jain index result of 0. The church model had the most images with a Jain index of
0.5, and if the model was trained more the church model would have an opportunity to
perform just as well as the mountain model.

The discussion on each pre-trained model is as follows:

1. Mountain Model. The mountain model had the most trouble with the forest image
group. The mountain model also performed very well with the overcast and cloudy
image group. Overall, the mountain model with more training could achieve higher
Jain index results. However, since the model was mostly trained on images con-
sisting of different mountains, the model would struggle to adapt to images with
many buildings.

2. Church Model. The church model had trouble with the overcast image group. All the
overcast images only had a Jain index of 0.5. With more training, the church model
could achieve results similar to the mountain model. However, the church model was
primarily trained on buildings, so any images that do not have many buildings would
pose a problem for the church model.

3. Bedroom Model. The bedroom model struggled with all the image groups. Only
a few of the images had a Jain index of 1. Moreover, even fewer images had a
Jain index of 0.5, and many images had a Jain index of 0. However, this was not too
surprising since the model was trained on images based on indoor scenes and features.
Therefore, it was not a good fit to transfer styles for reference images that were mostly
outdoor images.

Additionally, Figures 7–9 showed a 95% confidence interval graph for each individual
model. Each model had image sets of overcast, forest, cloudy, and road categories. The
results showed that the bedroom model had the worst performance, since the overcast
and cloudy image sets had most of their fairness data points at 0, and the forest and road
image sets had a wide range of data points. The mountain model performed the best
compared to the church and bedroom models. The mountain model’s overcast image set
had most of its data points above 0.8. While the mountain model did not perform well with
the forest image set showing a wide range of data points, the cloudy image set from the
mountain model performed better than the forest model by having a better average of data
points above 0.8.
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5. Conclusions

In this paper, we proposed a view synthesis framework to alleviate inconsistency
between the query image and reference images in the existing cross-view geo-localization
system. Our framework was composed of a patch image generator, attribute extractor,
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and style transfer to update the reference images with a lower update frequency, with the
latest weather/season information within the area of interest. A Jain fairness index was
used to evaluate the performance of view synthesis outputs to determine if the attributes
from both the patch image and the reference image were carried over equally without a
significant bias. We evaluated the extensive performance with various models, and the
experiment results indicate that it can effectively update reference images under complex
weather conditions.
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