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Abstract: Web 3.0 is the basis on which the proposed metaverse, a seamless virtual world enabled by
computers and interconnected devices, hopes to interact with its users, but beyond the high-level
project overview of what Web 3.0 applications try to achieve, the implementation is still down to low-
level coding details. This article aims to analyze the low-level implementations of key components of
Web 3.0 using a variety of frameworks and tools as well as several JVM-based languages. This paper
breaks down the low-level implementation of smart contracts and semantic web principles using
three frameworks, Corda and Ethereum for smart contracts and Jeda for semantic web, using both
Scala and Java as implementing languages all while highlighting differences and similarities between
the frameworks used.
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1. Introduction

Java is one of the most popular programming languages in the world as of today.
According to an ample study conducted by HackerRank in 2020, Java ranks third in
terms of most sought-after programming languages by hiring managers [1], and second
in the best-known languages ranking for 2020 [2]. Additionally, Java has ranked as one
of the most popular languages in the TIOBE Index since it has begun keeping a record of
programming languages by their popularity in 2001 [3]. Given the popularity of Java, it is
only natural to inquire about the tools available to developers when working with Web 3.0
and metaverse-specific applications.

The importance of the metaverse, which incorporates many Web 3.0 elements, extends
beyond just the marketing appeal of the brand, closely tied to social media giant Facebook.
The metaverse is poised to become one of the key pillars of human-machine interaction.
What makes the metaverse interesting from a human-machine interaction standpoint is
its abundant use of virtual and augmented reality technology. The basis of the metaverse
concept rests on the creation of a persistent virtual world in which users could become
“lost” and live separate, virtual lives. Even more interesting, though, is the likelihood of
overlap between the virtual world and the real world, in the form of augmented reality.
In comparison to virtual reality, augmented reality projects virtual images onto the real
world, therefore making it a very good fit for bridging the divide between the fully virtual
metaverse and the real world, especially in terms of business and revenue opportunities.

Given how great an impact the metaverse is likely to have on the virtual landscape,
from things as “simple” as websites to complex applications and videogames, it is impor-
tant to understand exactly how the metaverse operates on a low level, from a development
perspective. This article explores a number of key frameworks and libraries used for devel-
oping two of the core components of Web 3.0, which rests at the core of the metaverse. The
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two core components selected for analysis are blockchain applications, with an emphasis
on smart contracts, and semantic web applications. The aim of this article is to provide
detailed descriptions and analysis of these frameworks while comparing and contrasting
the available solutions to each other, where applicable.

This article is broken down into six sections, including the introductory section, a
section giving an overview of Web 3.0 and its core components, as well as its connection to
the metaverse, and a brief overview of JVM tools. The third section is an ample analysis
of blockchain technology and smart contracts, including a comparison between two of
the most popular blockchain frameworks available in JVM-type languages, Corda and
Ethereum. The fourth section focuses on implementing semantic web concepts using
Apache Jena, an open-source semantic web framework written in Java, while the final
section discusses research challenges in Web 3.0 in relation to the metaverse, Web 2.0, and
IoT before, finally, leading into a series of conclusions.

2. Definitions and Methodology

The concept of Web 3.0 started emerging much earlier than the coining of the term
“Metaverse” in 2021 by Meta, the parent company of Facebook. Web 3.0, known initially
as the Sematic Web, was an initiative to make Web 2.0 machine-interpretable through
heavy use of metadata and actually emerged sometime in the early 2000s. Various authors,
namely O. Lassila et al. and J. Hendler in their papers [4,5], peg the “birth” of Web 3.0 at the
beginning of the 21st century. The term was popularized in an article written by J. Markoff
in The New York Times in 2006 which explored Web 3.0’s viability as a business model [6].

In the context of the metaverse, Web 3.0 acts as the “vehicle” which enables users
to enter the virtual worlds of the metaverse. Concepts that have now been associated
with Web 3.0, such as blockchain, Al, augmented reality (AR), virtual reality (VR), and
decentralization are also considered intrinsically linked to the metaverse. Blockchain is a
well-known concept that has witnessed a rise in notoriety due to its pivotal role in enabling
cryptocurrency and NFT transactions. In the metaverse, cryptocurrencies are to be used as
the de facto currency for any sort of transactions, therefore making blockchain a cornerstone
of metaverse development. The concept of using cryptocurrencies is linked to another
key factor of Web 3.0, decentralization. In the metaverse this leads to the elimination of
middlemen like banks or financial institutions, and the decentralization of monetary policy.
However, it is important to note that blockchain also has other uses in the metaverse such
as recording options in virtual elections or preserving the privacy of data.

The role of Al and Machine Learning is not as clear in the metaverse as that of
blockchain. Since the metaverse is in the very early stages of development, and is currently
void, the role of Al is not very clear. In Web 3.0, AI and ML are linked to the semantic
web. Artificial intelligence develops a better understanding of the context in which Web 3.0
functions by using the semantic web’s metadata. This is true of an Al’s basic functioning
principles in the metaverse as well, but what exactly the purpose of Al will be for the
end user is unclear. However, that does not stop one from speculating on a number of
Al applications in the metaverse: to help users with searches, act as guides, automate
day-to-day tasks, and more.

From a software development and computer programming perspective, all of Web 3.0's
facets can provide several challenges of varying degrees of difficulty. A simple use case,
such as securing a cryptocurrency wallet, can quickly become complex when factoring in
Web 3.0’s, and the metaverse’s, decentralized nature. Wallets would be available on multiple
devices, with different operating systems, could be accessed by different applications, both
for viewing purposes and for purchasing, and would need tracking through blockchain-
ledgers, involving smart contracts to some degree. A software developer would need to
take into account all of these factors, as well as concerns related to architecture, design and
clean code when implementing a Web 3.0 application.

Java is one of the most popular programming languages in use today, and it behooves
us to take a closer look at specifically which tools and libraries from the vast Java ecosystem
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are most popular, and useful, in developing Web 3.0 applications inside the metaverse.
The robustness of Java as a software development ecosystem, not just as a programming
language, makes it an interesting candidate for an in-depth Web 3.0 tooling review. The
Java Virtual Machine (JVM) is one of the most performance-driven runtime environments
currently available and has expanded its list of supported languages greatly. While Java
is still, by and large, the most popular programming language that uses the JVM, others
have emerged recently. The most notable of these is Kotlin. Kotlin strays from the strongly
typed, verbose nature of Java and moves towards a freer flowing programming semantic
while still making use of the power of the JVM.

Finally, JVM-based languages are not even required to solely use the out-of-the-box
implementation of the Java Virtual Machine as a runtime environment anymore. A popular
alternative to the JVM is GraalVM which allows developers to run native images on
HotSpot JVM, with Graal just-in-time complier or even as an ahead-of-time compiled
native executable [7]. Even more interesting is the prospect of running not just Java code in
GraalVM’s runtime environment, but Python or JavaScript code as well.

Having presented a brief overview of the building blocks on which the rest of this
paper rests, the following two sections will now focus on the specifics of implementing
JVM-based solutions for two of the cornerstones of Web 3.0 and metaverse development:
blockchain and semantic web.

The methodology used during the sections pertaining to blockchain and semantic web
was as hands-on as possible. Applications were implemented using all three of the libraries
or frameworks described in each section. Coding was completed in Java, where applicable,
using guides provided by the framework developers and/or coding samples exposed
through public, open-source repositories. The proprietary code on which the in-depth
analyses and descriptions are based is not presented in this paper, the authors having opted
to present a generic, high-level UML diagram for each type of implementation. The types
of implementations analyzed can be broadly categorized as smart contracts and semantic
web applications.

The scope of the paper is, therefore, to compare Java-based libraries and frameworks
from both a development and research perspective. The aim is to provide a breakdown
of each of the main features of a library or framework and present the conclusions in
an easily digestible way for both types of readers: academics and software development
professionals.

3. Blockchain

Blockchain is a type of database that is managed by a network of computers, rather
than a central authority, making it virtually impossible to alter or tamper with the records.
The blockchain ledger consists of blocks containing a set of transactions. Once a new
transaction is made, it is verified by a network of computers (nodes) that use complex
algorithms to confirm its validity. Once the transaction is verified, it is added to the latest
block, and the block is added to the existing chain of blocks, forming a permanent and
immutable record. Blockchain security is maintained through cryptography and each
transaction is secured by using a hash function. Figure 1 is part of the official development
documentation of BitCoin, freely available for download on GitHub.com, and illustrates
the basic implementation of transactions using witnesses in a blockchain context.

Transaction 1D: S0 inputs outputs  nLockTime

Witness I: ':.ﬁr;z:zﬁrj:jlj?. m outputs wines  DERRE

Figure 1. Transaction and witness hashing [8].




Future Internet 2023, 15, 305

40f17

One of the key uses of blockchain is smart contracts. Smart contracts are self-executing
computer programs that automatically enforce the rules and conditions of a contract. They
make use of blockchain technology, because of its decentralization, immutability, and
transparency in recording transactions. Once a smart contract is deployed on a blockchain
network, it cannot be altered or tampered with, ensuring that all parties involved in
the contract have access to the same information and that the terms of the contract are
enforceable. Smart contracts can also be programmed to trigger automatic actions when
certain conditions are met, such as releasing funds to a supplier once a shipment has
been delivered.

In the context of the metaverse, smart contracts can be used to automate and enforce
the rules of various transactions that take place within the virtual world. For example,
smart contracts can be used to facilitate the buying and selling of virtual assets, such
as in-game items or virtual real estate. They can also be used to create decentralized
autonomous organizations (DAQOs) within the metaverse, where members can vote on
important decisions using a transparent and secure system.

Smart contracts can also be used to create unique non-fungible tokens (NFTs) that
represent virtual assets within the metaverse. These NFTs can be bought, sold, and traded
just like physical assets, and their ownership and transaction history are recorded on the
blockchain. This creates a new economy within the metaverse, where users can create, own,
and trade valuable virtual assets.

Presently, there are three well-known smart contract platforms employing JVM lan-
guages. These libraries are commonly used alongside other types of programming lan-
guages when implementing smart contracts:

e Corda is an open-source blockchain platform that supports the use of Java and Kotlin
for developing smart contracts. Corda smart contracts are called “CorDapps” and can
be written in Java or Kotlin using the Corda framework. CorDapps are designed to be
highly modular, allowing developers to easily plug in their own custom code.

e  Ethereum is a popular blockchain platform that supports the use of Solidity, a pro-
gramming language that is similar to JavaScript. However, it is also possible to use
other languages, such as Java, with tools such as Ethereum] or the Web3;j library.

e  Hyperledger Fabric is a permissioned blockchain platform that supports the use of
multiple programming languages, including Java, JavaScript, and Go. Smart contracts
on Hyperledger Fabric are called “chaincode” and can be written in any of these
supported languages.

These smart contract platforms, along with four others, were comparatively analyzed
by M. Suvitha and R. Subha, in an article published in 2021, and while the authors did not
come to a clear conclusion as to which platform is the most fully featured overall, they did
highlight each platform’s unique features and capabilities. The analysis was not limited
to only the programming languages supported, but also covered consensus mechanisms,
scalability, interoperability, privacy, and security [9].

The two most JVM-friendly platforms, Corda and Ethereum, have their own strengths.
In the case of Corda, its strengths lie in the ability to support complex, enterprise-level use
cases that require privacy, scalability, and interoperability. Its focus on interoperability also
makes it a good choice for businesses looking to integrate blockchain technology into their
existing systems and workflows [9].

Ethereum’s strengths, on the other hand, lie in its ability to support a wide range of use
cases, its popularity and tooling. By comparison with Corda, its focus on programmability
and decentralized application development makes it an attractive choice for businesses and
developers looking to build decentralized applications and services, with a particular focus
on NFTs [9]. In fact, one of the major differences between Corda and Ethereum, especially
from a metaverse perspective, is Ethereum’s NFT functionality, which enables it to create
games and digital assets that are unique and verifiably scarce [9].

This section of the paper will analyze smart contract implementations in Corda and
Ethereum to highlight the ways in which these platforms can be used in the metaverse.
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3.1. Corda

The first application analyzed in this article uses Corda to implement a smart contract
for financial transactions, as financial transactions are one of Corda’s strengths. Figure 2
is a UML-like diagram of the most important classes involved in the creation of a Corda
smart contract. Elements of Figure 2 will be used throughout this subsection to analyze the
implementation of a Corda blockchain application.

=<<|nterface==
Contract

+ verify(LedgerTransaction,
ServiceHub): Unit

<<zinterface==
ContractState

+ contract: AttachmentConstraint
+ linearld: Unigueldentifier
+ participants: List<AbstractParty>

+ getKey() : Uniqueldentifier

A
LinearState

+ linearld(): Uniqueldentifier
+ participants():
List=AbstractParty=

v

OwanbleState

+ owner: AbstractParty

+ participants():
List=AbstractParty>

+ withNewOwner(newOwner
AbstractParty): OwnableState

ContractStateRef

+txhash: SecureHash
+index: int

Figure 2. Basic classes and interfaces involved in a Corda smart contract implementation.

Contract is the key interface of any transaction involving Corda smart contracts. It is
the interface implemented by all contracts, and while it does not have any direct subclasses,
it provides a key method to all of the classes that implement it: the verify method. This is
the main method of the Contract interface, and it contains the contract verification logic
that is executed when a transaction is validated by a node. The verify method takes two
parameters: a LedgerTransaction object, which represents the transaction being verified,
and a ServiceHub object, which provides access to various services provided by the node,
such as the vault and the network map.

An application handling financial transactions would use the verify method to check
things such as the following: single transactionality per verification, uniqueness of payer
and payee, checking the participants’ keys, single states for financial transaction, and more.
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The class composition of this sample financial transaction would also implement Con-
tractState, the interface implemented by all state objects that are used as part of a contract.
In ContractState, contract is a reference to the contract that governs this state, while linearld
is an instance of Uniqueldentifier which is the unique identifier of a particular instance of
a state. Participants, on the other hand, is a method that returns a List<AbstractParty>,
where AbstractParty is an abstract class that represents a party on the Corda network. The
list contains all parties that have some sort of right or interest in the state, such as the
current owner or the regulator overseeing the contract.

There are multiple types of states agreements can have, all derived from ContractState,
including OwnableState and LinearState, all of which work within the framework of a
Corda smart contract to achieve different results when managing a transaction.

OwnableState is an interface that extends ContractState and adds the functionality of
keeping track of the current owner of the state. This means that an OwnableState object
contains an owner field, which is an instance of a Party object representing the current
owner of the state. The purpose of OwnableState is to provide a simple way to track
ownership of assets on the Corda network. By implementing the OwnableState interface,
developers can easily create assets that can be owned and transferred between parties on
the network. When the ownership of an asset changes, the withNewOwner method is
called to create a new instance of the state with the new owner information.

OwnableState is often used in conjunction with other Corda features, such as the
TokenSDK, to create digital assets that can be traded on the network.

LinearState is another type of ContractState that represents a state which evolves over
time and can be uniquely identified using a linear ID. The linear ID is a unique identifier
that remains constant throughout the life of the state, even if the contents of the state change.
This allows transactions to refer to the state unambiguously and ensures that the state
can only be consumed once. LinearState is used in scenarios where a state is expected to
represent an ongoing agreement between parties that evolves over time. Examples include
loans, insurance policies, and supply chain contracts. By using a linear ID to uniquely
identify a state, parties can track the evolution of the agreement over time and ensure that
all parties agree on the current state of the agreement.

These states are tied together by ContractStateRef, an object that references a specific
instance of a ContractState, at a particular point in time. It consists of a hash of the
transaction that created the state, as well as the index of the state within the transaction’s
outputs. ContractStateRef is an immutable data class that provides methods for serializing
and deserializing reference as well as for creating new instances with different transaction
hashes or output indexes.

When creating transactions, it is common to reference output states from previous
transactions as inputs to new transactions. In such cases, a ContractStateRef is used to
uniquely identify the output being referenced. This allows the transaction’s contract code to
verify that the referenced output has not been consumed or modified since it was created.

By combining all of these key classes together, Corda allows developers to secure,
create, and verify smart contracts, keep a ledger of transactions, and ensure the uniqueness
of each transaction, therefore ensuring that contracts in a virtual world, the metaverse,
mimic their real-world counterparts as closely as possible.

3.2. Ethereum

Another major use of blockchain is NFTs. Non-Fungible Tokens (NFTs) combine both
blockchain and smart contracts technology to create digital assets that work like physical
assets. Using blockchain technology, NFTs are able to guarantee the authenticity and
uniqueness of each digital asset. This makes them valuable for collectors and investors.
Blockchain helps keep NFTs unique by using three key elements: a cryptographic hash
function that creates a unique token which is then stored in blockchain as the NFTs unique
identifier, smart contracts which can define the rules of creation and ownership of the NFT
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and, finally, a consensus mechanism employed by the blockchain network where all nodes
must agree on the creation and transfer of NFTs.

One of the most popular choices for coding NFTs is the Ethereum platform, and its
Java toolkit called Web3j. Web3j is a Java library that provides integration with Ethereum
blockchain. With Web3j, developers can interact with smart contracts and the Ethereum
network, as well as manage accounts and transactions. Web3j supports the latest Ethereum
specifications and provides features such as contract development and deployment, event
filtering, and integration with various platforms.

Web3] provides a Java API to interact with the Ethereum network and the smart
contracts deployed on it. It supports generating Java classes from Solidity smart contracts
through the Solidity compiler, which makes it easier to interact with smart contracts using
Java code. The generated Java classes correspond to the Solidity contract and include all its
public functions, events, and variables. These classes can be used to create, deploy, and
interact with the smart contract. This differs significantly from the Corda approach, where
classes can be written natively in Kotlin, a JVM-based language.

Ethereum is a public network; as such, in order to keep transactions transparent and
safe, it has several standards for tokens in place, most notably ERC-20 and ERC-721. The
Corda network uses its own token standard by comparison called the Corda Token SDK.
ERC-20 is a fungible token standard, meaning that each token is identical and interchange-
able with other tokens of the same type whereas ERC-721 is a non-fungible token standard.
This means that each token is unique and cannot be exchanged or replaced with another
token. The NFT application analyzed throughout the rest of this section uses the ERC-721
token standard, as that is the standard that NFTs must adhere to while using the Ethereum
network for blockchain transactions.

The class structure of a Web3j NFT also makes use of contracts, much like a financial
transaction created in Corda, as can be seen in Figure 3, but it is slightly less complex.
This is due to the Web3j class itself. The Web3j class is the main entry point for interacting
with the Ethereum network. It provides methods for connecting to the network, sending
transactions, and working with smart contracts.

The Web3j class could even be considered a god-class since it provides multiple
functionalities all at once. Not only does it provide users with the ability to connect to
the Ethereum network to check the validity of a transaction, but it can also be passed as
a parameter during the instantiation of an NFT. In that scenario, the Web3j class acts as a
means to connect to Ethereum network and implements the required checks for the NFT to
be ERC-721 compliant.

Regardless of the approach in which the Web3j class is fed to an NFT, a token must
make use of the Web3j class in order to be considered non-fungible, since the Web3j class
is the enforcer of the ERC-721 standard. The ERC721 class, which is part of the Web3;j
library, acts as a wrapper on the Solidity contract implementing the ERC-721 standard.
ERC721 provides an abstraction layer that allows Java code to interact with the Solidity
contract in a more user-friendly and type-safe way, while still ensuring that the ERC-721
standard is being met. In order for any token to be ERC-721 compliant, and thus become
an NFT, it needs to implement a number of methods. The ERC721 class defines methods
that correspond to the ERC-721 standard, such as transferFrom(), balanceOf(), ownerOf(),
and so on and therefore enforces non-fungibility in Ethereum.

For developers seeking a way to decouple their NFT from the Web?3j class, a more
manual approach is available requiring extension of the Contract class. In this case, the
token needs to implement all of the methods that make it ERC-721-compliant manually,
and it needs to return the result of RemoteCalls made to the Ethereum network to validate
its authenticity. RemoteCalls are used in minting the token or during the creation of an
NFT that extends Contract. A TransactionManager is used, which includes an instance of
the Credentials class that represents the Ethereum account used to sign transactions.

Finally, in order to interact with Solidity, the programming language used by the
Ethereum network, Web3j uses a Function class. The Function class is used to represent a
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Solidity function in Java code. It also generates the encoded data required to call a Solidity
function from Java.

Credentials

+ getCredentials():
Credentials

Web3j

+ build(): Credentials

+ ethSendTransaction(tx: Transaction)
EthSendTransaction

+ personalSign(data: String, credentials
Credentials): String

Contract

- web3j: web3j
- transactionManager: TransactionManager
- contractAddress: String Function

+ load(contractAddress: String, web3j:Web3j, P USEnnmmmmmm ] + encodedFunction: byte[]
txManager: TransactionManager): Contract

+ getContract(): RemoteCall + encode(): String

+ send(): RemoteCall + execute(): RemoteCall=T=
+ getTransactionRecepient()
RemoteCall<TransactionRecepient=

Figure 3. Basic classes involved in creating an NFT with Web3;.

The Function class has several members, including the function name, the input
parameters, the output parameters, and the function’s signature. It defines methods to
generate the encoded function data and to execute the function call. Once a Function object
is defined, it can be used to generate the encoded function data by calling the encode
method. It can then send this encoded function data to the Ethereum network using the
TransactionManager. Finally, it can execute the function by calling the execute method on
the Function object, passing in the appropriate TransactionManager object and any other
required parameters.

In terms of smart contracts, a comparison between Corda and Ethereum shows that
each of the frameworks has different advantages, disadvantages and uses, as illustrated in
Table 1.

In summary, Ethereum smart contracts run on the Ethereum virtual machine (EVM),
which is a decentralized, distributed computer that executes smart contracts. These
smart contracts are written in Solidity, a programming language specifically designed
for Ethereum. Smart contracts in Ethereum are executed on a public, permissionless
blockchain network, and their state is replicated across all nodes of the network. Corda
smart contracts, on the other hand, run on a node-specific JVM. Corda smart contracts are
written in Java or Kotlin, and their execution is limited to the nodes on which they are
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deployed. Smart contracts in Corda are executed on a private, permissioned network, and
their state is shared only with those nodes that are party to the contract.

Table 1. Corda and Ethereum feature overview.

Corda Ethereum
Network Type Permissioned Permissionless
Consensus Mechanism Pluggable (e.g., BFT, Raft, Notary Services) Proof of Work (PoW), transitioning to PoS
Language Support Java, Kotlin Solidity (Ethereum-specific language)
Privacy Native support for privacy Public by default, limited privacy features

Transaction Model

Scalability
Interoperability
Smart Contract Features
Integration

Development Tools

Language Libraries

and confidentiality
Account-based model (balances

Unspent Transaction Output (UTXO) model and transactions)

Focus on scalability and performance Scalability challenges (e.g., network congestion)

Native support for interoperability Interoperability through standards and protocols

Flexible contract design and governance Rich ecosystem of smart contract functionalities
Suitable for enterprise integration Suitable for public and open applications

Corda Devel"pmentfffl (CDK), Corda Node Truffle Suite, Remix IDE, Web3 js, libraries

Web3j (Java library for Ethereum interaction),

ethereumj (Java implementation of Ethereum
client), web3j (Java bindings for Ethereum

JSON-RPC API)

N/A

It is important to note that this table provides a general comparison of the features
and capabilities of a Corda and Ethereum snapshot in time. These frameworks and their
interconnected networks are in a constant state of flux and are evolving at a rapid pace due
to their novelty. As such, the choice between Corda and Ethereum for implementing smart
contracts and blockchain functionalities depends on the specific requirements of the use
case, the desired network characteristics, and the development preferences of the project.

4. Semantic Web

The semantic web is a vision for the future of the web in which information is organized
in a way that is more meaningful and machine-readable. It involves the use of metadata,
ontologies, and linked data to enable computers to understand the content and context of
web resources. Web 3.0 seeks to provide users with more control over their data and online
interactions, as well as enabling seamless and secure transactions between parties.

One of the key challenges facing the development of Web 3.0 is the need for intelligent
and efficient handling of the vast amounts of data that will be generated by decentralized
applications. This is where the semantic web comes in, as it provides a framework for
organizing and processing data in a way that is more efficient and meaningful.

The semantic web is implemented programmatically using a set of standards and
technologies that enable machines to understand and process the meaning of data on
the web. Some of the key technologies and standards used in the semantic web include
the following:

o  RDF (Resource Description Framework) is a data model that provides a standard way
to describe resources on the web. It defines a set of concepts and relationships for
representing metadata about resources.

e OWL (Web Ontology Language) is a formal language for representing and sharing
ontologies on the web. An ontology is a set of concepts and relationships that define a
domain of knowledge.

e  SPARQL (SPARQL Protocol and RDF Query Language) is a query language for RDF
data. It allows users to retrieve and manipulate data stored in RDF format.

e Linked Data are a set of best practices for publishing and interlinking data on the web.
It enables data to be shared and reused across different applications and domains.
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While there are several technologies that enable Java applications to implement the
semantic web, including Sesame and OWL API, arguably the most popular and well
supported is Jena. An Apache project, Apache Jena is an open-source Java framework for
building semantic web and linked data applications. It provides a set of tools for RDF and
SPARQL standards, as well as for building and managing ontologies [10].

Apache Jena exposes several APIs and tools for working with RDF data. The core
concept of the RDF model is represented by the Model interface. A model is a collection of
RDF statements, where each statement consists of a subject, a predicate, and an object. The
model can be seen as a graph structure, where nodes represent resources or literals, and
edges represent relationships between them. Furthermore, Apache Jena provides parsers
and writers for reading and writing RDF data in various formats such as RDF/ XML, Turtle,
N-Triples, and JSON-LD. These input/output operations allow developers to load RDF
data from files or streams into a Jena model or write RDF data from a model to a file
or stream.

To create an empty RDF model, the ModelFactory.createDefaultModel() is used.
Namespaces are then defined for resources and properties using their URIs. The resources
and properties are created using the model.createResource() and model.createProperty()
methods, respectively. Statements are added to the model using the model.add() method,
specifying the subject, predicate, and object of each statement. Finally, statements in the
model are iterated over using model.listStatements() and can then be printed to the console
or other outputs.

This high-level breakdown of classes and methods exemplifies the creation of an RDF
model using Apache Jena. However, more complex operations can be performed on an
RDF model, such as querying, reasoning, and writing to different RDF formats using other
APIs provided by the framework.

A SPARQL query string can be added to an RDF that would, for example, select all
the persons and their names from the RDF model. A Query object is created from the
query string using QueryFactory.create() which is then executed by using QueryExecution-
Factory.create() and by providing the query and the RDF model. The QueryExecution is
customarily wrapped in a try-with-resources block to ensure proper resource cleanup. The
ResultSet returned by gexec.execSelect() can be iterated over in order to extract the relevant
data using sol.get(). This is just an example of a basic query; however, the SPARQL query
strings can be modified to perform different types of queries, such as filtering, joining, or
aggregating the data in the RDF model.

Another important aspect of the semantic web is ontologies, and Apache Jena provides
support for working with ontologies and performing reasoning on them as well. It includes
an OntModel interface for working with OWL ontologies, as well as an InfModel interface
for creating models with reasoning capabilities based on rule engines or more advanced
reasoning systems. A basic definition of an OntModel can be seen in Figure 4.

The OntModel represents an ontology model, which is an extension of the Model
interface. It provides additional features for working with ontologies, such as reasoning,
consistency checking, and ontology-specific operations. OntClasses represent an implemen-
tation of an ontology; they can be used to define the structure and hierarchy of concepts.
The provided methods work with class-related information such as subclasses, super
classes, and class instances. The OntProperty interface represents a property in an ontology
and allows implementing classes to work with domain, range, and sub-properties. Finally,
the Individual interface represents an individual or an instance of a class in an ontology
and it provides methods to work with individual-related information, such as the class to
which it belongs, and the properties associated with the individual.

By using these interfaces and their implementations, developers create ontologies,
which are formal representations of knowledge that define the concepts, relationships, and
constraints within a specific domain. In the case of the semantic web, ontologies play a
crucial role in facilitating interoperability and semantic understanding of data.
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Figure 4. Basic definition of an ontology in Apache Jena.

Ontologies start with a conceptual modeling phase, where the domain experts define
the key concepts, properties, and relationships within the domain. This involves capturing
the relevant entities, their attributes, and the associations between them. Once the concep-
tual model is defined, it is translated into a formal representation using ontology languages
such as RDF, OWL, or RDFS (RDF Schema). These languages provide a standardized syntax
and semantics for expressing ontological concepts.

Classes and ontologies have a tight relationship, as ontologies define classes to repre-
sent concepts or entities within the domain. As classes have attributes and relationships
with other classes, the ontologies can be hierarchical and/or associative. Furthermore,
classes have properties which define their attributes or characteristics. These properties
can represent simple data such as name, age, or complex relationships or data such as
being part-of, having-color, etc. Properties can also have their own attributes, such as range,
the class to which the property applies, and domain, the class that the property belongs
to. Together these concepts are known as class and property definitions, in the context
of ontology.
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Another important feature of ontology is interfaces and reasoning. By explicitly
defining the relationships and constraints in the ontology, inference engines can deduce
new knowledge or make logical conclusions based on the existing information. This allows
for automated reasoning and the ability to answer complex queries and derive new insights.

Finally, ontologies evolve; they are not static. They are updated over time to reflect
changes in the domain or to accommodate new requirements. Ontology evolution involves
adding new concepts, modifying relationships, or refining the constraints to capture the
evolving knowledge accurately.

RDF Models and ontologies are closely related as RDF provides the data model and
representation format for expressing information in the semantic web, while ontologies
define the vocabulary, concepts, and relationships within a domain. RDF serves as the
underlying data model for representing information in the semantic web. It is a graph-
based model that represents data as triples, consisting of subject-predicate-object statements.
Ontologies leverage the expressive power of RDF to define classes, properties, relationships,
and constraints within a domain.

RDF data can be linked to ontologies by using ontology terms (classes and properties)
to describe the resources and relationships in the data. Ontologies provide a vocabulary
and a set of predefined terms that can be used to annotate and categorize the RDF data.
This linking enables semantic interoperability, where data from different sources can be
understood and integrated based on their shared ontological concepts.

Linked data are the final piece of the puzzle in the semantic web and they serve as
a series of guidelines and principles that help associate and/or link RTFs and ontologies
together. Linked data were defined by Breners-Lee in a presentation at the 17th international
conference on World Wide Web and initially included four principles [11]. These principles
have since been expanded upon and include the following;:

e  The usage of unique identifiers or URIs: Each resource in the linked data should have
a unique identifier in the form of a URI. URIs are used to reference resources and
provide a global naming scheme for data.

e  Exposing data via HTTP: Linked data should be made accessible via standard HTTP
protocols. This enables data retrieval using HTTP requests, such as GET, PUT,
PATCH, etc. This model of exposing data is very popular with many web-based
APIs in production applications today.

e  Providing resource descriptions: Resources should be described using standardized
formats such as RDF as it provides a flexible and extensible way of representing
structured data.

e Linking related data: Linked data should include links to other related resources.
These links are expressed as RDF triples, connecting resources together and forming a
graph of interconnected data.

e  Using RDF for structured data: Linked data relies on RDF as the primary data model
for expressing information. RDF represents data as subject-predicate-object triples,
where each triple represents a statement or fact about a resource.

Linked data are, therefore, more of a concept or a set of guidelines, whereas RDFs and
ontologies are the technologies, or implementations, used to achieve the goals of linked
data. In this sense, linked data are similar to REST, which is not an enforced standard of
API communication, but rather a set of guidelines that many software products adhere
to strictly.

The purpose of linked data, as envisioned by Breners-Lee, was to help end users
navigating the semantic web as they would the regular web [11]; however, it is important
to note that the semantic web and the regular web are not entirely similar. One of the key
differences between the semantic web and the regular web is that the former is created,
primarily, to service Als and machines. This means that there are key differences in the
data representation inside the semantic web and the regular web. For example, RDFs are
the building blocks of the semantic web whereas in the regular web, resources are linked
together by HITML, which is designed for human consumption.
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When implementing semantic web-based applications, Apache Jena does not appear
to have a rival in the Java ecosystem. It is the most well-supported framework and the
most complete; therefore, it is easier to highlight the features and limitations of Jena, as
seen in Table 2, rather than comparing it directly with other frameworks.

Table 2. Jena features and limitations overview.

Features

Description

RDF and OWL Support
RDF Model
SPARQL Query
Ontology Support
Reasoning
Rule-Based Reasoning
Inferencing

RDF Serialization
Integration

SPARQL Update

RDF Storage

Comprehensive support for RDF and OWL ontologies,
including parsing, querying, and manipulation.
Provides a flexible data model for representing RDF triples
and graphs. Supports various serialization formats.
Powerful query language and engine for querying RDF data
using the SPARQL query language.

Supports working with ontologies, including creating,
manipulating, and reasoning with OWL ontologies.
Offers support for ontology reasoning, including inferencing
and consistency checking.

Provides support for rule-based reasoning with rule engines
like the Jena rules engine.

Supports semantic inferencing using rule engines and custom
inference rules.

Supports various RDF serialization formats, such as
RDF/XML, Turtle, N-Triples, and JSON-LD.
Integrates well with other Java frameworks and libraries.
Supports SPARQL Update, allowing updates to RDF data
using SPARQL queries.

Supports storing and retrieving RDF data in various storage
systems, including in-memory and databases.

Apache Jena is a powerful Java framework for working with RDF data and ontologies.
It provides extensive support for RDF and OWL, including parsing, querying, reasoning,
and serialization. Jena could almost be considered the only choice for Java developers;
however, it does have some quirks that are worth noting, such as limited support for RDF*,
SHACL validation, and some advanced features of OWL.

5. Research Challenges

Table 3 attempts to summarize the current state of the four elements that make up this
paper, the current version of the Web (Web 2.0), Blockchain and the Semantic Web (Web 3.0)
and the metaverse (enabled by Web 3.0). Each area of research touched upon by this paper
was graded from Not Important (NI), to Important (I) and Very Important (VI). The table
offers an overview of what we, the authors of this article, believe are the key challenges to
implementing metaverse-specific applications from a research perspective. The question of
programming language was thoroughly addressed throughout Sections 3 and 4. The rest of
these sections will address the other issues of importance such as performance, architecture,

quality of data, and security.

Table 3. Research challenges in key areas related to the metaverse.

Area of Research Web 2.0 Blockchain Semantic Web Metaverse
Programming language NI 1 I I
Performance I VI I VI
Architecture I I VI I
Data quality I VI Vi I
Security VI VI VI VI
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Perhaps one of the most important aspects of any network of computers, of any kind, is
the performance of said network. However, while some comparisons exist between Corda
and Ethereum, from a feature perspective or a generic approach to smart contracts and
blockchain, performance comparisons are scant. One of the more complete performance
evaluations comes from A. A. Monrat et al. [12]. The article compares privately provisioned
blockchain platforms to one another. The platforms are deployed in Azure cloud and their
performances are compared using various benchmarking tools such as Caliper, Blockbench,
or Corda’s own enterprise test suite [12]. In terms of performance, Ethereum takes a
significant lead in terms of throughput, but does worse in terms of latency [12]. While
this article does serve to highlight some of the key performance differences in blockchain
processing by several providers, an updated benchmark would be required to come to a
more concrete conclusion about performance. Additionally, it is important to note that, in
the benchmarks run by A.A. Monrat et al., all blockchains were run on private networks,
and this in itself is one of the key differences between Corda and Ethereum.

As Valenta, M and Philipp G. S. highlight, one of the key differences between Ethereum
and Corda is the platform itself [13]. Ethereum is a generic blockchain platform, which
is publicly available, whereas Corda is a specialized distributed ledger platform aimed
specifically at the financial industry [13]. While the article does not specifically compare the
performance of different blockchains to one another, rather highlighting their functionalities,
similarities, and features [13], it cannot be stressed enough that Corda is run on private
networks. While the performance of Ethereum and Corda networks can vary depending on
the specific use case and network configuration, there are key differences in performance
that can be derived from their approaches to blockchain.

Ethereum is a public blockchain that uses a proof-of-work consensus algorithm, which
can result in slower transaction times and higher transaction fees compared to private
blockchains. Ethereum’s network can also become congested during periods of high usage,
which can further impact performance.

Corda, on the other hand, is a permissioned blockchain that uses a unique consensus
algorithm called “notary services” to achieve finality of transactions. This allows Corda to
achieve high throughput and low latency, making it well suited for enterprise use cases.

In general, Corda may offer better performance and scalability for enterprise use
cases, while Ethereum may be more suitable for public and decentralized applications.
However, the specific performance of each network will depend on factors such as network
configuration, number of nodes, and the complexity of the smart contracts or transactions
being executed.

Without a thorough benchmark, it is hard to tell which network offers the better
performance. What that means for blockchain developers is that the choice of which
network to use does not heavily rely on performance, but rather on types of features
offered, implementation of smart contracts, programming language used, currency or other
elements that supersede performance concerns.

In terms of architecture, the biggest challenges stem from semantic web applications,
perhaps because there are far fewer applications that implement the semantic web by
comparison to blockchain. However, a model architecture for the semantic web was
proposed by B. Abrahams and Wei Dai [14]. The proposed solution uses annotation software
to generate RDF markups describing the content of the website [14]. The extracted RDF
content is stored in a database and it forms part of the semantic middleware application [14].
User requests are passed to web agents which formulate a query plan [14]. RDF annotations
start with namespace declarations, which act like a prefix to associate individual resources
with a schema, doubling not only as a representation of data but also acting as a markup
language for the ontology [14]. A reasoner is used to read the ontology model and derive
knowledge about the domain [14]. Resources are queried using a multiagent architecture,
with Jena as middleware [14]. This architecture model, which predates linked data, helps
illustrate a view of the web where the application owner services, primarily, the machine-
learning algorithms and less so the end user.
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Even after the creation of linked data, however, there are still numerous architectural
challenges to implementing the semantic web, as described by J.L. Martinez-Rodriguez
et al. Key. Amongst these challenges is the quality of data fed into the semantic web. Not
only is trustworthiness an issue, but so are formatting problems and querying issues [15].
Then, there is the issue of the data complexity itself. Even using some of the proposed
guidelines for selecting vocabulary or ontology for correctly describing the data is a very
long and time-consuming task requiring supervision by a human expert [15]. The purpose
of the semantic web is, primarily, to obtain the meaning contained by data in such a way
that computers understand it, but web information does not have a heterogenous structure
and making data associations with a pre-set vocabulary is not easy [15]. Another issue
highlighted in the article is the reasoning or querying of data. The sheer amount of data
is huge, according to ]J.L. Martinez-Rodriguez et al. Linked open data had created more
than 50 billion RDFs as of 2015 [15]. Furthermore, some of those statements were incorrect
or noisy, for example, when preamble information was omitted or when an instance was
declared with disjointed classes [15].

As touched upon briefly in the fourth section of this article, there are also data quality
concerns about semantic web applications. Trust is one of the key aspects of semantic web
architecture because it helps take decisions over certain tasks [15]. A measure of trust degree
is required, therefore, when taking data into account, such as provenance, reputation, or
information quality [15]. But these features of trustworthiness must first be specified and
secondly their definition must be ubiquitous. Herein lies part of the problem as highlighted
by J.L. Martinez-Rodriguez et al. since quality is subjective and it depends on human-driven
criteria to judge whether the information is suitable or not [15]. All of these annotations
must also be added to the data, and adding them manually would be impossible, so other
machine learning tools are leveraged in order to simplify the process [15]. However, it is
important to note that these annotations vary from implementation to implementation.
While an attempt was made to define eighteen quality dimensions and metrics, only four
were commonly used in the more than 1 billion triples analyzed by the authors [15].

The article by J.L. Martinez-Rodriguez et al. does a very good job in highlighting many
of the technical challenges of working with large sets of unregulated data, but there is one
important aspect that is not addressed: security and privacy in the semantic web. Security
issues have become increasingly prevalent in software development, with a cumulative
total of nearly 230,000 vulnerabilities known between 1988 and 2022, according to IBM’s
IBM Security X-Force Threat Intelligence Index 2023 report [16]. Phishing is still the most
prevalent technique in gaining unauthorized access to systems, and data theft is one of
the most likely outcomes of a breach, accounting for 17% of total cybersecurity incidents
in Europe according to the same report [16]. This represents a particular problem for
semantic web applications as the interfacing capabilities of ontologies and RDFs can lead
to privacy-leakage from one application to another, therefore exposing far more data in the
case of a breach, than the regular web.

Furthermore, there is the issue of compliance with regulations, most notably GDPR
(General Data Protection Regulation), or, in the case of countries outside of Europe, HIPAA
(Health Insurance Portability and Accountability Act). Finally, it is important to highlight
that semantic web architecture must account for data privacy through more than just
regular web means, as it has to minimize the amount of personal data exposed on several
levels as well as ensure encryption of various layers and between various connections so
that one successful attack does not expose the entire system and all of its dependents.

6. Conclusions

Java continues to offer a robust tool set and plentiful resources as well as frameworks
for working within a Web 3.0 and metaverse context. Furthermore, the expansion of Java
beyond a simple programming language into an entire ecosystem of JVM-based languages,
some of which offer better features than plain Java, are more robust or more secure, giving
developers and tech companies room to pick and choose their technology stack.
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It is also important to note that in the context of an entirely new approach to web
development and web architecture, JVM-based languages have a considerable edge in
terms of users and overall experience when compared to other programming languages that
have been released more recently. The popularity of Java and its continued use has given
rise to a large community of JVM users which is a key resource in software development,
albeit one that is very often ignored. Leveraging the tools, community, and experience
accumulated in using JVM-based programming languages can pave the path to a more
feature-rich and profitable Web 3.0 and usher in a new era of human—computer interaction
in the coming years.
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