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Abstract: Plug-in electric vehicles (PEV) are considered to reduce oil dependency, noise, and local
air pollution as well as greenhouse gas emissions caused by road transportation. Today, the early
market penetration phase has started and can be observed in many countries. But how could the
diffusion and adoption of PEV be modeled to create consistent scenarios? With which PEV driving
and charging behavior can these scenarios be associated and what load-shifting potentials can be
derived? This work provides an answer to these questions by describing a hybrid modeling approach
of a PEV diffusion scenario consisting of a top-down macro-econometric Bass model, answering
the question as to at what point in time how many PEV will be on the market, and a bottom-up
micro-econometric binary logistic PEV adoption model answering who is likely to adopt. This set of
methods is applied to representative mobility data sets available for France and Germany in order to
simulate driving and charging behaviors of potential French and German PEV adopters. In addition,
a sampling method is presented, which reduces computational times while intending to remain
representative of the population of PEV adopters considered. This approach enables the consideration
of PEV at a detailed level in an agent-based energy system model focusing on European day-ahead
markets. Results show that PEV diffusion dynamics are slightly higher in France than in Germany.
Furthermore, average plug-in times, average active charging periods, average load-shifting potentials,
and average energy charged per PEV differ slightly between France and Germany. Computational
times can be reduced by our approach, resulting in the ability to better integrate PEV diffusion,
adoption, and representative charging demand in bottom-up energy system models that simulate
European wholesale electricity markets.

Keywords: technology diffusion; PEV (plug-in electric vehicle); Germany; France; smart charging

1. Introduction

Greenhouse gas (GHG) emissions have a significant impact on the climate, leading to many
undesirable side effects [1]. In Europe, this realization led to an agreement on long-term targets for the
reduction of GHG emissions: by 2050, these should be reduced by 80% compared to 1990 levels [2].
The share of the transport sector in European GHG emissions was 24% in 2016 [3]. Moreover, fossil fuels
are finite resources which are predominantly being imported. Against the background of a growing
share of emissions in the transport sector [4], emission reduction strategies within this sector could
be particularly effective [5]. Current political efforts to reduce GHG emissions in the transport sector
are scarce compared to the societal adaptations necessary to achieve significant reductions [6]. In the
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global context, it is assumed that emissions in the transport sector could double due to the rising energy
demand in emerging countries [7]. This applies in particular to motorized private transport. Cars are
responsible for around 12% of the total European Union emissions of carbon dioxide [8]. A promising
strategy to reduce GHG emissions in the transport sector is the electrification of cars [6,8,9], especially
with increasing penetration of renewable power production [10,11]. In industrialized countries in
particular, the number of plug-in electric vehicle (PEV) registrations has been rising continuously since
2008 [12] despite barriers specific to PEV, such as limitations in range, a lack of charging infrastructure,
and high purchase prices [13]. PEV describe vehicles that can charge their battery from external energy
sources and comprise plug-in hybrid and pure battery-electric vehicles.

For the estimation of potential structural and economic effects of PEV diffusion, for example, on
charging infrastructure, power supply, or power prices, adequate PEV diffusion models are necessary,
showing at which point in time how many PEV are being charged at which locations, and how much
energy they need to be charged. Energy-system models often aggregate PEV-specific loads due to the
computational effort needed for modelling driving and charging patterns in detail [11,14]. According to
Richardson (2013) a balance between computational ease and real-world accuracy must be found [14].
Therefore, this work answers the following research question:

How is it possible to combine the modeling of PEV adoption, charging behavior, and load-shifting
potentials in energy-system analysis for France and Germany?

In the following, we provide a hybrid PEV diffusion and adoption model, based on reliable
demographic data, that can be applied in complex and granular simulation environments. Moreover,
we present a re-sampling method to drastically reduce the computational costs of running the model in
high-penetration scenarios. Our approach considers PEV on a detailed level in an agent-based energy
system model simulating developments of and within European day-ahead electricity markets [15].

After Section 2 describes related work, Section 3 explains the methods and data used.
Sections 4 and 5 present and discuss the results for the original and re-sampled case. Section 6
concludes and gives an outlook for future research.

2. Related Work

As our work deals with three subtopics, we structure the following section accordingly. First, we
show recent research on market penetration studies and user acceptance. Second, we address more
specifically the combination of bottom-up and top-down approaches in this field. Finally, we focus on
PEV charging and customer preferences.

Literature on the diffusion of PEV is a broad research field which has been evolving considerably
over the last decade. Reviews exist for methods used to model the market penetration of PEV [16,17].
The review by Gnann et al. (2018) [18] focuses on international PEV market diffusion models
and compares corresponding research questions, assumptions, and results to find that there are
country-specific differences in the importance of input factors. Coffman, Bernstein and Wee (2016) [19]
provide a review on factors affecting PEV adoption. They show that the public charging infrastructure
is an important factor associated with PEV uptake. In addition, they identify that actual purchases are
much lower than consumers’ stated preferences derived from studies primarily relying on surveys
about hypothetical situations. Rezvani, Jansson and Bodin [20] review consumer PEV adoption studies
presenting a comprehensive overview of the drivers for and barriers against consumer adoption of
plug-in PEVs. Kühl et al. (2019) [21] analyze German Twitter data and literature on customer needs
concerning e-mobility. Price-related needs and needs concerning car characteristics are overrepresented
in literature. On the other hand, charging-related needs are particularly overrepresented in the Twitter
data set.

Combining bottom-up and top-down approaches in models for vehicle diffusion and adoption
has become more popular in recent years [16,22–24]. Not only personal preferences influence adoption
decisions, but also macro-economic parameters. In particular, better designs of interfaces between
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models and surveys could lead to an improvement of PEV penetration models [17], which is, for
example, addressed by Wolinetz and Axsen (2017) [25]. Disaggregated survey data facilitate forecasts
of potential future market developments already in early market phases [16] and enable the analysis
of effects of varying input parameters on market developments [25]. PEV penetration models based
on aggregated data, on the other hand, are suitable for medium- to long-term forecasts, as long as
sufficient market development data is available [16].

The stream of research on PEV and infrastructure is extensive. Hardman et al. (2018) [26] provide
a review of consumer preferences of and interactions with charging infrastructure. They show that the
most important location for PEV charging is at home, followed by work, and then public locations.
Gnann and Plötz (2015) [27] provide a review of combined models for market diffusion of alternative
fuel vehicles and their refueling infrastructure. They find that simulation is the most common approach
for interaction models. Richardson (2013) [14] reviews the current literature on PEVs, the electric grid,
and renewable energy integration, discusses key methods and assumptions, and reviews the economic,
environmental, and grid impacts of PEVs. He further shows that PEVs can significantly reduce the
amount of excess renewable energy produced in an electric system. García-Villalobos et al. (2014) [28]
present a review of different strategies, algorithms, and methods to implement smart charging control
systems and identify significant projects around the world about PEV integration. Habib, Kamran,
and Rashid (2015) [29] review vehicle-to-grid (V2G) technology and various PEV charging strategies,
and analyze their impacts on power distribution networks. Mwasilu et al. (2014) [30] review smart
metering and communication infrastructures and identify strategies for integrating PEVs into the
electric grid. Hu et al. (2016) [31] present a review and classification of methods for smart PEV charging
for fleet operators.

Focusing on users’ charging preferences in particular, Chen et al. (2019) [32] propose a
multi-objective scheduling method for PEV charging events. Korkas et al. (2018) [33] present
an adaptive learning-based approach for nearly optimal dynamic charging of PEV fleets respecting user
preferences. Simulation results demonstrate a robust behavior of the approach respecting stochastic
arrival and departure times of PEV, different pricing models and solar energy production. Clairand
et al. (2018) [34] analyze effects of an aggregator’s smart charging approach under consideration of
users’ preferences. The aggregator allows PEV charging at the lowest cost while complying with
technical constraints required by distribution system and transmission system operators. In addition,
PEV users can choose among different products that meet their needs in terms of charging time. Case
study results show that savings between 5% and 50% compared to the direct charging scenario can
be realized.

In conclusion, the majority of research handles one aspect of PEV diffusion, adoption, or charging
behavior at a time. In the following, we combine established modeling methods in a hybrid approach
to make possible the comprehensive and integrated simulation of PEV market developments while
ensuring sufficient granularity of individual mobility needs. In this way, we can incorporate behavioral
aspects of PEV use within an energy system model that focuses on coupled day-ahead wholesale
electricity markets in Europe. Modelling PEV charging activities in a bottom-up way, i.e., on the basis of
individual parking and charging events, permits the analysis of emergent effects of different charging
strategies on aggregated PEV demand profiles and corresponding effects on day-ahead market prices
and CO2 emissions. In addition, despite the high PEV-specific granularity, the approach presented in
this study intends to keep simulations feasible in terms of calculation costs, while maintaining a good
approximation of reality at the same time.

3. Method: A Hybrid Modelling Approach

To find adequate answers to the research question, Section 3.1. describes the hybrid PEV diffusion
approach applied. This includes a model variant intending to reduce computational effort, in order to
support the integration of PEV in holistic energy system modeling. Section 3.2 describes the method
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deriving the corresponding PEV charging behavior of the PEV adopters and key metrics for the
consecutive analysis.

3.1. Plug-In Electric Vehicle (PEV) Diffusion and Adoption

This section shows the development and interactions of a granular hybrid model for PEV uptake
and use in Europe. Section 3.1.1 describes our application of the top-down macro-econometric Bass
diffusion model, Section 3.1.2 deals with a bottom-up micro-econometric binary logistic PEV adoption
model, and Section 3.1.3 discusses how these models interact and considers a model variant reducing
computational effort.

3.1.1. Bass Diffusion Model

The Bass diffusion model is used to model PEV diffusion in the market areas under
consideration [35]. In this model, innovation diffusion depends on the interaction between current and
potential adopters, called innovators and imitators. These are represented by an innovation coefficient
(p) and an imitation coefficient (q). M is the market potential, and t the index for the year considered.
The model produces diffusion values for every year t − t0 since the start year t0 which must satisfy
t− t0 = 0 at model initialization. The number of cumulative adoptions up to time t, N(t), is represented
by Equation (1):

N(t) = M
1− e−(p+q)(t−t0)

1 + q
p e−(p+q)(t−t0)

(1)

Taking into account annual PEV stock numbers, assumptions about medium-term governmental
targets and the premise that there will be a complete substitution of internal combustion engine
vehicles in the long run (which already reflects the targets of some European governments, such as
France, not to register petrol and diesel vehicles after 2040 [36]), equation parameters for the innovation
and imitation coefficients are determined. However, in the long term, autonomous driving and car
sharing might result in smaller vehicle fleets. Due to the challenges that internal combustion engine
vehicles impose on society, it can be assumed that in the future, environmental standards will be
further tightened. PEV are likely to be the first choice for meeting these fleet standards in the mid-term,
as suggested by growing investments in the expansion of charging points and the upcoming portfolios
of major vehicle manufacturers, even if alternative technology paths could be taken (for example, fuel
cell technology). A non-linear regression method is used to determine the parameters of the Bass
PEV diffusion scenarios for France and Germany (Equation (1)). Levenberg-Marquardt’s numerical
optimization algorithm [37,38] is used for non-linear curve fitting using OriginPro 2017G.

3.1.2. Binary Logistic PEV Adoption Model

In addition to knowing how many PEV will be registered at a given time (Section 3.1.1), car
companies and grid operators are interested in receiving an answer to the question as to which
customers will shift first to PEV. Consequently, private purchase intentions for PEV by German and
French users of commercial PEV were analyzed within the accompanying research activities of the
project Cross-border Mobility for Electric Vehicles (CROME) [39]. As the survey was carried out directly
after the employer had decided to participate in the project, many of the respondents had only little
experience with PEV. The conducted online survey included a question as to whether the German and
French PEV users of commercial and public enterprises could imagine buying a PEV privately in the
next 10 years [40,41]. In addition, the respondents were asked for further information on their mobility
behavior, the role of the respondents in their companies, their experiences with PEV, household income,
car-use frequency, nationality, and the number of cars in households in order to examine whether the
data on future PEV purchase decisions can be explained by these variables. Dependencies between
PEV adoption intentions and these variables are observable and can be described with a binary logistic
regression model [41].
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3.1.3. Hybrid PEV Diffusion Modeling Approach

Representative mobility studies are available for France and Germany [42,43]. We assume that
individuals using cars currently will also be using cars in the future and will eventually become PEV
users at a certain point in time. PEV adoption probabilities pPEV adoption

i are calculated (Section 3.1.2) and
assigned to every car-driving individual ai ∈ I within each of the representative mobility studies [42,43]
as described in [44]. The car-driving individuals have an individual weight wi depicting their
representativeness of true car-driving individuals, and are sorted by pPEV adoption

i to obtain a sorted list

of car users Isort =
{
ai ∈ I : pPEV adoption

1 ≥ pPEV adoption
2 ≥ . . . ≥ pPEV adoption

I

}
. AAdopter set

t̃
⊆ I represents the

set of PEV-adopting individuals in a country in a certain year t̃.
We use two different approaches to determine the set of PEV adopters (AAdopter set

t̃
and ÂAdopter set

t̃
) in

a specific year t̃. The traditional approach uses Method 1 and has already been applied by Ensslen et al.
2014 and 2018 [44,45]:

Pseudocode of Method 1

1 for all t̃ do
2 while ai ∈ Isort

∧W ≤ N
(̃
t
)

3 Set W = W + wi

4 Add ai to AAdopter set
t̃

5 end while
6 end for

According to the approach described with the pseudocode of Method 1, all car users ai ∈ Isort

become PEV adopters ai ∈ AAdopter set
t̃

if their PEV adoption probability pPEV adoption
i is sufficiently high

for the year t̃ and if their combined weight W does not exceed the total number N
(̃
t
)

of PEV adopters
for that year.

As computing times of our heuristic PEV charging algorithm [45] scale linearly with the number
of adopters and corresponding charging events, which in turn grow exponentially with the growth
of initial purchases [35], we use an alternative approach described in the pseudocode of Method 2.
This limits the number of adopters to klimit as well as their charging events, but still intends to be
representative of the original PEV-adopting population AAdopter set

t̃
identified with Method 1.

Pseudocode of Method 2

1 for all t̃

2 Set Îsort
t̃

=
{
Isort

∣∣∣ i mod z̃t = 0
}

with z̃t = nint

W
A

Adopter set
t̃

klimit


3 while aî ∈ Îsort

t̃
∧ î ≤ klimit

4 Set Q̂ÂAdopter set

t̃ = Q̂ÂAdopter set

t̃ + qî

5 Add aî to ÂAdopter set
t̃

6 end while
7 while aî ∈ ÂAdopter set

t̃

8 Set ŵî = wî·η
scaling
t̃

with ηscaling
t̃

= Q
A

Adopter set
t̃

Q̂
Â

Adopter set
t̃

9 end while
10 end for

Method 2 first calculates z̃t in order to define a reduced sorted list of PEV drivers Îsort
t̃

for every

year t̃ (line 2). The reduced adopter set ÂAdopter set
t̃

is a limited, sorted selection of every z̃tth PEV
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adopter from Isort of size klimit (line 5). The daily charging energy demand qî specific to adopter aî is

accumulated to Q̂ÂAdopter set
t̃ (line 4) and set in relation to the total daily charging energy demand of the

original adopter set QAAdopter set
t̃ , producing the scaling factor ηscaling

t̃
for that year t̃. The scaling factor

is applied to the original weight wî for each adopter aî in the reduced set in order to account for the
reduced sample size (line 8). Scaling to total energy demand instead of adopter weight is essential as
the goal of the simulation is to assess the adopters’ impact on an energy system.

3.2. PEV Charging

The persons adopting PEV in the representative French and German mobility studies are assigned
mobility profiles specific to a reference date. We assume that the mobility patterns of car use remain
constant as long as the range of the PEV is sufficient for the trip lengths. If the pure electric range
is not sufficient, we assume that the PEV are equipped with small combustion engines, so-called
range extenders. We assume the same car-use behavior on every day of the simulation and a 1:1
relation between PEV adopters and PEV. As vehicles are parked at home or at the workplace most
of the time [20], load-shifting potentials are highest at these locations. Therefore, we assume that
PEV adopters have the possibility to charge their cars at home and at work. Combining driving
and parking profiles with assumptions on PEV energy consumption, battery capacity, and available
charging power allows us to determine the energy requirement and the load-shifting potential of each
charging process [44–46].

A charging event x (Figure 1) can be described as follows: After arriving at a charging station at
time tarrival

x with an energy charging level of CLarrival
x (in kWh), the PEV is directly charged up to an

energy content determined by individual minimum range (MR) requirements CLMR
x . Starting from this

point in time (tCC
x ), charging event-specific load-shifting potentials ∆tLSP

x provided by PEV users can be
used by service providers (so-called aggregators) for flexible controlled charging (CC). At the point in
time of departure tdeparture

x , the charging level is at CLdeparture
x .World Electric Vehicle Journal 2019, 10, x FOR PEER REVIEW 7 of 18 

 

Figure 1. Plug-in electric vehicle (PEV) charging event 𝑥𝑥 with load-shifting potentials. 

Plug-in times ∆𝑡𝑡𝑥𝑥
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 specific to charging event x are calculated by subtracting arrival time from 

departure time (Equation (2)). 

∆𝑡𝑡𝑥𝑥
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑡𝑡𝑥𝑥

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑡𝑡𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (2) 

Active charging times ∆𝑡𝑡𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 are determined by dividing the energy charged (𝐶𝐶𝐶𝐶𝑥𝑥
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −

𝐶𝐶𝐶𝐶𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) by the maximum charging power 𝑃𝑃𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 of a charging event (Equation (3)). 

∆𝑡𝑡𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝐶𝐶𝐶𝐶𝑥𝑥

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝐶𝐶𝐶𝐶𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑃𝑃𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
 (3) 

Load-shifting potentials ∆𝑡𝑡𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿 are calculated by subtracting active charging times ∆𝑡𝑡𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 from 
plug-in times (Equation (4)). 

∆𝑡𝑡𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿 = ∆𝑡𝑡𝑥𝑥
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − ∆𝑡𝑡𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (4) 

Total energy charged 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is calculated by adding the energy charged of the single charging 
events (Equation (5)). 

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �(𝐶𝐶𝐶𝐶𝑥𝑥
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝐶𝐶𝐶𝐶𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

𝑥𝑥∈𝑋𝑋

 (5) 

Total energy directly charged 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is calculated by adding the energy directly charged of the 
single charging events 𝑥𝑥, depending on the availability of load-shifting potentials (Equation (6)). In 
case load-shifting potentials are available (1[∆𝑡𝑡𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿>0]), the vehicle charges up to the minimum range. 
If there is no potential (1[∆𝑡𝑡𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿≤0] ), the vehicle charges directly and as much as possible before 
departure. 

𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �𝑀𝑀𝑀𝑀𝑀𝑀{𝐶𝐶𝐶𝐶𝑥𝑥𝑀𝑀𝑀𝑀 − 𝐶𝐶𝐶𝐶𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎; 0} ⋅ 1[∆𝑡𝑡𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿>0]
𝑥𝑥∈𝑋𝑋

+ �(𝐶𝐶𝐶𝐶𝑥𝑥
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝐶𝐶𝐶𝐶𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) ⋅ 1[∆𝑡𝑡𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿≤0]

𝑥𝑥∈𝑋𝑋

 
(6) 

Total energy flexibly charged (controlled charging) 𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is calculated by subtracting 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
from 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (Equation (7)). 

𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (7) 

4. Results 

Section 4.1 describes the PEV diffusion scenarios developed for the French and German markets 
while Section 4.2 presents the simulation results of PEV charging. Section 4.3 shows the effects of the 
applied re-sampling method (Method 2) on the results compared to the original results. 

4.1. PEV Diffusion and Adoption 

The Bass diffusion models used to project the future PEV stock are estimated based on the data 
presented in Table 1. 

Figure 1. Plug-in electric vehicle (PEV) charging event x with load-shifting potentials.

Plug-in times ∆tplug
x specific to charging event x are calculated by subtracting arrival time from

departure time (Equation (2)).
∆tplug

x = tdeparture
x − tarrival

x (2)

Active charging times ∆tactive
x are determined by dividing the energy charged (CLdeparture

x −CLarrival
x )

by the maximum charging power Pmax
x of a charging event (Equation (3)).

∆tactive
x =

CLdeparture
x −CLarrival

x
Pmax

x
(3)

Load-shifting potentials ∆tLSP
x are calculated by subtracting active charging times ∆tactive

x from
plug-in times (Equation (4)).

∆tLSP
x = ∆tplug

x − ∆tactive
x (4)
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Total energy charged Etotal is calculated by adding the energy charged of the single charging
events (Equation (5)).

Etotal =
∑
x∈X

(
CLdeparture

x −CLarrival
x

)
(5)

Total energy directly charged Edirect is calculated by adding the energy directly charged of the
single charging events x, depending on the availability of load-shifting potentials (Equation (6)). In case
load-shifting potentials are available (1[∆tLSP

x >0]), the vehicle charges up to the minimum range. If there
is no potential (1[∆tLSP

x ≤0]), the vehicle charges directly and as much as possible before departure.

Edirect =
∑

x∈X
Max

{
CLMR

x −CLarrival
x ; 0

}
· 1[∆tLSP

x >0]

+
∑

x∈X

(
CLdeparture

x −CLarrival
x

)
· 1[∆tLSP

x ≤0]
(6)

Total energy flexibly charged (controlled charging) E f lex is calculated by subtracting Edirect from
Etotal (Equation (7)).

E f lex = Etotal
− Edirect (7)

4. Results

Section 4.1 describes the PEV diffusion scenarios developed for the French and German markets
while Section 4.2 presents the simulation results of PEV charging. Section 4.3 shows the effects of the
applied re-sampling method (Method 2) on the results compared to the original results.

4.1. PEV Diffusion and Adoption

The Bass diffusion models used to project the future PEV stock are estimated based on the data
presented in Table 1.

Table 1. Data and parameters used for diffusion model estimation.

PEV Stock France Germany

End 2009 -

[47]

3032

[48]

End 2010 3368 4404
End 2011 6167 8670
End 2012 12,805 13,582
End 2013 22,217 23,208
End 2014 33,595 36,175
End 2015 54,282 48,688
End 2016 79,856 54,997

Mid 2017 [1] 101,799 92,731
Expectation 2030 6,000,000 [49] 6,000,000 [50]

Total vehicle stock (M) * 32,675,972 [47] 45,803,560 [48]

* Please consider that new developments in the context of car sharing and autonomous vehicles might result in an
overall lower future vehicle stock.

The expectations of six million PEV in 2030 by French public authorities [49] are in line with the
government targets set in Germany [50]. These expectations are taken into account in the scenario
calculations resulting in the parameters for the Bass diffusion model shown in Table 2.
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Table 2. Bass diffusion model parameter estimates.

Parameter
France Germany

Mean Std. Dev. Mean Std. Dev.

p 4.31× 10−5 2.67× 10−5 1.44× 10−4 1.82× 10−5

q 0.32 0.004 0.31 0.0015
t0 2008.22 5.82 2010.01 1.05

R2 ~1 ~1

These two PEV diffusion scenarios are rather optimistic. The innovation coefficient (p) of the
French PEV diffusion scenario is considerably higher than that of the German scenario (cf. Table 2).
However, imitation coefficients (q) are on a similar level. According to Figure 2, the models’ forecasts
of PEV stock are well below the original national policy targets in France (2 mn in 2020 and 4.5 mn in
2025, [51]) and Germany (1 mn [50]).World Electric Vehicle Journal 2019, 10, x FOR PEER REVIEW 9 of 18 
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Based on historical new registrations for 39 countries, innovation and imitation coefficients of Bass
diffusion models have been estimated by [52] (France: p = 1 × 10−4 and q = 0.4; Germany: p = 2.5 × 10−5

and q = 0.5). The innovation coefficients for Germany and France in our results are somewhat higher
(France: p = 1.44 × 10−4; Germany p = 4.31 × 10−5), but relatively low in comparison to other common
innovation coefficients averaging p = 0.03 [52,53]. The estimated imitation coefficients are slightly
below the average of q = 0.38 [52,53] (France: q = 0.31; Germany: q = 0.32), but are comparable with
other innovations [53]. Differences could be due to the fact that only sales figures of zero-emission PEV
were included in [52], but all types of plug-in PEV are considered in our study.

To answer the question of who adopts PEV in France and Germany, we identify persons adopting
PEV in representative mobility data sets [42,43]. The mobility studies Mobilität in Deutschland (MiD
2008) and the Enquête nationale transports et déplacements (ENTD 2008) contain information on mobility
behavior as well as on the households surveyed, the individuals living there, their distances traveled,
and corresponding vehicles used.

PEV adoption probabilities are assigned to the persons interviewed in the national mobility
studies using the binary logistic PEV adoption model as described in Section 3.1. The higher the
probability of PEV adoption, the sooner these persons are assumed to adopt PEV.

The two different methods (Methods 1 and 2) are subsequently applied in order to obtain the
original and the reduced PEV adopter samples. Exemplary results are shown in Figure 2. Method 2
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significantly reduces the samples that represent EV adopters, for example, down to 20% of the original
number for the case of France in 2030.

4.2. PEV Charging

For simulation of the charging behavior, we assume that PEV are charged at home and at work.
Information on the charging behavior and corresponding load-shifting potentials is derived from the
individuals’ traveled distances, and several averaging assumptions: energy consumption (0.2 kWh/km),
charging power (3.7 kW), battery size (60 kWh), and minimum range (minimum range represents
the minimum range requested by customers that will always be recharged instantaneously after
plugging-in an EV for charging). (100 km [45]). Vehicle parameters are loosely based on the 2019
version of the Nissan Leaf (Energy consumption: 20.6–18.5 kWh/100 km, battery size: 40 or 62 kWh, cf.
www.nissan.de/fahrzeuge/neuwagen/leaf/reichweite-aufladen.html), the most popular battery electric
vehicle model worldwide [54]. Behind the low charging power lies the assumption that most vehicle
owners charge at home or at work [26] where no dedicated charging points are available due to costs
and ample time spent plugged-in. With these simple assumptions, we intend to make the results as
transparent as possible. In addition to that, the corresponding effects of varying these parameters are
evaluated by conducting sensitivity analyses in Section 5.2.

Of the 6 mn individuals adopting PEV in France and in Germany, 5.5 mn of the German adopters
(represented by 4487 data records) and 5.9 of the French adopters (represented by 4942 data records)
charge their PEV at home or at the workplace on the reference day. The 5.5 mn German adopters
charging at home or at the workplace charge their PEV in 10.4 mn charging processes and the 5.9 mn
French PEV adopters during 12.2 mn charging processes. Hence, in the scenario considered (PEV can
be charged at home and at the workplace), PEV users charge twice per day on average. Plug-in times,
active charging times, load-shifting potentials, and the energy charged only differ slightly between
France and Germany (cf. Table 3). If vehicles are not parked at home or at work, they are not charged.

Total energy charged per day represents the energy charged for the pure electric mileage of the
PEV adopters simulated. That is, an increase in the charging power or the range-specific parameter
potentially results in an increase in the total energy charged per day. Our sensitivity analyses in
Section 5.2. show the effects of varying input parameters on total energy charged and total energy
flexibly charged.

Figure 3 visualizes the cumulated French and German PEV load profiles: the load profile of direct
PEV charging and the variations in the profiles of flexible, i.e., controlled charging. A flexible charging
algorithm [45] is applied to hourly price profiles generated with an agent-based simulation model of
the countries’ power markets [15,55]. The distributions of the charging profiles in France and Germany
look quite similar. In both countries, load peaks of 12 GW can be observed, and PEV-specific loads are
shifted into nighttime and noon hours due to lower day-ahead market prices in these hours. Evening
peaks when charging directly seem to be higher in France.

4.3. Effects of Re-Sampling Approach

Detailed modeling of PEV diffusion, adoption, and charging with the presented hybrid model
and scheduling approach is computationally demanding, especially when simulating exponential PEV
market penetration beyond 2025. In previous work, high computing times have limited such analyses
(cf. [45]). Method 2 as presented at the end of Section 3.1.3. aims to reduce simulation times while
maintaining the quality of the results.

For the purposes of this study, we consider 1000 PEV adopters in the reduced sample (cf. Figure 2).
967 of the sampled French adopters (representing 6.0 mn PEV adopters) and 930 of the German
sampled adopters (representing 5.1 mn PEV adopters) charge in this case. Slight deviations can be
observed between the reduced and the original samples concerning all of the parameters considered,
with the exception of the total energy charged (cf. Table 3). The most unfortunate deviation occurs in
total weighted PEV adoptions, virtually adding or removing hundreds of thousands of PEV adopters

www.nissan.de/fahrzeuge/neuwagen/leaf/reichweite-aufladen.html
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from the population. Deviations originate in the re-sampling method (Method 2), where only every
other PEV adopter is picked (reduced sample), each with their individual weight or representativeness.
This results in observable differences concerning, for example, total energy directly charged per day.
However, as we focus on adequately simulating the aggregated energy demand of the national PEV
fleet, we accept these deviations. As computing time of our scheduling algorithm scales linearly with
the exponentially growing number of adopter records, corresponding reductions of computing times
outweigh the drawbacks of approximations for secondary variables. In our case, reducing the sample
size results in savings in computing time of about 85% for the simulated year 2030. For later years,
calculation times remain constant—despite exponential growth of adoptions and the resulting number
of sampled adopters reaching more than 20,000 with Method 1.

While the yearly energy demand of PEV is kept equivalent for the reduced case (cf. Method 2),
the daily profile of PEV charging is very important to their influence on the energy system. Figure 4
visualizes the deviations of the hourly cumulated charging demand in 2030 for the two markets in
the direct charging scenario. Deviations between the reduced and the original samples are visually
observable, but average out over the day.

Table 3. Charging behavior with two methods over different scenarios.

France Germany

Original
Sample

Reduced
Sample

Original
Sample

Reduced
Sample

PEV adopters charging in sample 4942 967 4487 930

Represented number of PEV adopters charging 5.9 mn 6.0 mn 5.5 mn 5.1 mn

Charging events of sampled PEV adopters 8873 1700 8590 1756

Represented charging events 11.8 mn 12.2 mn 10.4 mn 9.5 mn

Plug-in time ∆tplug
x

Mean 10.36 h 9.94 h 9.93 h 10.59 h

Std. Dev. 7.23 h 7.76 h 7.75 h 7.24 h

Median 9.67 h 11.64 h 11.42 h 9.58 h

Active charging time ∆tactive
x

Mean 1.56 h 1.35 h 1.39 h 1.70 h

Std. Dev. 2.18 h 2.32 h 2.39 h 2.19 h

Median 0.82 h 0.77 h 0.79 h 0.82 h

Load-shifting potential ∆tLSP
x

Mean 8.80 h 8.59 h 8.53 h 8.88 h

Std. Dev. 7.12 h 7.59 h 7.58 h 7.16 h

Median 7.81 h 9.09 h 8.66 h 7.89 h

Energy charged per charging
event

Mean 5.77 kWh 4.99 kWh 5.15 kWh 6.31 kWh

Std. Dev. 8.07 kWh 8.60 kWh 8.86 kWh 8.12 kWh

Median 3.04 kWh 2.84 kWh 2.92 kWh 3.04 kWh

Total energy charged per day Etotal 60.82 GWh 60.82 GWh 59.96 GWh 59.96 GWh

Total energy directly charged per day Edirect 1.65 GWh 2.26 GWh 2.06 GWh 2.92 GWh

Total energy flexibly charged per day E f lex 59.16 GWh 58.56 GWh 57.90 GWh 57.04 GWh
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Figure 3. Cumulated daily PEV load of direct and controlled PEV charging in (a) France and (b)
Germany in 2030.
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5. Discussion

This discussion section aims to put the results in perspective. Section 5.1 discusses the hybrid
diffusion model. Section 5.2. discusses sensitivities to PEV charging behavior in response to different
parameter choices. Section 5.3. discusses limitations to our approach.

5.1. Hybrid Diffusion and Adoption Model for PEV

We use a hybrid PEV diffusion model in this study, i.e., we combine a bottom-up and a
top-down approach [16] in order to better capture adopters’ personal preferences as well as shifting
macro-economic framework conditions [17]. As suggested by [16], the model presented in this study
takes into account economic and social information (based on the bottom-up binary logistic modeling
approach) as well as market development information (based on the top-down Bass diffusion model).
By applying the binary logistic model, our modeling approach identifies early PEV adopters within
representative mobility data sets, and their corresponding PEV charging behavior is simulated for
France and Germany [41]. The approach can be directly applied to other markets, given sufficient
availability of mobility studies and information on PEV diffusion targets. This is of significant use
for modeling the impact of PEV on complex energy systems, as these systems are usually highly
interconnected and even co-dependent, both physically and economically.

The results of our analyses show that PEV diffusion is significantly more dynamic in France than
in Germany, a finding in line with other studies [52]. Since the Bass diffusion model is anchored in
historical data and the same political target, the higher dynamics in France are likely the result of
a stronger incentive situation for low-emitting vehicles in the French tax regime and lower power
prices [56].

5.2. Sensitivity Analysis for PEV Charging

The results shown in Section 4.2 are based on the assumptions presented at the beginning of that
section and define a base case (3.7 kW charging power, 60 kWh battery capacity, 100 km minimum
range). In the following, we conduct sensitivity analyses in order to analyze the effects of parameter
variation on total energy charged and total energy flexibly charged. The results presented in Figure 5
show that electric mileage increases with increasing battery capacities. However, it seems that with
battery capacities of 60 kWh, a certain saturation level concerning full electric mileage when charging
with 3.7 kW is reached (Figure 5a). Increasing the charging power further results in a growing share of
full electric mileage (Figure 5b). In our simulations, sensitivities concerning the effects of charging
power on electric mileage seem to be slightly higher in Germany than in France. Moreover, battery
capacity variation affects the total energy flexibly charged during a day. A certain saturation level is
reached when battery capacities approach 80 kWh (133%). As with total energy charged, total energy
flexibly charged can be increased by increasing charging power (Figure 5b). Higher minimum range
thresholds result in reduced total energy flexibly charged, although seemingly to a lesser degree than
variations in battery capacity (Figure 5a).

5.3. Limitations

Naturally, our model suffers from several limitations: The Bass diffusion model neither considers
nor anticipates policy changes, which can have significant effects on adoption of PEV. However, one
could argue that governments might adjust their policies to incentivize a successful diffusion towards
publicized goals. Looking at our calculation of charging potentials, our approach focuses on the
national charging potential. While this is sufficient for policy recommendations and trend analyses,
implementation is another matter. A singular aggregator might dominate the market for flexible loads.
Moreover, we assume participation of all PEV in the scheme, which is of course rather optimistic.
A differentiation between customer groups and respective segmentation of fundamental parameters
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(for example, vehicle model selection) is a field of future research as, for example, the available electric
range is likely to influence driving and recharging behavior [57–59].
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Figure 5. Sensitivity analysis concerning total energy charged and total energy flexibly charged,
depending on (a) varying battery capacity, minimum range, and (b) charging power. Base case:
charging with (a) 60 kWh battery capacity, 100 km minimum range, and (b) 3.7 kW.

Fundamentally, it is still uncertain in how far conventional driving behavior can be superimposed
on PEV, as implied by using national mobility studies. On the other hand, we model adoption based
on data from a stated preference survey from persons who have been using first-generation PEV
mostly as company pool vehicles between 2011 and 2013 [39,41]. Mixing these two data sets implies
methodological challenges and forces assumptions for the input data of several variables. However,
using this model to attribute PEV adoption probabilities to individuals in representative mobility
studies seems reasonable as an estimate to identify the sequence of PEV adoptions. The noticeable
differences observed in the charging profiles when directly charging the vehicles indicate potentials for
improvements concerning possibilities for charging activities at work, which could be addressed in
future studies.

6. Conclusions and Outlook

For the estimation of potential systemic effects of PEV diffusion, for example, on the power grid,
adequate PEV diffusion models are necessary, ideally with high topical and temporal granularity.
The model presented in this study takes into account economic and social information (based on the
bottom-up binary logistic modeling approach) as well as market development information (based
on the top-down Bass diffusion model). By applying the binary logistic model to representative
mobility studies, PEV adoption and a corresponding charging behavior are simulated for France and
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Germany. Results indicate that the reduced sample representing the PEV adopters in 2030 is decreased
significantly, i.e., to 20% of the original sample while retaining all relevant information.

As these data sets include mobility behavior, and car use behavior in particular, we derive PEV
adopter-specific use and charging behavior by assuming that all PEV adopters use their own PEV
and that mobility behavior remains the same. This means that corresponding trips traveled with
conventional cars are substituted by trips with PEV. In addition, we assume that PEV users have the
possibility to plug in at work and at home and that PEV users do use this possibility. We compare
the charging behavior derived from the PEV adopters’ trip profiles and cumulated PEV-specific load
profiles of France and Germany. On a disaggregated level, slight differences in the simulated charging
behavior can be observed, for example, overall more charging events in France. Furthermore, on the
aggregated level, small differences of cumulated PEV-specific load profiles are observable, for example,
higher evening load peaks when directly charging PEV in France.

Our re-sampling approach (Method 2) limits the number of data records representing PEV adopters
and corresponding charging events and results in drastically reduced computing times. This opens up
new possibilities of including PEV on a disaggregated level in energy system modeling, for example,
considering different PEV-specific charging strategies in investment decisions of power plant operators
and considering PEV-specific effects throughout the whole simulation period in coupled wholesale
electricity markets across Europe.

Sensitivity analyses show that PEV users’ preferences concerning minimum ranges influence
corresponding charging profiles. Total energy flexibly charged increases with decreasing minimum
range thresholds. In addition, sensitivity analyses reveal the strong influence of preferences concerning
battery size and charging power on the flexibility that PEV could provide for a more stable and
affordable power system in times of increasing production uncertainty from renewable sources.

These results show that our model provides a useful tool for considering PEV in power-market
and energy-system modeling. It could be used to analyze PEV-specific effects on power markets in
order to inform policy makers on the potential effectiveness of different PEV diffusion and integration
regulations—a popular lever on the way to a more sustainable transport sector.

Future work could focus on applying our advanced method of identifying PEV-specific load
patterns to energy-system models in order to analyze potential future effects of PEV charging on
electric-power systems. For improving specifically the adoption model, future analyses could focus
on modeling PEV charging behavior more realistically, for example, based on observed charging and
driving behavior of PEV.

Furthermore, increasing battery capacities of the vehicles coupled with increasing smart-charging
experiences of PEV users might result in increasing acceptance of different smart-charging use-cases.
The flexibilities identified in this analysis are charging event-specific, i.e., by the time of its next
departure, the vehicle should be fully charged. Future work could analyze smart-charging activities
based on higher flexibility potentials provided, for example, by considering the flexibility potentials
available when shifting between charging events would be possible.
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